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Signal-to-noise ratio measures
efficacy of biological computing
devices and circuits

Jacob Beal*

Raytheon BBN Technologies, Cambridge, MA, USA

Engineering biological cells to perform computations has a broad range of important
potential applications, including precision medical therapies, biosynthesis process con-
trol, and environmental sensing. Implementing predictable and effective computation,
however, has been extremely difficult to date, due to a combination of poor composability
of available parts and of insufficient characterization of parts and their interactions with
the complex environment in which they operate. In this paper, the author argues that
this situation can be improved by quantitative signal-to-noise analysis of the relationship
between computational abstractions and the variation and uncertainty endemic in biologi-
cal organisms. This analysis takes the form of a ASNRgg function for each computational
device, which can be computed from measurements of a device’s input/output curve
and expression noise. These functions can then be combined to predict how well a
circuit will implement an intended computation, as well as evaluating the general suitability
of biological devices for engineering computational circuits. Applying signal-to-noise
analysis to current repressor libraries shows that no library is currently sufficient for general
circuit engineering, but also indicates key targets to remedy this situation and vastly
improve the range of computations that can be used effectively in the implementation
of biological applications.

Keywords: synthetic biology, controls, signals, digital circuits, Boolean logic, analysis

1. Introduction

Engineering biological cells to perform computations has been one of the major goals of synthetic
biology from its inception (Knight and Sussman, 1998; Elowitz and Leibler, 2000; Gardner et al.,
2000; Weiss, 2001). The complexity of computations that have actually been implemented, however,
has been quite small (Purnick and Weiss, 2009), only quite recently rising as high as a 3-layer logic
circuit comprising 6 regulatory devices (Moon et al., 2012). A number of well-known obstacles
have contributed to the difficulty of building multi-element logic circuits, including insufficient
numbers of strong regulatory elements for building circuits, undesirable interactions between
genetic elements, difficulties in constructing and delivering large genetic constructs, and difficulty
in modeling and predicting circuit behavior. A number of ongoing efforts are showing progress
toward decreasing these problems in circuit engineering, promising to soon deliver many more
strong regulatory elements [e.g., Bonnet et al. (2013), Kiani et al. (2014), and Stanton et al. (2014)],
improved isolation between components [e.g., Lou et al. (2012) and Mutalik et al. (2013)], fast
and easy construction and delivery [e.g., Weber et al. (2011) and Linshiz et al. (2012)], and better
predictive circuit models [e.g., Davidsohn et al. (2015) and Beal et al. (2015)].
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Among all of these improvements in our ability to engineer
computational circuits, however, there are two critical and sur-
prisingly unresolved questions:

o Just how good an implementation of computation is pro-
vided by the biological circuits and genetic elements that are
currently available?

e How much better do they need to be in order to realize
various applications?

A number of efforts have been made toward providing a clear
definition for biological computational devices [e.g., Knight and
Sussman (1998) and Weiss (2001)] and toward characterizing their
performance [e.g., Canton et al. (2008), Ellis et al. (2009), Kelly
et al. (2009), and Beal et al. (2012)]. None of these efforts to
date, however, has provided a practical method for quantifying the
performance of real devices and circuits that can be implemented
with readily obtainable information about biological devices.

This paper aims to provide such a method, based on the mathe-
matical foundation of a signal-to-noise ratio (SNR). The basic idea
is this: although biological computation is defined in the platonic
realm of abstract numbers and symbols, it must be realized in the
noisier physical reality of quantities like chemical concentration.
Such reality is never perfect, and a signal-to-noise ratio quan-
tifies how much of a problem the noise is with respect to the
intended representation. In electronics, signal-to-noise analysis
is a foundational tool for the engineering of computation and
communication; this paper now adapts this tool to the engineering
of biological computation circuits.

To this end, Section 2.1 of this paper thus begins by reviewing
these foundational concepts and adjusting their application to be
suitable for biological circuits. Section 2.2 applies this to com-
puting devices, analyzing them in terms of the degree to which
they enhance or degrade signal strength under various conditions.
Section 2.3 shows how SNR analysis of individual devices can be
used to predict the behavior of circuits, and Section 3.1 follows
the implications of these methods to develop a new framework
for engineering biological circuits based on SNR analysis. Building
on this framework, Section 3.2 applies SNR analysis to existing
libraries of biological computational devices, finding that none
are yet suitable for large-scale circuit engineering and identifying
targets for improvement that may remedy this situation. Finally,
Section 4 summarizes and considers future directions.

2. Materials and Methods

2.1. Boolean Biochemical Signals

For any biochemical implementation of Boolean values, we need
to choose what physical phenomena will be interpreted as the
abstract values “true” and “false” In this paper, we will focus
on one of the earliest proposed (Knight and Sussman, 1998;
Weiss, 2001) and most commonly used representations, in which
Boolean values are represented by the concentration of particular
chemical species within a cell.

Many other biological phenomena have also been proposed or
used to represent Boolean values, including extracellular concen-
tration of chemicals [e.g., Danino et al. (2009)], rate of transcrip-
tion by DNA polymerase or translation by ribosomes [e.g., Canton

et al. (2008)], presence, absence, or inversion of a given DNA
sequence [e.g., Bonnet et al. (2013)], epigenetic markings on a
DNA sequence [e.g., Keung et al. (2014)], fluorescence or light
emission [e.g., Kim and Lin (2013)], and trans-membrane voltage
[e.g., Adams and Levin (2013)]. For nearly all such mechanisms
of biological computation, however, at some point the coupling
between elements in the computation is regulated by the con-
centration of some chemical species. Thus, for many of these
alternative representations of Boolean values, it is possible to
identify an equivalent chemical representation to which the signal
analysis developed in this paper can be applied.

We can evaluate the quality of a chemical concentration rep-
resentation of Boolean values by comparing the distribution of
concentrations per cell produced when the chemical should be
in the “true” state with the distribution of concentrations per
cell when the chemical should be in the “false” state. The more
that these two distributions overlap, the harder it is to distinguish
between them, and therefore the worse the quality of the signal
and the more difficult it is to engineer an effective computation.
Likewise, the more that the two distributions they are separated,
the better the quality and the easier it is to engineer.

In electromagnetic systems, this notion of quality is typically
quantified as a signal-to-noise ratio (SNR).! Signal-to-noise ratio
is normally measured on a logarithmic scale of decibels, which can
be computed using the standard definition:

Asi I
signa
1

noise

SNRdB =20 loglO

where A is the root-mean-square (RMS) amplitude of the sig-
nal and noise waveforms, respectively (Oppenheim and Willsky,
1997). Applied to a general Boolean signal, this becomes:

SNRdB — 920 10810 |Ntrue - Mfalse| (2)
20
computing expected signal amplitude as half the difference
between mean “true” value and the mean “false” value (i.e.,
approximated by the RMS amplitude of a square wave), and noise
amplitude as o, the mean standard deviation for true and false
states (i.e., the RMS amplitude for the waveform remaining when
the intended Boolean signal is subtracted).

Superficially, it seems that the same analysis should be appli-
cable to biochemical systems. In fact, however, this is not the
case. The problem is that strong cellular expression of chemicals
typically exhibits a log-normal distribution of concentration per
cell [see, e.g., Friedman et al. (2006), Beal et al. (2012), Bonnet
et al. (2013), Davidsohn et al. (2015), and Stanton et al. (2014)] -
even if output might be population-level, computation is cur-
rently typically carried out within individual cells, because there
are currently many more intracellular than intercellular devices
available. This means that both signal and noise are generally

!Note that the comparison of signal and noise distinguishes this discussion from
prior investigations of gene expression noise in cells [e.g., Elowitz et al. (2002),
Ozbudak et al. (2002), Rosenfeld et al. (2005), Bar-Even et al. (2006), and Friedman
etal. (2006)]: these prior investigations characterize the characteristics of noise, but
we cannot analyze the efficacy of computation without comparing such noise to an
intended signal.
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better represented using geometric statistics, implying that the
signal-to-noise ratio calculation becomes:

|10g10 (ﬂg,true/ﬂg,false” (3)

SNRgp = 201og;, 2 -logyo(og)

where the p, variables are the geometric means of the true and
false values and o, is the geometric standard deviation for both
states (i.e., variation expressed in fold times/divide rather than
value plus-minus).

The SNR that is actually required depends on the application.
For example, if the goal is simply to detect that a computation
is followed a specified truth table, this can be accomplished
even when the signal is significantly less than the noise. For
example, achieving a twofold difference in signal levels in a sys-

tem with twofold SD of noise requires only an SNRyp of only

[logy0(2)]
2-log;(2)
cells in an industrial fermenter, such that they select the most

efficient of two modes of operation based on changing local
conditions, are still a fairly permissive application, since individual
cells selecting the wrong choice is likely to have only a minor effect
on the overall batch process, and thus might require a fairly low
SNR, in the 0-5 dB range. At the opposite end of the scale, a system
intended to identify and kill cancer cells inside of a human patient
likely needs to have a much higher SNR, perhaps in the range of
20-30dB, since even a small fraction of cells erroneously killing
healthy cells may have a major adverse impact on the patient’s
health.

For an example of such an SNR calculation, consider the simu-
lated distributions shown in Figure 1. These distributions are gen-
erated from a log-normal process using values drawn from within
the typical range of expression in mammalian cells, as based on
the experimental data in (Beal et al,, 2012, 2015; Kiani et al,
2014; Davidsohn et al., 2015): f1g true = 10° molecules of equivalent
fluorescein (MEFL), jig f1e = 10* MEFL, and oy = 3.2-fold. Each
distribution shown is a 10 bins/decade histogram of expressed
fluorescence from 50,000 simulated cells.

201ogq = —6.0dB. For another example, controlling

*MEFL units will be the unit of choice throughout this paper, as population
histograms can be readily obtained experimentally in MEFL using protocols such as
Beal etal. (2012), whereas other units such as concentration or number of molecules
are much more difficult to obtain for large numbers of single cells at present. Using
MEFL thus makes a simpler path for validation and application in the laboratory of
the results presented.

Here, Figure 1A shows high expression representing a true
state, while Figure 1B shows low expression representing a false
state. The geometric means of these two distributions are nicely
separated, with an approximately 100-fold ratio between the true
and false levels. The cell-to-cell variation, however, is also fairly
strong, with a o of more than threefold, resulting in an overall
SNR of only 6.2 dB.

Notice that the SNR value here is not very high, due to the
high degree of cell-to-cell variation. Such relatively low SNRs are
unfortunately rather typical for biological systems, and are an
important factor in the difficulty of engineering reliable biological
computations. The consequence is a low margin for error in
design, putting even more importance on the quality of computing
elements.

2.2. Effects of Computation on Signal Strength
Each computational element in a biological circuit, in addition to
performing its intended purpose, also affects the signal-to-noise
characteristics of the signals passing through it. An element with
strong amplification and inputs that are well-matched to its range
of operation will produce true and false outputs that are more
distinct than the inputs, i.e., with an increased SNR. An element
with poorly matched inputs or poor amplification, on the other
hand, will produce outputs that are less distinct than the inputs,
i.e., with a decreased SNR. We may thus summarize the “quality”
of a computational element in terms of the difference between
input SNR and output SNR across the various combinations of
inputs with which it may be supplied:

ASI\IRdB = SNRdB,output - SNRdB,input (4)

Under this definition, the higher the ASNRyg, the better the
biological element is at implementing a computation.

In general, the effect of a computational element is on SNR
is not uniform, but depends on the circumstances of its use.
This fact is independent of any additional biological effects of
context, such as metabolic competition, toxicity, or translational
read-through. Rather, it is an inherent characteristic of the non-
linear relationships between input and output found in most
computational elements: different combinations of input levels
and noise environment (ftg true, g false> a11d o) produce different
output SNRs. The output SNR is also affected by the dynamics of
a signal, e.g., how often the value of the input changes. For the

4000

3000

Count

2000

1000 -

MEFL

Distribution for True

FIGURE 1 | Example of a Boolean signal with values that cannot
be perfectly distinguished: (A,B) show histograms for 50,000 cells
sampled from typical distributions for Boolean true and false

MEFL
Distribution for False
states, respectively. These distributions overlap, however, and in the

overlapping range it is difficult or impossible to distinguish between true
and false values.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

June 2015 | Volume 3 | Article 93


http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive

Beal

Signal-to-noise ratio for biological computing

-2

Device A
Device B
L Device C

|| Mean
+ 2 Std.Dev.

-}
i 8
s c
S 10°} Zz -5
5 )
= <
3
-6k
10°F
7+
104 4 ‘5 ‘6 ‘7 8 _8 0
10 10 10 10 10 10

Input MEFL
Example Hill Functions
FIGURE 2 | The input/output curve of a device can be used to analyze its

ASNRgg. (A) Three example input/output curves, Device A (blue) is stronger
than Device B (red) and also has more similar input and output ranges, while

10
% (Fold)

Delta SNR vs. Noise

Device C (black) has a similar range to Device A but flatter slope. (B) For any
given input levels, the observed ASNRyg depends on the amount of noise oy,
converging to a maximum at low noise and falling as the noise increases.

analysis in this paper, however, we will focus only on converged
behavior in response to a stable input.’

The ASNRgyp for a computational element can be computed
from an input/output curve, i.e., a function measuring the outputs
observed across a range of input levels. Figure 2A shows three
simulated examples of such curves for repressor devices with
one input and one output (note that to allow easy visualization,
all examples in this paper will be restricted to one input and
one output, but the methods presented work for multiple inputs
and multiple outputs as well). The three example devices have
input/output curves f; generated using Hill equations (Fill, 1910)*
of the form:

L+ k("

L+ (4"
with parameters selected to place the curve within the typical
observed range for current repressor devices (Bonnet et al., 2013;
Kiani et al., 2014; Stanton et al., 2014; Davidsohn et al., 2015), and
both In and Out concentrations expressed in MEFL. In particular,
Device A (blue) uses K =10°, D=10°, H=2, o = 3 x 107, while
Device B (red) uses K=10%, D=10°, H=2, a =2 x 10°, and
Device C (black) uses K=10°, D=10°, H=1.2, « =3 x 10”. As
can be seen in Figure 2A, Device A has a larger range than Device
B, though their slope is similar in the transition between values;
Device A also has a more similar range for its outputs and inputs.
Device C, meanwhile, has similar input and output ranges to
Device A, but a significantly flatter slope.

Out =« -

*Such static analysis is expected to be a reasonable first approximation of cellular
behavior with strong signals, given the apparent dominance of extrinsic vs. intrinsic
noise under such conditions per Elowitz et al. (2002) and Rosenfeld et al. (2005).
“Hill equations simulate regulated production, not concentration, but in steady state
(as we consider here) the two are linearly related by a constant.

When the expression noise oy is low, the ASNRyp for a compu-
tational element is converged to a maximum determined by the
difference between input range and output range. At the opposite
extreme, as og continues to increase, the ASNRyp decreases, even-
tually converging to a linear slope entirely dominated by noise. For
example, Figure 2B shows ASNRgyp for the three example devices
as a function of uncorrelated noise® for inputs with figrue = 10®
MEFL and pig gise = 10* MEFL, simulating 10 samples of 50,000
cells per sample. Notice that as expression noise decreases toward
the minimal-noise limit of oy =1, the ASNRyp converges to an
upper limit of around —2.5dB for Device A, —6dB for Device
B, and —3dB for Device C. As the expression noise increases,
the SNR degrades as the distributions become less separated. By
og =3, the noise is having a noticeable effect on all three devices,
and by o, =10 it degrades device performance by around 1.5 dB
for all three devices.

A good upper limit on the computational quality of a device
can thus be estimated by considering the noise-free limit of its
performance for various input levels. Figure 3 illustrates this
with a simulation parameter scan of g true and fig e for each
example device. In specific, the scan simulates all combinations of
g true > [g false 1D the range of 10*-10® MEFL in logarithmic steps
at 50 levels/decade, for each combination running one sample of
50,000 cells at a very low noise o, = 1.02. Given the input/output
functions for each of the example devices, the maximum output
SNR at this noise level is 43.5 dB for Device A, 40 dB for Device
B, and 43.1 dB for Device C. For each device, the strongest output
SNR is found for input signals in the saturated regions of the device
input/output curves: for Device A roughly jigirue > 10%° and

®Correlations in expression noise can shift the results slightly, but the overall trends
remain the same.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

June 2015 | Volume 3 | Article 93


http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive

Beal

Signal-to-noise ratio for biological computing

A ASNR, B

By True
By True

. . . 20 .
5 6 7 8 6

6 7
[ False

IS
&

6
[ False

©
~
&

Device A Output SNR

FIGURE 3 | Variation of maximum ASNRyg and low-noise output
SNRgg (og = 1.02) with respect to input levels for three example
devices. (A-C) show ASNRgyg for device A, B, and C, respectively, while
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(D-F) show low-noise output SNRyg for the same devices. Note that the color
scales are truncated at the lower end to provide better resolution in the upper
range.

pigfase < 10°, for Device B roughly fig true > 107 and fig gy1se < 10%,
and for Device C roughly figrue > 107 and pug gee < 10°. At the
boundary of this region, the strong slope of the Devices A and B
allows some minor signal restoration, but outside of a relatively
small “sweet spot” the output SNR degrades badly with respect
to the input SNR. Device C has a similar “sweet spot” pattern,
but its lower input/output curve slope means that even its best
possible performance still sees a significant signal degradation
ASNRyp = —1.6dB.

Such a ASNRyp chart can provide a good first analysis of the
efficacy and operating range of a device. For example, with our
three example devices, Device A has a decent range of potential
use, while Device B is much narrower, and Device C, although has
a very strong on/off ratio, significantly degrades signal strength
even under ideal conditions of usage.

In practice, of course, there is typically a significant level of
expression noise, which further degrades the SNR characteris-
tics of a device. With measurements of the expected o, for a
device (which can be readily obtained through high-throughput
per-cell assays such as flow cytometry or microscopy with auto-
mated image analysis), we can apply the same SNR analysis
to estimate the actual expected ASNRyp, which will always be
overall worse (more negative) than in the ideal minimal-noise

condition. Figure 4 shows an example of such an analysis for
Device A with oy = 3, a typical level of observed expression noise
(simulated using the same parameters as before). Notice that the
essential character of the chart is not changed, meaning that
the conclusions drawn from the maximum SNR analysis still
apply. All of the features of the SNR chart, however, are more
“blurred,” degrading the regions of high performance. Ironically,
this also somewhat mitigates the regions of worst performance,
but performance in these regions is still generally too poor to be
useful.

Computation of ASNRyp can be used as a first stage of triage
in analyzing whether a given biological device will be useful in
attempting to realize digital computations. First, a device cannot
be used at all unless it has both a ASNRgp that is sufficient to meet
application SNR requirements, and also can achieve that ASNRyp
requirement in a range matched with its inputs [such evaluation
has the obvious pre-requisite of characterizing the input/output
relation using SI units rather than relative units, e.g., by means of
the protocols in Beal et al. (2012, 2015), Davidsohn et al. (2015),
and Kiani et al. (2014)]. Beyond that, the wider the region of good
ASNR g3, the easier it will be to match a device with others to form
a circuit and the more tolerant a device will be of other types of
perturbations inflicted by its context of deployment.
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FIGURE 4 | With significant expression noise, ASNRg4g may be

significantly worse than under ideal conditions. For example, the
charts above present the same analysis of Device A as in Figure 3,

By False

Device A Output SNR, 0y = 3

(A) shows ASNRgg, (B) shows output SNRyg, but with a more typical
o =3 level of expression noise. Note that the color scales are truncated at
the lower end to provide better resolution in the upper range.

2.3. Multi-Device Computational Circuits

Just as the computational efficacy of a single biological device
may be analyzed in terms of its signal-to-noise characteristics, so
can the same approach be applied to analyzing the computational
efficacy of an entire computational circuit. The complete circuit
can, after all, be viewed as just a more complicated device, and the
SNR for its inputs and outputs be computed in the same way as for
a single device.

The converged SNR characteristics of a circuit with no feedback
loops can be predicted using the single-device SNR charts pre-
sented in the previous section. As has recently been demonstrated
(Davidsohn et al., 2015), the mean and expression variation of
such circuits can be predicted with high accuracy. Given such
predictions, the maximum possible ASNRyp can be predicted
directly from the input signal levels, using the input-output curves
and ASNRyp analyses for the individual devices. For example,
consider a chain of repressors, acting as logical inverters. For the
ith inverter in the chain, its output is given by its input/output
function f;, producing the input for the next stage. In the minimal-
noise case, the SNR changes at each step are independent, meaning
that they add linearly. The ASNRyp for the circuit can thus be
computed by composing together input-output curves to pre-
dict the inputs for each device, then summing for each device i
the device ASNRgg,; along the path from input to output. This
produces a total end-to-end change of:

A dSBI,iEI =A sdI;I,F(Mg,true’ Mg,false)

+A SdIgIB(fl (:ug,false)z fl (,ug,true))
+ ASNR(f2 - f1(Hg.true), f2 - 1 (kg fate)) + - (5)
The overall efficacy of a circuit is thus a function of both the

SNR properties of individual devices and how well signal levels are
matched between devices. As seen in the previous section, positive

SNR ranges may often be quite narrow, and even a relatively small
mismatch can be disastrous for the efficacy of a computation.

For example, Figures 5A-D show the ASNRyj for chains of one
to four repressors, each with the characteristics of Device A. This
is a nice example of (potentially) effective digital computation:
Device A is strong enough to restore signal and a fairly good match
between its input and output ranges. As a result, any input starting
in a fairly broad region of the upper left can maintain a strong
SNR over multiple stages of computation - in fact, an unbounded
number in the absence of noise. Inputs falling outside of this good
operating range, however, quickly degrade away to very low SNR.

This presages the problems that occur when the output and
input levels of devices are not as well matched (or less strong,
which makes for a smaller “sweet spot” and more difficulty in
matching levels). For example, Figures 5E-H show chains of one
to four repressors with the characteristics of Device B. Although
its performance characteristics are not much worse than Device A
for a single repressor (as seen in the previous section), the poor
match with a narrow high-SNR “sweet spot” means that ASNRyp
collapses when a second repressor is added - much worse than the
twice the original ASNRyp - and continues to degrade thereafter.
Indeed, the “least bad” region is where the high and low inputs
hold almost the same value to begin with, meaning there is little
signal to be lost in the first place.

With a good match between signal levels but not a steep enough
slope of the input/output curve, there is a third mode of behavior.
This is exemplified by Figures 5I-L, which show chains of one
to four repressors with the characteristics of Device C. Without
a region of positive ASNRyp, the signal cannot be sustained, but
degrades incrementally. With devices of this sort, it is impossible
to implement many-layer computations, but computations with
only a few devices between any input and output are viable.

As with individual devices, of course, the minimal-noise model
gives only a best-case evaluation of the computational efficacy of
a circuit. This is still valuable, because it can be used to eliminate
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Device B is weaker and less well matched between input and output, and thus
any computation with more than a single element has a badly degraded signal
strength for all possible inputs. Device C, on the other hand, degrades
incrementally in SNR across a broad range. Note that the color scales are
truncated at the lower end to provide better resolution in the upper range.

many non-viable options and to triage viable options based on the
difficulty of attaining the (SNRyp required for an application.
Just as with individual devices, however, we can use the same
signal-to-noise models to estimate the performance of a circuit
with higher o,. As before, the best (SNRyp is expected to be less
than can be achieved in a minimal-noise circuit, though some
of the worst performance can be mitigated. Unlike the minimal-
noise case, however, we cannot precisely predict performance of
the circuit by adding single-device SNR losses. At higher levels
of expression noise, SNR losses are not independent because
the operation of each device affects the effective o, observed by
the devices that consume its output. We can, however, estimate
a conservative lower bound on performance by adding single-
device SNR losses. For example, Figure 6 shows (SNRyp for the
Device A repressor chains with o, =3. Figures 6A-D estimate
the value from the (SNRyp of Device A with o, =3 shown in

Figure 4A, while Figures 6E-H simulate chains of Device A
using the same parameters as in Section 2.2 (K =10, D=10°,
H=2,a=3x107, 0g =3,50,000 cells per sample). As expected,
these show that the estimate from individual devices is a good
lower bound on the performance that can be attained from the
device under conditions of noise, with the actual simulated perfor-
mance being somewhere above that and below the minimal-noise
performance.

3. Results

3.1. Implications for Biological Circuit
Engineering

Let us now consider how the engineering of biological circuits
can be assisted by these models. We must, however, remember
that having a strong predicted SNR for a circuit will not ensure
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FIGURE 6 | The efficacy of a circuit with noisy distributions can be
estimated from the (SNRyg for individual devices under the same noise
conditions. For example, estimates of chains of Device A repressors with
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g =3 (A-D) are a good conservative bound on the behavior observed in
simulation (E=H). Note that the color scales are truncated at the lower end to
provide better resolution in the upper range.

that a biological circuit computes effectively, any more than using
standard TTL components will ensure that an electronic circuit
computes effectively: there are many other types of problems
that also might interfere with the desired behavior. Importantly,
though, having a strong SNR (both the overall circuit and the
(SNRgp at individual devices) does mean there is more margin
for error in dealing with these other aspects of circuit engineer-
ing. Complementarily, an insufficient predicted SNR is a virtual
guarantee that the circuit will not work. SNR analysis may thus be
expected to be a useful tool for discriminating between possible
circuit design alternatives.

As seen in the previous sections, in order to apply SNR analysis,
it is necessary to have the following characterization data for each
computational device:

e An input/output curve measured in compatible SI units,
e.g., by means of the protocols in Beal et al. (2012, 2015),
Davidsohn et al. (2015), and Kiani et al. (2014).°

e g, for the device’s output in the (non-circuit) context in
which the circuit is expected to operate.

To apply SNR analysis to a circuit requires the following addi-
tional information:

o The topology of the circuit, specifying the interconnections
between device inputs and outputs.

6T&:chnically, relative units could be also used [e.g., RFUs, per Kelly et al. (2009)],
but the lack of ST measurements means that it is much more difficult to debug any
problems that arise, particularly with regards to differences between practitioners
or laboratories.

o Input signal levels o, and expression noise o (also implying
input SNR).
o SNR requirements for the circuit output.

Given a library of characterized devices and a circuit specifi-
cation, it is then possible to search for good candidate circuits.
The best candidates should go beyond satisfying output SNR
requirements and maximize output SNR, in order to have the
most margin for dealing with other engineering difficulties. With
a homogeneous library of devices with very similar behavior [e.g.,
as CRISPR-based repressors appear likely to provide (Kiani et al.,
2014)], circuit viability can be determined by a straightforward
application of the SNR analysis presented in the prior section and
devices assigned arbitrarily. With a more heterogeneous library,
[e.g., the TetR homolog library in Stanton et al. (2014)], differ-
ent combinations of devices will have different properties, but
the design problem should still be susceptible to efficient search
with any number of well-established constrained-search methods
(Russell and Norvig, 2003).

More important to the success of circuit engineering is the
SNR characteristics of the devices in the library. The three cir-
cuit examples in the previous section are characteristic of three
general qualitatively different “phases” of expected difficult in
engineering biological circuits. These phases are predicted by
considering the selection of devices from a library as a search
process proposed by Beal (2014). The behavior of such a search
process is critically affected by degree of coupling between design
choices (i.e., the likelihood that two independent choices are
incompatible), as has been well-established in complexity theory
(Cheeseman et al., 1991; Hogg et al., 1996) and statistical physics
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(Krzakala and Kurchan, 2007; Dall’Asta et al., 2008; Zdeborova,
2008). In this case, the degree of coupling is determined by the
likelihood of two devices having an output/input match with
a high (SNRyp, leading to three qualitatively different expected
engineering environments:

o Difficult circuits: when most biological devices in a library
are either weak or poorly matched (e.g., having character-
istics like Device B), it is difficult to discover a working
combination of components even in the best circumstances.

Engineering computational circuits using such devices
is expected to be characterized by extensive and lengthy
“tuning” and many failed attempts, since even small per-
turbations in device characteristics (e.g., from the biological
operating context) can result in massive SNR losses.

o Shallow circuits: when many biological devices in a library
have a large region of small negative SNR (e.g., having
characteristics like Device C), it is easy to find acceptable
matches, but there is still significant signal loss at every
device.

Engineering computational circuits using such devices is
expected to be relatively simple for circuits up to a certain
depth, because there is tolerance for small perturbations and
many good candidates for working circuits. When the circuit
requires more depth than can be readily attained while main-
taining sufficient SNR, however, this strain raises the effec-
tive coupling and it will be extremely difficult to engineer an
effective circuit of such depth, just as in the prior case.

o Deep circuits: when many biological devices in a library
have a well-matched region with positive SNR (e.g., having
characteristics like Device A), it is easy to find combinations
of devices where signals do not degrade from layer to layer.

Engineering computational circuits using such devices
is expected to no longer be constrained by issues of
computational efficacy: in principle, circuits of any depth
and complexity can be readily engineered, and limits instead
come from other aspects of the biological implementation,
such as circuit delivery and demand on cellular resources.

Analysis of circuit and library SNR characteristics can deter-
mine which of these engineering environments we are operating
in. Note, however, that there are no “hard” boundaries between
phases: rather, as SNR characteristics improve, there is a grad-
ual shift in the dominating engineering constraint from signal
matching to signal degradation to non-signal constraints (with
concomitant conclusions that can be drawn about the likely dif-
ficulty of circuit engineering). Unfortunately, knowing for certain
if we are in trouble, while useful, does not actually make it any
easier to engineer circuits. Quantification of SNR characteristics
can, however, point to what target properties need to be achieved
in order to move to a better engineering environment.

3.2. Prospects for Deep Circuit Libraries

Given the widely observed difficulty of engineering biological sys-
tems [e.g., Kwok (2010)], it seems intuitive to guess that synthetic
biology is currently operating in the “difficult circuits” regime. By
applying SNR analysis to current high-efficacy device families, we
can verify that this is actually the case. More importantly, however,

we can also estimate approximately how far these device families
are from the “shallow circuit” or “deep circuit” regimes, and what
changes would be likely to allow them to attain those goals. When
analyzing some properties of some device families, the relevant
device characteristics are well enough known to allow rough
quantification of requirements; in other cases, only qualitative
conclusions can be drawn at present.

At present, there are several families of biological computa-
tional devices with the prospect of producing large numbers of
universal logic devices with a high differential between output sig-
nal levels. The strongest current candidates are homolog mining,
integrase logic, TALE and zinc finger repressors, and CRISPR-
based repressors, each of which we discuss in detail. Other promis-
ing candidates include miRNA, aptamers, RNA-binding proteins,
riboregulators, and protein/protein regulation, but all of these
currently face various obstacles that mean they appear to be
significantly farther away from providing large families of strong
universal logic devices. As these technologies continue to mature,
however, the same type of analysis presented in this section can be
applied to them as well.

3.2.1. Homolog Mining

The TetR repressor is a naturally occurring strong repressor that
has been used successfully in many systems. Genomic mining for
TetR homologs has produced a library of 20 orthogonal repressors,
many of them with quite strong on/off ratios (Stanton et al.,
2014). Each repressor has also been characterized with a high-
resolution input/output curve (though only in relative units),
and the models for these input/output curves are published in
Stanton et al. (2014). Figure 7 shows parameter scans of (SNRyp
for a wide range of input level combinations for all 20 devices,
using o, = 2.0 as a conservatively low estimate of a typical value
of bacterial expression noise, as estimated from the histograms
reported in Stanton et al. (2014) and the noise values reported
in Ozbudak et al. (2002). Parameters scans are performed as in
Section 2.2 except shifted to the relative unit range of the devices
(1072107 relative units) and more coarsely, at five levels/decade.
A summary of the results is given in Figure 8A, which lists the
maximum (SNRgyp for each device, along with the on/off ratio
reported in Stanton et al. (2014). Of the 20 reported gates, only
4 have the positive (SNRyp needed that is a pre-requisite for
deep circuits. Somewhere around another 5-10 are likely have
sufficiently strong (SNRyp for shallow circuits, given their rel-
atively high amplification and moderate signal loss. Since the
library is highly heterogeneous (Figure 8B), signal matching must
be done on a circuit-by-circuit basis. One significant challenge
that is clear from the input/output functions, however, is that
few devices have an output o). low enough to achieve the
optimal (SNRyp input; the mismatches between devices can thus
be expected to lower the effective (SNRyp that can be achieved for
any circuit.

Nevertheless, this library is the closest currently in existence to
supporting deep circuits. Key targets for developing that capability
are to further expand the library by additional mining, to calibrate
the input/output curves to SI units, and to adjust the signal levels
to better match, likely by decreasing output expression via 5’ UTR
modifications.
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3.2.2. Integrase Logic

Integrase logic gates, which operate by inverting segments of
DNA, have been demonstrated to produce input/output curves
with a very high amplification in their transition between high
and low output (Bonnet et al., 2013). No model parameters
were included in the publication, but the very steep slope
of the curves makes it clear that these devices should have
a high maximum (SNRgp. This is tempered, however, by a
significant number of cells that do not change state, leading
to a (SNRyp that appears to be net negative rather than net
positive.

At present, however, these integrase logic gates have quite
poorly matched input and output signal levels. In addition, to
date, very few have been demonstrated: it is reasonable to expect
that many more might be discovered through homolog mining,
though the availability of usable naturally occurring of orthogonal
integrases is not yet clear. Key targets for expanding this tech-
nology into a library capable of deep computation are genomic
mining to expand the number of devices, calibration of the
input/output curves to SI units, and adjustment the signal levels
to better match, likely by decreasing output expression via 5 UTR
modifications.
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Device  Maximum ASNRg,  Fold on/off
PhIF 1.69 193.0
SrpR 1.51 207.0
Orf2 0.91 46.0
TetR 0.31 137.0
LmrA -0.03 61.0
HlylIR -0.48 48.0

BM3R1 -0.58 28.0
Betl -1.55 35.0
TarA -1.66 49.0
PsrA -1.86 43.0
LitR -2.37 35.0
QacR -2.38 32.0
IcaR -2.52 34.0
AmtR -2.68 28.0
ScbR -3.75 8.0
McbR -4.13 14.0
ButR -4.62 5.0
HapR -5.07 8.0
SmcR -5.51 5.0
AmeR -5.58 10.0

Maximum ASNR,p
curves, computed from models, provided in Stanton et al. (2014).
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FIGURE 8 | TetR homolog library from Stanton et al. (2014): (A) maximum gate ASNRgyg with oy = 2.0, sorted by maximum ASNRgg. (B) All input/output
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3.2.3. TALE and Zinc Finger Repressors

TALE proteins are a modular DNA-binding protein that can be
engineered to bind to specific sequences with high specificity.
Coupled with appropriately designed promoters, TALE proteins
have been used to implement extensible libraries of strong pro-
moters (Garg et al., 2012; Davidsohn et al., 2015; Li et al., 2015).
TALE repressors can produce remarkably strong repression [mea-
sured at a maximum of nearly 5000-fold repression in Garg et al.
(2012)]. Detailed input/output curves taken for TALE repressors
in Davidsohn et al. (2015) and Li et al. (2015), however, have
found a poor slope and uncertain match between input and output
levels, implying a poor (SNRyp for composed TALEs - consistent
with the low input/output differential observed in the composite
circuits investigated in that paper.

At present, TALEs are thus viable only for implementing very
shallow circuits with low SNR. One likely path for increasing their
potential depth is to increase repression strength by adjusting the
synthetic promoter architectures used for TALE repressors. Given
the level of deamplification observed in circuits in Davidsohn
etal. (2015) and Li et al. (2015), an approximately 10-fold increase
would likely be sufficient and may be attainable through this
approach. Another possibility might be to heighten cooperativity
(steepening the input/output curve) by changing the TALE to a
fusion protein. Furthermore, the characterization in Davidsohn
et al. (2015) was of transient rather than converged operation
(i.e., fluorescence levels were still changing over time, rather than
having reached a stable level of expression), and it is possible that
TALE repressors may have a significantly steeper input/output
curve when converged.

Zinc finger repressors are a very similar modular protein tech-
nology, which has also been demonstrated to produce strong
orthogonal repressors [e.g., Khalil et al. (2012) and Lohmueller
et al. (2012)]. No detailed input/output curves of these strong

repressors have been produced to date, so obtaining input/output
curves in SI units is the first key step to evaluating the viability of
zinc finger repressors as a library. Given the similarity in promoter
architectures used in the two technologies, however, it seems likely
that they will face similar challenges to TALE repressors.

3.2.4. CRISPR-Based Repressors

CRISPR-based repressors are a recent addition to the set of can-
didate libraries (Kiani et al., 2014), based on a protein that can be
targeted with high specificity by a separately expressed sequence
of guide RNA (gRNA). Like TALE and zinc finger repressors, they
have showed very high repression strength, and may be signifi-
cantly more homogeneous and easier to engineer with since the
sequences are much shorter and do not involve any protein design.
They have not yet had detailed input/output curves measured,
however, and what characterization has been done to date has
been of transient rather than converged behavior, as with TALE
repressors.

For this family, the clear next step toward deep computation is
to determine the SNR characteristics of the components, though
this is complicated by their current use of a Pol III promoter
to express gRNA, which is not compatible with the fluorescent
proteins typically used for characterization. If the CRISPR-based
repressors prove to have a steep slope in their converged behav-
ior, then their SNR may already be sufficient for deep circuits;
otherwise, they will likely require similar promoter engineering
to TALE and zinc finger devices.

All told, we see that the current situation of synthetic biology
is one of difficult circuit engineering. Even though some devices
provide good SNR, there are not enough and there is not enough
compatibility to reliably support engineering of either shallow
or deep circuits. Other devices may also provide good SNR, but
require characterization before this can be determined and, if true,
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effectively exploited. For all of these families of devices, however,
the SNR approach identifies key targets for improvement that
appear to be reasonable to aim for and that offer the prospect of
enabling deep circuit engineering and the transformative capabil-
ities that would imply.

4. Discussion of Contributions

This paper has developed methods for characterizing the effi-
cacy of biological computing devices and circuits based on
signal-to-noise ratio. This approach has the advantage of being
firmly mathematically grounded in the fundamental definition
of a signal, and can be applied using readily obtainable charac-
terization data. This paper has also illustrated the use of SNR
methods by applying them to analyze individual devices and
predict the behavior of circuits in simulation, as well to develop
a framework for SNR-based circuit engineering. Finally, a SNR-
based analysis of current device libraries indicates that, while
no library is yet sufficient to support deep biological circuits,
several may be able to if particular targeted improvements can be
realized.
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