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A corrigendum on

Can the natural diversity of quorum-sensing advance synthetic biology?
by Davis, R. M., Muller, R. Y., and Haynes, K. A. Front. Bioeng. Biotechnol. (2015). 3:30. doi: 10.3389/
fbioe.2015.00030

The gene WP_023917333 was incorrectly used to generate the GtaR protein motif map in Figure 5
of the original publication, which led us to publish erroneous conclusions about GtaR structure and
function (Davis et al., 2015). At the time this manuscript was published, the gene WP_023917333
was incorrectly titled “LuxR family transcriptional regulator Rhodobacter capsulatus” in the NCBI
database. Analysis of the correct GtaR protein sequence (WP_013066073) does not show “sequence
conservation with TatD family of deoxyribonuclease proteins” nor does it lead us to conclude that
GtaR “might represent a unique class of HSL-responsive regulator proteins” (Davis et al., 2015).

Analysis of the correct protein sequence (WP_013066073) shows that GtaR contains the same
b–b–a–a–b–a–b–b motif as RhlR, LasR, and SinR. All four regulator proteins, RhlR, LasR, GtaR,
and SinR, respond to different ligands: C4-HSL, 3O-C12-HSL, C16-HSL, and C18-HSL, respectively
(Llamas et al., 2004; Kumari et al., 2006; Geske et al., 2008; Leung et al., 2012). We surmise that
variations in specific residues may account for the regulator proteins’ preferences for different
ligands.

The GtaR C-terminus does not match the HTH LuxR-type motif (Prosite PS50043) originally
annotated in Figure 5 but does match an “HTH_LuxR” DNA-binding motif designated as SMART
motif SM00421 (Schultz et al., 1998; Letunic et al., 2015) at amino acids 140–197. This motif
is present in all the regulators analyzed. Figure 5 now illustrates HTH LuxR regions (SMART
SM00421) instead of PS50043. Furthermore, in the original publication, the proteinmotif maps were
switched between LasR andAubR, and the SidAmapwas scaled incorrectly.We have corrected these
errors in a new version of Figure 5.
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Davis et al. Corrigendum: quorum-sensing tools

FIGURE 5 | Comparison of protein motifs in select regulators. The
three-dimensional (3D) structure of TraR is shown as an example of how
domains and the homoserine lactone (HSL) ligands are typically positioned in
space. The underlined letters in the b–b–a–a–b–a–b–b secondary structure motif
indicate the location of highly conserved amino acids that form hydrogen bonds
with the homoserine lactone head of HSLs. Published 3D structure data (Protein
Data Bank) are listed where available (“–”= not available). Abbreviations used
are: Reg.= regulator protein, H–T–H= helix–turn–helix, a= alpha helix, b=beta

strand, h= 3/10 helix. Database entries for conserved motifs are: autoinducer
binding= IPR005143 (Mitchell et al., 2015), HTH LuxR=SM00421 (Schultz
et al., 1998; Letunic et al., 2015). Inferred binding pockets are patterns of
secondary structures that are similar to the TraR-binding pocket. Inferred
recognition helices are the second alpha helix from the C-terminus. Secondary
structures for proteins with no available 3D structure data were mapped using
the Jpred prediction tool (Cole et al., 2008). Maps were generated using
DomainDraw (Fink and Hamilton, 2007). Figure modified from Davis et al. (2015).
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