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This article describes PhenoMeter (PM), a new type of metabolomics database search 
that accepts metabolite response patterns as queries and searches the MetaPhen
database of reference patterns for responses that are statistically significantly similar or 
inverse for the purposes of detecting functional links. To identify a similarity measure that 
would detect functional links as reliably as possible, we compared the performance of
four statistics in correctly top-matching metabolic phenotypes of Arabidopsis thaliana 
metabolism mutants affected in different steps of the photorespiration metabolic path-
way to reference phenotypes of mutants affected in the same enzymes by independent 
mutations. The best performing statistic, the PM score, was a function of both Pearson 
correlation and Fisher’s Exact Test of directional overlap. This statistic outperformed
Pearson correlation, biweight midcorrelation and Fisher’s Exact Test used alone. To
demonstrate general applicability, we show that the PM reliably retrieved the most closely 
functionally linked response in the database when queried with responses to a wide variety 
of environmental and genetic perturbations. Attempts to match metabolic phenotypes
between independent studies were met with varying success and possible reasons for 
this are discussed. Overall, our results suggest that integration of pattern-based search 
tools into metabolomics databases will aid functional annotation of newly recorded
metabolic phenotypes analogously to the way sequence similarity search algorithms
have aided the functional annotation of genes and proteins. PM is freely available at
MetabolomeExpress (https://www.metabolome-express.org/phenometer.php).
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Introduction

The emergence of high throughput omics technologies has driven an explosive increase in the 
global rate of biological data generation. Recognizing the urgent need to systematically capture 
and preserve these data for future re-use, the scientific community has been responding to the 
data explosion by developing minimal reporting standards, standardized data sharing formats, 
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and databases for a wide variety of technologies and research 
fields (Fiehn et al., 2008; Taylor et al., 2008; Field et al., 2010; 
Fernie et al., 2011). As the challenges of capture, storage, and 
exchange are overcome in new fields, we anticipate increased 
efforts to make accumulated data more immediately useful 
to biologists by equipping databases with advanced analyti-
cal capabilities extending beyond simple search, browse, and 
visualization functions. In this article, we describe one such 
effort in the field of metabolomics to turn a database of experi-
mentally observed metabolite responses into an analytical tool 
by equipping it with metabolite response pattern-based search 
functionality.

A well-known example of an added-value metabolomics 
database is the Golm Metabolome Database (GMD) (Kopka 
et  al., 2005). The earliest GMD versions focused on sharing 
reference mass-spectral and retention index (MSRI) reference 
libraries for gas chromatography/mass spectrometry (GC/MS) 
peak identification, providing basic browse and text search 
options. Subsequent versions added value to these libraries by 
introducing new tools for MSRI data-based search with chemical 
sub-structure prediction so users can search their own spectra 
against the collection of reference spectra to identify their peaks 
and, in the case of unmatched spectra, gain clues about possible 
chemical structures (Hummel et al., 2010).

The GMD developers recently introduced new features to 
support the storage and visualization of experimental metabolite 
level data, the comparison of metabolite levels between different 
experimental treatments and a novel “profile search” tool that 
searches experimental metabolite level profiles (signal intensities 
of metabolites within a single sample class) against a database 
of reference profiles to find similar profiles using a dot-product 
similarity measure.1 To our knowledge, formal descriptions of 
these latest features are not yet published. Nevertheless, by devel-
oping the Profile Search feature, the GMD has become one of the 
first metabolomics databases to provide biological pattern-based 
search capabilities and thereby evolve beyond being simply a 
well-indexed archive of biological information with basic search, 
browse, and visualization functions to become a biological ana-
lytical/annotation tool in the truest sense, analogous to a nucleo-
tide sequence database equipped with a nucleotide sequence 
similarity search algorithm.

In the fields of transcriptomics and proteomics, a form 
of pattern-based database searching known as enrichment 
analysis (EA) has become extremely popular. The widespread 
uptake of EA to aid interpretation of gene product expression 
profiles is strongly evident in the literature. In their review, 
Huang et al. (2009) identified some 68 different software tools 
for performing EA on transcriptomic/proteomic data (Huang 
et al., 2009). At the time of publication, the article describing 
the use of DAVID, one of the earliest EA tools based on Fisher’s 
Exact Test, had been cited over 3000 times (Huang et al., 2008). 
The article describing the first example of Gene Set Enrichment 
Analysis (GSEA; using a Kolmogorov–Smirnov test) had 
been cited over 6000 times (Subramanian et al., 2005). Other 

1 http://gmd.mpimp-golm.mpg.de/

examples of database-driven tools and approaches matching 
signature patterns within gene expression profiles for the pur-
pose of inferring functional links include The Connectivity 
Map (Lamb et  al., 2006), OncoMine (Rhodes et  al., 2004, 
2007), EXALT (Wu et al., 2009), SIGNATURE (Chang et al., 
2011), ExpTreeDB (Ni et  al., 2014), LINCS Canvas Browser 
(Duan et  al., 2014), Galahad (Laenen et  al., 2015), AtCAST 
(Kakei and Shimada, 2015), Drug-Path (Zeng et al., 2015), and 
NFFinder (Setoain et  al., 2015). Clearly, there is very active 
development and strong uptake within the omics community 
of tools that can help make sense of molecular expression pro-
files by matching query patterns to large databases of reference 
patterns.

In contrast to the field of transcriptomics, there are currently 
few examples of EA and no published tool allowing a public 
repository of metabolite response patterns to be searched on the 
basis of a query response pattern. Several properties of metabo-
lites promise to make the development of metabolite response 
pattern-based database search tools particularly rewarding:

 1. Metabolite contents provide an integrated readout of pro-
cesses occurring at the transcriptional, translational, and 
physicochemical levels of biochemical organization and are 
therefore of great diagnostic utility.

 2. Acquisition of untargeted metabolomics data is generally 
relatively inexpensive and high-throughput compared to 
acquisition of proteomic and transcriptomic data.

 3. Many metabolites are common to different organisms and 
measuring them in new model systems does not require 
costly genome or transcriptome sequencing.

However, metabolites also present unique challenges for the 
development of pattern-based database search tools:

 1. Relative to gene identifiers, metabolite identifiers are poorly 
standardized across the literature  –  a single metabolite is 
often referred to by many different identifiers in the litera-
ture thus making mapping more difficult for developers.

 2. Metabolomics analyses often detect many metabolites that, 
despite being of biological importance and diagnostic value, 
are structurally unidentified.

 3. Comparably few public metabolomics databases are designed 
to store experimentally observed metabolic phenotypes.

 4. Submission of metabolomics datasets to public databases is 
not enforced by journals to the same extent as submission of 
transcriptomics and proteomics data.

 5. As a consequence of points 3 and 4, systematically annotated 
reference metabolic phenotypes are less readily available 
than transcriptomic or proteomic datasets.

Despite the above challenges, examples of EA tools for metab-
olomics that examine query metabolite profiles for evidence of 
significantly coordinated responses of biologically meaningful 
metabolite sets stored in a database have begun to appear in 
recent years. For example, Xia and Wishart (2010, 2011a) have 
developed a web-application named metabolite set enrichment 
analysis (MSEA) which uses the “globaltest” algorithm, originally 
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designed for transcriptomic EA (Goeman et al., 2004), to provide 
two types of EA for metabolomics:

 1. Over-representation analysis (ORA, Class I EA) that checks 
whether any predefined metabolite sets (e.g., metabolites 
from certain metabolic pathways, from certain locations or 
with certain disease associations) are enriched in a query 
metabolite set.

 2. Quantitative Enrichment Analysis (QEA, Class II EA) in 
which metabolite concentration profiles for a number of 
subjects differing in some continuous or discrete experi-
mental factor of interest (e.g., drug dose) are provided as 
input and the “globaltest” algorithm is used to test whether 
any of the predefined metabolite sets are significantly dif-
ferentially expressed as a group.

More recently, Xia and Wishart integrated their “globaltest” 
based MSEA implementation into their powerful MetaboAnalyst 
metabolomics data analysis web application (Xia and Wishart, 
2011b) while Persicke et al. (2012) integrated an MSEA feature 
based on the original GSEA statistical approach (Subramanian 
et al., 2005) into their versatile MeltDB metabolomics data pro-
cessing pipeline (Persicke et al., 2012).

While statistical methods are obviously important, the results 
of any EA tool can only be as meaningful as the transcript/protein/
metabolite sets defined in its database. It is therefore unfortunate 
that creation of meaningful sets is so labor intensive. The deri-
vation of metabolite sets from online pathway databases, while 
amenable to scripting, still requires manual curation, especially 
when the pathway database itself has not been extensively curated 
or was not made specifically for the organism being studied 
(Persicke et  al., 2012). Even more laborious is the creation of 
metabolite sets from information scattered across the literature in 
a multitude of formats (Xia and Wishart, 2010). This may explain 
why most EA tools only provide built-in reference sets for one 
taxonomic group or interest area.

In this article, we describe the design and validation of 
MetabolomeExpress PhenoMeter  –  a new tool for detecting 
biologically meaningful patterns within metabolite response 
profiles. The PhenoMeter (PM) differs from metabolomics EA 
tools in the following ways:

 1. It is not concerned with enrichments of metabolite sets but 
with statistical similarities between experimentally observed 
metabolic phenotypes.

 2. Rather than using a dedicated database as its source of 
reference data, it utilizes the MetabolomeExpress Metabolic 
Phenotype Database, MetaPhen (Carroll et al., 2010) – an 
established organism–  and technology-neutral public 
metabolomics data repository providing persistent public 
storage of experimental metabolic phenotypes  –  thereby 
distributing the workload of producing reference data 
across the metabolomics community.

 3. For both query input and reference phenotypes, it requires 
only the fold changes of metabolite levels under a treatment 
relative to a control rather than raw measurements. This 
makes it possible to analyze metabolite data from the many 

publications that do not provide raw measurements while 
making the setup of PM queries simpler.

Additional features include:

 1. Metabolite label permutation-based estimation of hit 
significance.

 2. Interactive annotated scatterplots of phenotype–phenotype 
comparisons.

 3. Network graph visualization of phenotype–phenotype 
similarity networks.

 4. Standardized and documented database import text-file 
format for public submissions of experimental reference 
datasets.

We begin by comparing the performance of four different phe-
notypic similarity scoring methods in correctly matching the met-
abolic phenotypes of Arabidopsis thaliana metabolism mutants to 
reference phenotypes of functionally equivalent mutants affected 
in the same enzymes by independent mutations. To test the capac-
ity of the different methods to correctly discriminate between 
similar phenotypes, we used mutants affected in various steps of 
a metabolic pathway rather than a set of functionally less related 
mutants. This pathway was photorespiration  –  a complex, high 
flux pathway that detoxifies and recycles 2-phosphoglycolate, a 
toxic metabolite produced by Rubisco (Ribulose-1,5-bisphosphate 
Carboxylase/Oxygenase) – the enzyme responsible for fixing CO2 
during  photosynthesis – when it fixes O2 instead of CO2 through 
a competing reaction (Bauwe et  al., 2010, 2012; Maurino and 
Peterhansel, 2010).

After demonstrating the high performance of the adopted 
scoring method, we describe the permutation-based approach 
used for significance testing and show that results of typical que-
ries are returned in practical timeframes. We then demonstrate 
features for visualizing phenotypic similarity networks and show 
that metabolic phenotypes of photorespiration mutants previ-
ously published by independent groups could be matched to the 
relevant reference phenotypes from this study despite differences 
in growth conditions and analytical technologies. Finally, we 
present examples of matching between metabolic responses to 
a variety of different perturbations besides photorespiratory 
gene mutation using datasets from the publications of various 
groups. The PM and tools like it promise to enhance the objec-
tive interpretation of metabolic phenotypes by the metabolomics 
community. The PM and associated documentation is publicly 
available without registration at the MetabolomeExpress (Carroll 
et al., 2010) website.2

Results

Development of the phenoMeter phenotypic 
Similarity Scoring Algorithm
The PM accepts metabolic phenotypes (sets of metabolite fold 
changes in a treatment relative to a control) as queries and 

2 https://www.metabolome-express.org/phenometer.php
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searches a database for phenotypes that are statistically signifi-
cantly similar (or inverse). The metabolic phenotype database, 
MetaPhen, is part of MetabolomeExpress public metabolomics 
database (Carroll et  al., 2010). At the time of publication, 
MetaPhen contained 429 publicly available phenotypes from 
50 peer-reviewed publications spanning 17 organisms and 15 
analytical technologies. Thus, despite being biased toward the 
plant kingdom, the MetaPhen database is currently compara-
ble in size and scope to other major metabolomics databases 
such as the United States Government National Institute of 
Health (NIH) Metabolomics Workbench3 and the European 
Bioinformatics Institute’s MetaboLights (Haug et  al., 2013) 
databases that contained data from 64 and 85 studies, respec-
tively. Query phenotypes may be selected from those already in 
MetaPhen or pasted into the web interface as a list of metabolites 
and their fold changes (or log transformations thereof). For 
user phenotypes, metabolite identifiers are recognized by first 
parsing them to remove chemical derivative or library-specific 
information and then mapping them to compound-specific 
IUPAC International Chemical Identifier (InChI) codes via a 
large database table mapping approximately 200,000 metabo-
lite synonyms to over 8000 distinct metabolites. Most common 
metabolites will be recognized if a reasonably common name 
is used.

The primary dataset used to test the performance of candidate 
hit ranking statistics was a set of metabolic phenotypes obtained 
via untargeted GC/MS metabolomic analysis of polar leaf extracts 
of 26 A. thaliana metabolism mutants grown under a standard 
set of conditions. Thirteen of these (see Materials and Methods) 
had been previously characterized by others and shown to be 
impaired in enzymes of the photorespiration metabolic pathway 
(Figure  1). Our collection of known photorespiration mutants 
will hereon be referred to as the “reference mutants”. The remain-
ing 13 metabolic phenotypes used in our performance test were 
of mutants isolated from an ethyl methane sulfonate (EMS)-
mutagenized A. thaliana mutant population via a chlorophyll 
fluorescence-based forward genetic screen designed to detect 
photorespiration mutants (Badger et al., 2009).

Prior to this study, the new putative photorespiration mutants 
had not been characterized at the metabolic or genetic levels. 
However, it was expected that a high proportion of the new mutants 
would be impaired in the same metabolic enzyme as one or more 
of the reference mutants and therefore exhibit significantly simi-
lar metabolic phenotypes to those mutants. The rationale behind 
our performance test was that, after searching each of the new 
putative photorespiration mutant metabolic phenotypes against 
the reference phenotypes, the biochemical lesion indicated by 
the top match could be confirmed as correct or otherwise by the 
presence or absence of a mutation in the expected gene by next 
generation sequencing (NGS) or, if necessary, by the presence or 
absence of protein or enzymatic activity. Counting the percent-
age of correct top hits would then provide an assessment of each 
method’s performance. Below, we compare the performance of 
each ranking approach (see Table 1 for results).

3 http://www.metabolomicsworkbench.org/

candidate hit Ranking Statistic 1: R2

The first approach we tested was to simply rank hits according to 
R2 where R is the Pearson correlation coefficient between X and 
Y: equivalent equal length vectors representing the bait and prey 
metabolic phenotypes as treatment/control signal intensity ratios 
(SIRs or “fold-changes”) of the metabolites, transformed into so 
called “ResponseValues” (RVs) as follows:

 

Where SIR  RV SIR 1
Where SIR  RV 1 1 SIR
Where SIR

> = −
< = − ( )
=

1
1
1

:
: /
:   RV = 0  

This transformation is similar to a log transformation in that 
it centers the data about 0 with increases, decreases, and non-
responses being represented as positive, negative, and 0 values, 
respectively. However, unlike a log transformation, the RV trans-
formation places the fold changes on a linear scale rather than a log 
scale and therefore does not down-weight stronger changes the way 
log transformation does. In all tests, a filter was applied to remove 
all metabolites with an absolute fold-change <1.5 (that is, a fold 
change between 1.5 and 1/1.5). This was to remove the influence of 
metabolites with marginal fold changes of questionable biological 
significance. Users may adjust this setting to suit their data.

This approach performed reasonably well in that, in 12 (92%) 
of 13 cases, the metabolic lesion indicated by the top match was 
confirmed either by the detection (by whole genome resequenc-
ing, see Materials and Methods) of a high-confidence and severe 
non-synonymous mutation in a conserved protein-coding region 
of the same gene as that affected in the top-matched reference 
mutant, or, in one case, by the detection of severe depletion of 
the relevant protein (Table 1). A single mismatch was obtained 
for the mutant, 17-10F4, that was matched to the chloroplast 
dicarboxylate transporter 2 (DIT2.1)-deficient reference mutant, 
dct (Somerville and Ogren, 1983). However, the genome re-
sequencing-based detection of a high confidence mutation in the 
GLU1 gene of 17-10F4 predicted a G1252E residue change in a 
conserved part of the GLU1 protein, thereby strongly supporting 
GLU1-deficient as the correct assignment (Table 1; Table S1 in 
Supplementary Material).

The enzymes, DIT2.1 and GLU1, are closely functionally con-
nected (Figure 1) and the strongest metabolic changes observed 
in the DIT2.1- and GLU1-deficient reference mutants were simi-
lar (for example, 14- to 52-fold decreases in glutamate,  aspartate, 
and serine and 4- to 14-fold increases in 2- oxoglutarate).  
It is therefore not surprising that the R2 approach did not correctly 
resolve these phenotypes in every case, since R2 was strongly influ-
enced by these larger fold changes. This sensitivity to larger fold 
changes raised concern that, by using R2 alone, useful discrimina-
tory information contained within large numbers of small but 
nonetheless biologically meaningful metabolite responses could 
be effectively ignored if a relatively small number of metabolites 
changed strongly in similar ways in the query and reference 
phenotypes. Moreover, the R2 method would be prone to giving 
false negatives in instances where even a small number of large 
spurious metabolite responses are reported erroneously due to 
some overlooked technical issue (e.g., chemical contamination 
or peak integration error).
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candidate hit Ranking Statistic 2:  
Biweight Midcorrelation
Our concerns about the sensitivity of the R2 method to outliers and 
large fold changes led us to test the bicor function of the weighted 
correlation network analysis (WGCNA) R package (Langfelder and 
Horvath, 2008) as a potential alternative. This function performs a 
form of “robust” correlation known as “biweight midcorrelation” 
that is less sensitive to outliers than Pearson Correlation and has 
been used widely to measure similarity between gene expression 
profiles for the purposes of constructing gene co-expression 
networks (Langfelder and Horvath, 2012). Replacing R2 with the 
robust correlation coefficient calculated by the bicor function did 
indeed result in the previously mismatched phenotype of 17-10F4 
being correctly top-matched to a GLU1-deficient reference mutant 

rather than the DIT2.1-deficient mutant (as observed using R2, see 
above). However, the appearance of a number of new mismatches 
brought the success rate of this approach down to only 10 (77%) 
out of 13 (Table 1) suggesting a decrease in overall performance 
relative to the R2 and hence that down-weighting of higher fold 
changes with larger absolute deviations did not enhance discrimi-
nation. This method was therefore not tested further and will be 
referred to as the “BWMC” method. For mathematical details of 
BWMC, please refer to Langfelder and Horvath (2012).

candidate Ranking Statistic 3: Fisher’s exact 
Test for Response overlap (FeT2p)
The observation of incorrect top matches with the correlation-
based ranking methods led us to question whether better 

FIgURe 1 | The photorespiration metabolic pathway in A. thaliana. 
Metabolic phenotypes of A. thaliana mutants affected in various steps of the 
photorespiration metabolic pathway (highlighted in bold) were used to test the 
performance of the PhenoMeter. By correctly matching query phenotypes to 
their most functionally closely related counterparts (e.g., matching the 

phenotypes of mutants affected in the same gene rather than different genes), 
phenotypic pattern matching tools like the PhenoMeter should ideally 
discriminate between phenotypes of functionally closely related perturbations 
such as disruption at different steps of a metabolic pathway like photorespiration. 
Steps performed by unknown gene products are indicated with a “?.”
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TABle 1 | performance evaluation of four metabolic phenotypic similarity measures.

Top Ranking hits Using Different Similarity Measures

Query Mutant Affected enzyme lesion R2 BWMc FeT2p pM score

30-2A7 AGT1 G365R agt1-2 agt1-2 pmdh1pmdh2 agt1-2
17-59G4 AGT1 L183F agt1-1 agt1-2 agt1-1 agt1-1
32-34C7 AGT1 R30Q agt1-2 pmdh1pmdh2 glyk agt1-2

17-10F4 GLU1 G1252E dct gls-113 gls-113 gls-113
32-26C1 GLU1 R1306 gls-113 gls-113 gls-113 gls-113
24-27C2 GLU1 G104R gls-103 dct gls-113 gls-113
24-29A8 GLU1 P406L gls-103 gls-113 gls-113 gls-113
24-2E5 GLU1 E579K gls-113 gls-113 gls-113 gls-113
17-6E4 GLU1a GLU1 Absenta gls-113 gls-103 dct gls-113

18-21E7 SHM1 E122K shm1 cat-2 mtkas-1 mtkas-1
18-29A6 SHM1 E122K shm1 mtkas-1 mtkas-1 mtkas-1
25-35D8 SHM1 R128H shm1 shm1 shm1 shm1
24-14G7 MTKAS G200R mtkas-1 mtkas-1 mtkas-1 mtkas-1

% correct: 92% 77% 77% 100%

Thirteen A. thaliana photorespiration mutant lines carrying severe non-synonymous mutations in conserved regions of known photorespiration genes (see “Affected enzyme” and 
“Lesion”) previously isolated by forward genetic screening in our lab (Badger et al., 2009) were genetically characterized by NGS-based genome resequencing (see Materials and 
Methods). The metabolic phenotypes of these “Query mutants” were analyzed by non-targeted GC/MS metabolomics and searched against the reference database of independently 
published “reference” photorespiration mutants using the PM. Four searches were performed with a different similarity measure being used to rank hits each time. The table shows 
the top hit returned for each query mutant using each similarity measure (correct hits are indicated in bold – note mtkas and shm1 phenotypes were treated as equivalent).
aAbsence of GLU1 confirmed by western blotting (Figure S1 in Supplementary Material) – it is not known whether other enzymes are also affected.
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performance might be gained by considering only directions of 
metabolite changes rather than their fold-changes. To this end, we 
tried ranking phenotypic similarities according to the “qualita-
tive overlap” of the two metabolic phenotypes as determined by 
counting: (a) the number of metabolites that are increased in both 
phenotypes; (b) the number of metabolites that are decreased in 
both phenotypes; (c) the number of metabolites that are increased 
in the query but decreased in the reference; and (d) the number 
of metabolites that are decreased in the query but increased in the 
reference; and using these as input into a two-tailed Fisher’s Exact 
Test (Fisher, 1922). The p-value obtained by this method will be 
referred to as “FET2p.”

Ranking hits in order of FET2p resulted in 10 (77%) of the 
13 mutants being correctly top-matched (Table  1). Using this 
method eliminated the mismatching of the new shm1 mutant 
18-21E7 to the cat-2 reference that was observed using the R2 and 
BWMC methods and mismatches of the new gls (GLU1-impaired) 
mutants, 17-10F4 and 24-27C2, to the dct reference as observed 
using R2 and BWMC, respectively. This suggested that qualita-
tive (directional) aspects these metabolic phenotypes, exposed 
by removing the contribution of fold change magnitudes to the 
ranking, contained important discriminatory information not suf-
ficiently captured by R2 or BWMC. The FET2p method, however, 
produced new mismatches for two mutants identified by genome 
resequencing as defective in peroxisomal serine/alanine: glyoxy-
late aminotransferase 1 (AGT1) on the basis of severe mutations in 
the AGT1 gene (Table S1 in Supplementary Material). One of these 
(30-2A7) was mismatched to the pmdh1pmdh2 reference mutant 
impaired in peroxisomal malate dehydrogenase (pMDH) activity 
metabolically closely connected to AGT1 in the peroxisome. The 
other (32-34C7) was mismatched to the glyk reference mutant 
defective in the plastidic enzyme, glycerate kinase (GLYK), which 
functions just downstream of AGT1 in the photorespiratory path-
way. Importantly, these mutants were both correctly top-matched 

to AGT1-deficient reference phenotypes using the R2 method 
(Table 1), suggesting that metabolite fold changes contained infor-
mation necessary to discriminate the qualitatively similar AGT1-, 
pMDH-, and GLYK-deficient phenotypes. Another mutant (17-
6E4) correctly matched to GLU1-deficient gls reference mutants 
using R2 and BWMC and confirmed to be deficient in GLU1 pro-
tein by western blotting (Figure S1 in Supplementary Material), 
was mismatched to dct using the FET2p method.

candidate Ranking Statistic 4: 
R2 × (−log10(FeT2p))
The fact that that the R2 and FET2p methods yielded comple-
mentary sets of correct top matches suggested that they were 
sensitive to complementary types of functional discrimina-
tory information within metabolic phenotypes. Based on this 
observation, we hypothesized that a hybrid scoring function 
allowing both metrics to contribute to rankings might outper-
form either metric alone. We therefore tested the ability of the 
formula R2 × (−log10(FET2p)) to yield correct top matches for the 
13 mutants. Indeed, we found that this approach outperformed 
all the previous metrics, yielding correct top matches in all 13 
(100%) of the test mutants (Tables 1 and 2). We therefore adopted 
this formula as the implemented hit ranking metric.

 = × −RPhenoMeter Hit Ranking Metric ( log (FET2p))2
10  

The phenoMeter Score
The R2 × (−log10(FET2p)) formula used to rank hits responds only 
of the strength of the similarity between the query and reference 
phenotypes, returning a positive value regardless of whether a 
match is positively or negatively correlated with the query. While 
this property made the formula ideal for ranking hits, we also 
needed a metric that would indicate not only the strength but 
also the direction of the relationship. To this end, we adapted the 
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TABle 2 | The pM score gave correct top matches in all test cases.

Querya Top hitb FeT2p R pM score pnon-bio

32-26C1 gls1-113 2.4E-13 0.88 9.7 p < 10−308

17-10F4 gls1-113 1.5E-19 0.67 8.4 p < 10−308

25-35D8 shm1 8.6E-13 0.73 6.4 p < 10−308

24-29A8 gls1-113 1.3E-12 0.72 6.2 p < 10−308

17-6E4c gls1-103 2.1E-07 0.93 5.8 p = 6.7E−195

24-14G7 mtkas-1 2.9E-09 0.71 4.3 p < 10−308

24-2E5 gls1-113 4.3E-08 0.63 3.0 p < 10−308

18-29A6 mtkas-1 1.5E-14 0.40 2.3 p < 10−308

18-21E7 shm1 7.9E-07 0.5 1.6 p < 10−308

17-59G4 agt1-1 1.0E-03 0.66 1.3 p < 10−308

30-2A7 agt1-2 7.2E-03 0.65 0.9 p < 10−308

32-34C7 agt1-2 4.8E-03 0.55 0.7 p < 10−308

24-27C2 gls1-113 2.0E-09 0.15 0.2 p < 10−308

aID of the sequenced independent photorespiratory mutant whose metabolic 
phenotype was used as query.
bID of the known reference photorespiratory mutant whose phenotype gave the highest 
PM score. All hits were determined to be correct by the detection in the test mutants 
(by NGS) of severe non-synonymous mutations in conserved protein coding regions of 
the same genes as indicated by the hit mutant.
cThe gls1 hit returned by 17-6E4 was confirmed as correct by western blotting which 
showed the absence of GLU1 protein (Figure S1 in Supplementary Material).

FIgURe 2 | calculation of phenoMeter (pM) score. The procedure for 
calculating the PhenoMeter similarity score consists of several stages. First, 
metabolites that are not represented or do not increase or decrease by at 
least the minimum threshold (1.5-fold by default) in both bait and prey are 
discarded. Then, signal intensity ratios (SIRs) associated with each metabolite 
are transformed to ResponseValues (RV = SIR–1 where SIR > 1 and 
RV = (−1/SIR) + 1 where SIR <1). The correlation between the RVs of the 
bait and prey phenotypes is then calculated. The PhenoMeter then counts 
the number of metabolites that are (1) increased above threshold in both 
phenotypes; (2) decreased below threshold in both phenotypes; (3) 
decreased below threshold in the bait but increased above threshold in the 
reference; and (4) increased above threshold in bait but decreased below 
threshold in reference; and then uses these values as input into a two-tailed 
Fisher’s Exact Test to calculate the statistical significance of the qualitative 
overlap of the two phenotypes (FET2p). The PM score is then calculated 
using the formula PM score = sgn(R)*R2*(–log10(FET2p)).
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formula by multiplying it by sgn(R) so that the sign of the score 
would be the same as the sign of the correlation between the 
query and reference phenotypes (sgn is a mathematical function 
that extracts the sign of its parameter by outputting −1 when it is 
negative, +1 when it is positive and 0 when it is equal to 0):

 = × × −R RPhenoMeter Score sgn( ) ( log (FET2p))2
10  

While simply replacing R2 with R would have achieved the 
same sign-changing effect, we observed lower matching per-
formance when R2 was replaced with R (data not shown due to 
limited space). The fact that the magnitude of the PM score is 
derived from two readily understood statistics (R2 and FET2p) 
makes its “strength” readily interpretable in familiar statistical 
terms. For example, the fact that a match with a marginally sig-
nificant FET2p of 0.05 and an R2 of 0.8 (an above average R2 for 
genuine matches between functionally equivalent phenotypes; 
see Table 2) would have a PM score of ~1 (1.040824) makes this 
score a useful benchmark since scores <1 must either have low 
R2 or insignificant FET2p while scores >>1 must at least have a 
highly significant FET2p if not a high R2 as well. Thus, as a “rule 
of thumb,” scores <1 may be considered ‘weak’ while scores >>1 
may be considered “strong.” An example PM score calculation is 
illustrated in Figure 2.

permutation-Based estimation of  
Statistical Significance: pnon-bio

An important issue associated with the use of pattern matching 
tools employing custom scoring methods is that of assessing statis-
tical significance. An intuitive way of assessing the significance of a 
hit with a particular score is to estimate the probability of it arising 
by chance from a query that is the same in every way except that 
the associations between fold-change values and metabolite labels 
have been randomized to destroy the biological meaningfulness 
of the query pattern. After all, under the null hypothesis that the 

query was biologically meaningless, shuffling the metabolite labels 
should have no significant effect on the magnitude of the returned 
score. Thus, adopting the traditional alpha cut-off of 0.05, we 
may consider a significant hit as one with a score expected to be 
exceeded in magnitude in fewer than 5% of cases when metabolite 
shuffling and searching is repeated many times.

Theoretically, the probability of obtaining a given score after 
metabolite labels have been reshuffled is sensitive to a variety of 
search parameters:

 1. The size of the search space. The larger the number of 
reference phenotypes in the search space, the greater the 
probability of getting at least one high score by chance.

 2. The number of metabolites in the query. As the number of 
metabolites compared is increased, the lowest achievable 
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p-value from the Fisher’s Exact Test is decreased (and the 
potential magnitude of the PM score increased).

 3. The identities of metabolites in the query. Some metabolites 
tend to be more biologically responsive than others and thus 
have greater potential to contribute to higher R2 values.

 4. The distribution of fold changes in the query (and hence 
also the fold-change filter threshold setting) could affect the 
capacity to achieve high R2 values.

The approach used to estimate the probability of a hit with 
a given score being a false positive under the null hypothesis is 
shown in Figure 3. Each search begins by generating 30 permu-
tations of the original query in which the metabolite labels are 
randomly shuffled. These are then searched against the chosen 
reference phenotype set in exactly the same way as the original 
query. The null score distribution is then modeled as a normal 
distribution from the mean and SD of all the scores returned by 
the permutated phenotypes (the total number of “null” scores 
being equal to 30 times the number of phenotypes in the search 
space).

To establish that a normal distribution was a reasonable 
model of the typical null score distribution, we permuted the 
phenotype of five different mutants 500 times each, prepared 
histograms of the resulting null PM hit scores and overlaid 
them with plots of the normal distribution modeled from the 
means and SDs of the null scores (see Figure  4 for a repre-
sentative example). These results clearly established that the 
normal distribution was in fact a conservative model of the 
empirical null distribution. Conveniently, this made it appro-
priate to use the common z-statistic to estimate the percentage 
of random permutations that would be expected to exceed any 
given score:

 
Hit score

PM Score -PM_Scoreactual perm

perm scores

z −
σ

=
_

 

where PM_Scoreactual is the score of the original unshuf-
fled phenotype match and PM_Scoreperm  and σperm scores are the 
mean and SD of the PM scores returned from the permuted 
queries, respectively.

The p-value derived through the above approach treats the 
fold changes of different metabolites as independent observa-
tions. For the purposes of testing the null hypothesis defined 
earlier, this assumption of independence is appropriate given 
that different metabolites are generally detected as independ-
ent instrument signals whose magnitudes bear no significant 
influence on one another and should exhibit no significant 
correlations attributable to systematic technical variation pro-
vided that effective steps were taken to avoid such systematic 
technical variation (e.g., block randomization of analytical batch 
sequences). Thus, as long as the above technical requirements 
are met, this p-value can be interpreted as an estimate of the 
probability that the observed match score did not emerge out of 
biology. We therefore refer to this value as pnon-bio. It is important 
to note that the biological non-independence of metabolites 
which arises from metabolic network structure is not relevant to 
the hypothesis outlined above.

Speed performance
For phenotypic similarity searches to become a practical part 
of daily operations, results need to be returned within seconds 
or minutes rather than hours or days. Computational efficiency 
was therefore another factor behind the decision to use simple 
statistics as the basis of phenotypic similarity measurement. To 
evaluate speed performance of the PM, we ran some different 
kinds of searches and recorded the completion times (Table 3). 
From these results, it can be seen that search times associated with 
typical usage cases range from under 2 s for simple searches with 
less than 100 metabolites to 10 min for more complex searches 
including thousands of metabolite signals.

Visualization of phenotypic Similarity networks
In the validation experiments described earlier, we observed 
that A. thaliana mutants affected in different but functionally 
connected enzymes displayed similar metabolic phenotypes. 
Indeed, the mirroring of gene–gene functional connections in 
phenotype–phenotype similarities has also been observed in 
yeast (Fraser and Plotkin, 2007; McGary et al., 2007), nematodes 
(Lee et  al., 2008), and plants (Messerli et  al., 2007; Fukushima 
et  al., 2014). The observation that human diseases associated 
with similar phenotypes are frequently mediated by genes that 
are connected via functional modules such as pathways or 
 protein–protein interaction networks (Lage et al., 2007) has led 
to the concept of the “modular nature of human genetic disease” 
(Oti et  al., 2008). This correlation between functional genetic 
relationships and phenotypic relationships has been exploited 
successfully in the prediction of the disease-causing roles of genes 
from functional genomics data (Wu et al., 2008).

The PM provides an opportunity to explore the structures 
of metabolic phenotypic similarity networks and obtain insight 
into the functional interaction networks that underlie them. 
To this end, we incorporated network graph visualization of 
metabolic phenotypic similarity networks into the PM. As a 
demonstration, we generated a network graph of the metabolic 
phenotypes of the A. thaliana photorespiration mutants used 
to develop the PM similarity scoring method. We then colored 
the nodes according to pathway function to visually explore 
whether network modules reflected metabolic functional mod-
ules (Figure 5). Mutants affected in Fd-GOGAT (GLU1) were 
co-located (in the upper left of the graph) with the dct mutant 
defective in the closely functionally connected dicarboxylate 
transporter (DiT2.1). This cluster was highly interconnected 
with another cluster (lower left) made up of mutants affected in 
two other closely metabolically linked enzymes: glycine decar-
boxylase (GDC) and serine hydroxymethyltransferase (SHMT). 
This interconnection reflects the shared involvement of GLU1, 
DiT2.1, GDC, and SHMT in the photorespiratory nitrogen cycle 
(Figure 1). To the bottom center of the graph was a cluster made 
up of mutants affected in enzymes hydroxypyruvate reductase 
(HPR), pMDH, and GLYK that function together in pathway 
converting hydroxypyruvate to 3-phosphoglycerate. Consistent 
with the notion that phenotypic similarity networks reflect 
functional networks, the agt1 mutants affected in AGT1  –  an 
enzyme that links HPR to the photorespiratory nitrogen cycle 
through the transamination of glyoxylate using serine as an 

http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
www.frontiersin.org/Bioengineering_and_Biotechnology
www.frontiersin.org


FIgURe 3 | estimation of statistical significance via permutation 
testing. The probability of obtaining a given PhenoMeter score by chance is 
dependent upon algorithm settings and the nature of the bait and reference 
phenotype search space. To estimate the chance of obtaining the reported 
score by chance, each bait search is therefore accompanied by a permutation 

test in which random permutations of the bait phenotype are searched in an 
otherwise identical manner. The mean and standard deviation (SD) of the 
scores from these searches is then used to calculate a z-score for the actual 
score from which a p-value is estimated. We call this p-value pnon-bio because it 
represents the probability of the match score not having arisen out of biology.
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amino donor  –  were connected with both the HPR/pMDH/
GLYK cluster and the cluster made up of mutants affected in 
the photorespiratory nitrogen recycling enzymes GLU1, DiT2.1, 
GDC, and SHMT.

cross-Study Metabolic phenotype Matching
To investigate the potential for cross-study phenotype matching 
with the PM, we tested whether independently published meta-
bolic phenotypes for various photorespiration mutants transferred 
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from non-photorespiratory high CO2 to photorespiratory air con-
ditions for various durations against our reference set (Table 4). 
We first tested whether the phenotypes of mutants impaired in 
mitochondrial glycine to serine conversion could be correctly 
top-matched to our reference shm1 and mtkas-1 photorespira-
tion mutants impaired in the same process. These mutants exhibit 
strong metabolic phenotypes and their comparison in the same 
species therefore represents a best-case scenario for achieving 
significant matches. Indeed, phenotypes reported for shm1 by 
Collakova et al. (2008) and Eisenhut et al. (2013) both returned 
significant top matches to either our shm1 or mtkas-1 reference 
despite considerable differences in air treatment time (Table 4). 
Similar results were obtained (Table 4) for the phenotypes of other 
mutants affected glycine-to-serine conversion – namely the purU 
mutant defective in 10-formyl tetrahydrofolate (THF) deform-
ylase activity required to prevent accumulation of 5-formyl-THF 
that potently inhibits GDC/SHMT activity in the mitochondrial 
matrix (Collakova et al., 2008) and the bou-2 mutant defective 
in the putative mitochondrial glycine transporter, A BOUT DE 
SOUFFLE, presumably required to transport glycine into mito-
chondria so it can be converted into serine (Eisenhut et al., 2013).

We next tried searching phenotypes reported for Ljgs2-2, a 
Lotus japonicus photorespiration mutant affected in plastidic 
glutamine synthetase (GS) (Pérez-Delgado et  al., 2013). These 

phenotypes were strong but our reference set did not include 
any A. thaliana or L. japonicas GS mutants so we wanted to test 
whether the phenotypes of Ljgs2-2 had enough similarity to our 
reference phenotypes to yield hits consistent with its photorespi-
ratory impairment. Indeed, significant matches to our reference 
phenotypes were returned, the highest scoring ones being to 
shm1 and pmdh1pmdh2 (Table 4). Moreover, an unbiased search 
of the entire database, which contains hundreds of phenotypes 
besides those of photorespiration mutants, returned a set of 27 
significant hits of which 19 (70%), including the top two (pnon-

bio = 4E−281 and 7E−81), were associated with photorespiration 
mutants despite photorespiration mutant phenotypes comprising 
only 4% of the phenotypes in the database.

As a further challenge, we tried searching phenotypes reported 
for hpr1 and pglp1 (Timm et al., 2012). The hpr1 mutant affected 
in peroxisomal hydroxypyruvate reductase 1 (HPR1) and a num-
ber of phenotypically similar pmdh mutants affected in one of 
its metabolic partner enzymes, pMDH, were represented in our 
reference set. However, the metabolic phenotype of hpr1 is mild 
and reportedly quite dependent on the length of time exposed to 
air (Timm et al., 2012), suggesting that technical noise and the 
influences of experimental differences might preclude matching. 
Nonetheless, hpr1 phenotypes recorded after 1, 3, and 5 days of 
air treatment gave significant hits to shm1, pmdh2, and pmdh2, 
respectively, albeit with low scores (Table 4). Given the functional 
and phenotypic relatedness of hpr1 and pmdh mutants, it is not 
surprising that hpr1 was mismatched to pmdh2. The mismatch 
to shm1 over hpr1 or pmdh references was more surprising but 
nonetheless significant.

Our reference set did not include any reference phenotypes 
for phosphoglycolate phosphatase mutants. However, the phe-
notypes reported for pglp1 exposed to air for 1, 3, and 5  days 
gave significant matches to pmdh2, hpr1, and pmdh2 with pnon-bio 
values of 3.5E−3, 5E−21, and 6E−25, respectively (Table  4). 
Searching the five-day phenotype against the entire database 
confirmed that pmdh2 and hpr1 were still returned as the two 
most significant hits.

examples of Matching Responses to non-
photorespiratory genetic perturbations
The PM approach is not only applicable to phenotypes of 
photorespiratory mutants but also to all kinds of metabolic 
responses. To demonstrate this, we tested whether searching 
the metabolic phenotypes of mutants affected in genes outside 
the photorespiration pathway would also return hits to func-
tionally related mutants (Table 5). First, we searched the entire 

FIgURe 4 | null score distribution associated with 500 permutations 
of a typical query. To establish that the normal distribution was an 
appropriate model of the typical null score distribution, a histogram of scores 
obtained from 500 permutations of a typical query phenotype was prepared 
and overlaid with a plot of the normal distribution calculated from the mean 
and SD of scores. This clearly shows that the normal distribution is a 
conservative model of the null score distribution. Essentially identical results 
were obtained from permutations of four other metabolic phenotypes.

TABle 3 | completion times associated with typical phenoMeter usage cases.

Description number of query 
phenotypes

number of reference 
phenotypes

Unknown metabolites 
included (y|n)

completion 
time (s)

Search phenotype against target reference phenotypes for classification 1 14 N 1.9
Search phenotype against target reference phenotypes for classification 1 14 Y 3.7
Untargeted search of single phenotype against entire database for  
non-biased annotation

1 442 Y 35

Search phenotypes against themselves to construct a similarity network 36 36 N 304
Search phenotypes against themselves to construct a similarity network 36 36 Y 589
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database using the metabolic phenotype of the A. thaliana alx8 
mutant – an EMS mutant in a Col-0 ecotype background that 
harbors a loss-of-function mutation in the gene, At5g63980, 
encoding the bi-functional SAL1/FRY1/RON1 nucleotidase/
phosphatase shown to be a negative regulator of abiotic stress 
defense responses linked to chloroplast retrograde signaling 
(Wilson et  al., 2009; Estavillo et  al., 2011). The top hit (PM 
score = 7.35; Table 5) was to the phenotype of fry1-1, a func-
tionally equivalent A. thaliana mutant (Wilson et  al., 2009) 
harboring an independent loss-of-function mutation in the 
same gene in a different wild-type background (C24). This was 

the only hit with a PM score >1, consistent with the fact that the 
fry1-1 phenotype was the only functionally similar phenotype 
in the database.

Next, we performed a similar search using the metabolic 
phenotype of the A. thaliana mutant aox1a-1, a SALK T-DNA 
insertion gene knockout mutant line lacking a functional copy 
of the ALTERNATIVE OXIDASE 1A gene (AOX1A; At3g22370) 
relative to wild-type control when both genotypes have been 
treated together with combined drought and moderate high light 
stress (Giraud et al., 2008). The top hit was to the metabolic phe-
notype of aox1a-2 – an independent AOX1a T-DNA knockout 

FIgURe 5 | Metabolic phenotype similarity networks reveal functional 
communities. The known reference and new photorespiratory mutants were 
selected as both baits and potential prey in a PhenoMeter search to generate a 
similarity network with a force directed layout. To help reveal clustering within 
the network, weak matches (edges) with FET2p > 0.007 or R2 < 0.09 were 
filtered out to leave only moderate to strong matches. To highlight the fact that 
network structure reflected functional links between the mutants, mutants 
within various functional categories (labeled) were highlighted in the same color. 
Stronger similarities between mutant phenotypes (higher PM score) are 

represented by thicker edges. Edges in red represent the top hit of at least one 
of the nodes. Mutants marked with a “?” were not included in the set of 
mutants that were checked for mutations by next generation sequencing. The 
loose connectivity of 18-44H2 with the rest of the network and the fact that its 
causative mutation was mapped to a region free of known photorespiratory 
genes (data not shown) suggests it might be a novel class of photorespiratory 
mutant. The novel glu1-like mutant (17-6E4), highlighted in yellow, was tightly 
connected within the GOGAT/DCT neighborhood despite having no 
consequential mutations in any known photorespiratory genes.
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mutant from the SAIL collection  –  under the same conditions 
(PM score = 10.22; Table 5).

A recent systematic study of A. thaliana lignin biosynthesis 
mutants originating from outside our group (Vanholme et  al., 
2012) provided a useful set of high-quality metabolic phenotypes 
for independent knockout mutant pairs affected in the same genes 
by independent insertions. We searched the reported metabolic 
phenotypes of the following mutants from that study against the 
entire database to test whether they would each return the func-
tionally equivalent independent knockout as the top hit: 4cl1-1 
(4-coumarate CoA ligase 1 knockout), 4cl2-1 (4-coumarate CoA 

ligase 2 knockout), c4h-2 (cinnamate 4-hydroxylase knockout), 
ccaomt1-3 (caffeoyl CoA O-methyltransferase 1 knockout), pal1-
2 (phenylalanine ammonia lyase 1 knockout), and comt-1 (caffeic 
acid O-methyltransferase knockout). In five (83%) of these six 
cases, the top hit was to an independent mutant affected in exactly 
the same gene (PM scores ranging from 0.74 to 5.08; Table 5). 
The one exception was for the comt-1 bait phenotype for which 
the top hit (PM score = 1.65) was to the phenotype of the closely 
functionally linked f5h1-2 (ferulate 5-hydroxylase 1 knockout) 
mutant (the metabolic product of COMT is the substrate of F5H1 
in the lignin biosynthesis pathway). Overall, the above results 

TABle 4 | PhenoMeter analyses of previously published metabolic phenotypes.

Study Mutant Time in air Top hit FeT2p R pM score pnon-bio

Collakova et al. (2008) shm1 3 d mtkas-1 0.28 0.6 0.21 3.1E−4
purU dKO 3 d shm1 0.008 0.8 1.47 9E−130

Eisenhut et al. (2013) shm1 17 h shm1-1 0.069 0.5 0.28 1E−9
bou-2 17 h mtkas-1 0.03 0.5 0.35 10E−10

Pérez-Delgado et al. (2013) Ljgs2-2 2 d shm1 0.06 0.76 0.69 9E−67
Ljgs2-2 3 d pmdh1pmdh2 0.08 0.25 0.07 0.04
Ljgs2-2 4 d shm1 0.3 0.67 0.24 1E−15
Ljgs2-2 6 d pmdh1pmdh2 0.06 0.56 0.38 5.6E−19
Ljgs2-2 8 d pmdh1pmdh2 0.1 0.48 0.2 1E−7
Ljgs2-2 10 d No hits

Timm et al. (2012) hpr1 1 d shm1 0.2 0.48 0.16 5.5E−4
hpr1 3 d pmdh2 0.2 0.49 0.15 3E−4
hpr1 5 d pmdh2 0.17 0.37 0.11 5E−2
pglp1 1 d pmdh2 0.24 0.54 0.18 3.5E−3
pglp1 3 d hpr1 0.024 0.58 0.54 5E−21
pglp1 5 d pmdh2 0.012 0.52 0.52 6E−25

Selected metabolic phenotypes previously reported for Arabidopsis thaliana photorespiratory mutants following transfer from non-photorespiratory high CO2 conditions to air for 
various times were submitted as queries to the PhenoMeter using the reference photorespiratory mutant set as the search space.

TABle 5 | Matching metabolic phenotypes of functionally linked A. thaliana metabolism mutants affected outside the photorespiration pathway.

Query Top hit pM score Functional link

A. thaliana alx8 SAL1/FRY1/RON1 nucleotidase/
phosphatase loss-of-function mutant (Wilson et al., 
2009)

A. thaliana fry1-1 SAL1/FRY1/RON1 nucleotidase/
phosphatase loss-of-function mutant (Wilson et al., 2009)

7.35 Independent functionally 
equivalent mutation, different 
genetic background

A. thaliana aox1a-1 mitochondrial alternative oxidase 
1a T-DNA insertion gene knockout mutant under 
combined drought and moderate high light stress 
(Giraud et al., 2008)

A. thaliana aox1a-2 mitochondrial alternative oxidase 1a 
T-DNA insertion gene knockout mutant under combined 
drought and moderate high light (Giraud et al., 2008)

10.22 Independent functionally 
equivalent gene knockout

A. thaliana 4cl1-1 4-coumarate CoA ligase 1 T-DNA 
insertion gene knockout mutant (Vanholme et al., 2012)

A. thaliana 4cl1-2 4-coumarate CoA ligase 1 T-DNA 
insertion gene knockout mutant (Vanholme et al., 2012)

4.17 Independent functionally 
equivalent gene knockout

A. thaliana 4cl2-1 4-coumarate CoA ligase 2 T-DNA 
insertion gene knockout mutant (Vanholme et al., 2012)

A. thaliana 4cl2-3 4-coumarate CoA ligase 2 T-DNA 
insertion gene knockout mutant (Vanholme et al., 2012)

0.95 Independent functionally 
equivalent gene knockout

A. thaliana c4h-2 cinnamate 4-hydroxylase T-DNA 
insertion gene knockout mutant (Vanholme et al., 2012)

A. thaliana c4h-3 cinnamate 4-hydroxylase T-DNA 
insertion gene knockout mutant (Vanholme et al., 2012)

1.42 Independent functionally 
equivalent gene knockout

A. thaliana ccaomt1-3 caffeoyl-CoA 
O-methyltransferase 1 T-DNA insertion gene knockout 
mutant (Vanholme et al., 2012)

A. thaliana ccaomt1-5 caffeoyl-CoA O-methyltransferase 
1 T-DNA insertion gene knockout mutant (Vanholme 
et al., 2012)

5.08 Independent functionally 
equivalent gene knockout

A. thaliana pal1-2 phenylalanine ammonia lyase 1 
T-DNA insertion gene knockout mutant (Vanholme 
et al., 2012)

A. thaliana pal1-3 phenylalanine ammonia lyase 1 T-DNA 
insertion gene knockout mutant (Vanholme et al., 2012)

0.74 Independent functionally 
equivalent gene knockout

A. thaliana comt-1 caffeic acid O-methyltransferase 
T-DNA insertion gene knockout mutant (Vanholme 
et al., 2012)

A. thaliana f5h1-2 ferulate 5-hydroxylase 1 T-DNA 
insertion gene knockout mutant (Vanholme et al., 2012)

1.65 Functionally linked gene knockout. 
The metabolic product of COMT is 
the substrate of F5H1.
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confirm that the PM approach is generally applicable to all kinds 
of mutants having characteristic metabolic phenotypes.

examples of Matching Responses to 
environmental and Biochemical perturbation
Thus far, we have only demonstrated the PM matching of meta-
bolic phenotypes associated with genetic perturbation. However, 
the PM approach could also be used to detect functional links 
between metabolic responses to other forms of perturbation such 
as environmental or biochemical perturbation. To demonstrate 
this, we searched metabolic responses to such perturbations 
against the database in cases where responses to functionally 
similar perturbations were present in the database (Table 6).

The first response we searched was that of A. thaliana cells to 
16 h of treatment with rotenone – a pharmacological inhibitor 
of mitochondrial electron transport chain complex I (Garmier 
et al., 2008). The top hit (PM score = 6.7) was to the response of 
the same cells to the same treatment for 12 h (the previous time 
point in the same rotenone treatment time course). Similarly, 
the top hit (PM score  =  12.5) to the response of germinating 
Oryza sativa (rice) seedlings to 24 h of anaerobic treatment after 
24  h of aerobic germination (relative to a constitutive aerobic 
germination control) was the response of rice seedlings to 48 h 
of constitutive anaerobic germination (relative to an aerobically 
germinated control).

To demonstrate that such matching between related responses 
was possible for responses reported by other authors and for 
responses to treatments other than respiratory perturbation, 
we also searched the responses of Lotus japonicus to salt stress 
(Sanchez et  al., 2008) and A. thaliana to sulfur deficiency 
(Nikiforova et al., 2005) and cold stress (Kaplan et al., 2004), and 
heat stress (Kaplan et al., 2004). In each case, the top hit was to the 
response recorded for the same treatment for a different duration 
or dosage in the same time course or dosage series (Table 6).

As an additional validation, we constructed a network from 
the metabolic responses of A. thaliana plants to various durations 
of 4°C cold stress (1, 4, 12, 24, 48, and 96 h) and 40°C heat stress 
(5, 15, 30, 60, 120, and 240 min) previously reported by Kaplan 
et al. (2004) in a time course metabolomic study (Figure S2 in 

Supplementary Material). Nodes corresponding to cold stress 
responses formed a tightly connected cluster that was, in turn, 
loosely connected to a more sparsely connected cluster cor-
responding to the heat stress responses. Within each cluster, the 
strengths of PM scores between nodes reflected the temporal 
order of the associated time course. That is, beginning from the 
earliest time-point, following the pathway of highest PM scores 
from node to node (without backtracking) correctly traced out 
the temporal pathway from the start to the end of the relevant 
time course. This confirms that the metabolic responses of A. 
thaliana to the temperature stresses follow orderly progressions 
through time [as originally demonstrated by Kaplan et al. (2004)] 
and that this progression is accurately reflected in PM statistical 
results.

Combined, the above results confirm that the PM approach 
is generally applicable to genetically-, biochemically- and envi-
ronmentally induced metabolic responses and that the supple-
mentary metabolomics data tables provided with even relatively 
old studies contain sufficient statistical information for detecting 
functional links between such responses.

Discussion

Biological pathway Mutants are Useful for 
Benchmarking phenotype Matching Tools
In this study, we used a set of A. thaliana mutants affected in 
various steps of the photorespiration metabolic pathway as a tool 
to test the performance of different similarity scoring methods. 
Genetic mutants are particularly suitable for this purpose because 
the nature of their perturbation may be determined or targeted 
very precisely and they are readily available to the community. 
This contrasts with other perturbations such as pharmacological 
enzyme inhibitors, for example, that can have unknown off-
target effects (undesired or unknown inhibitions of non-target 
enzymes) even when they nominally hit the same target.

Theoretically, two mutants with loss-of-function mutations in 
the same gene in the same genetic background should display 
essentially the same phenotype and any residual differences 
in phenotype should represent technical noise (including 

TABle 6 | Matching metabolic responses to functionally linked chemical and environmental perturbations.

Query Top hit pM score Functional link

Response of A. thaliana cells to 16 h of respiratory 
inhibition with rotenone (Garmier et al., 2008)

Response of A. thaliana cells to 12 h of respiratory 
inhibition with rotenone (Garmier et al., 2008)

6.7 Same treatment for different durations

Response of germinating Oryza sativa seedlings 
to 24 h of anoxic treatment after 24 h of aerobic 
germination (Narsai et al., 2009)

Response of germinating Oryza sativa seedlings 
to 48 h of constitutive anoxic germination (Narsai 
et al., 2009)

12.5 Same treatment for different durations and 
at slightly different developmental stages

Response of L. japonicus shoots to 150 mM NaCl 
stress (Sanchez et al., 2008)

Response of L. japonicus shoots to 100 mM NaCl 
stress (Sanchez et al., 2008)

9.6 Same treatment with different doses and 
durations

Response of A. thaliana seedlings to 13 days of 
germination under constitutive sulfur deficiency 
(Nikiforova et al., 2005)

Response of A. thaliana seedlings to 10 days of 
germination under constitutive sulfur deficiency 
(Nikiforova et al., 2005)

1.8 Same treatment for different durations

Response of A. thaliana seedlings to 24 h of cold 
stress (Kaplan et al., 2004)

Response of A. thaliana seedlings to 48 h of cold 
stress (Kaplan et al., 2004)

12.9 Same treatment for different durations

Response of A. thaliana seedlings to 120 min of heat 
stress (Kaplan et al., 2004)

Response of A. thaliana seedlings to 60 min of 
heat stress (Kaplan et al., 2004)

1.92 Same treatment for different durations
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unavoidable biological effects caused by imperfect replication of 
experimental design and starting biological state of germplasm). 
Thus, assuming that there are no significant technical errors 
within the data, the ideal phenotype matching tool should score 
matches between such functionally equivalent mutants above 
matches between functionally non-equivalent mutants. This 
should be facile if the mutant pairs to be discriminated are func-
tionally unrelated. However, when the mutant pairs represent 
steps in common biological pathway, the task of maintaining 
correct matches by correctly discriminating between responses 
to functionally related perturbations becomes more challenging.

In this study, a demonstration of the challenge of resolving the 
phenotypes associated with functionally related perturbations was 
the frequent failure to correctly discriminate between phenotypes 
of mtkas and shm1 mutants (Table 1). Despite carrying mutations 
in different genes and being directly affected in different enzymes, 
mtkas and shm1 mutants have essentially identical metabolic 
phenotypes because the enzymes they are affected in (GDC and 
SHMT, respectively) cooperate in the conversion of glycine to 
serine in reactions that are tightly coupled via a common pool of 
THFs in the mitochondrial matrix (Prabhu et al., 1996).

Further evidence of pathway connections driving phenotypic 
similarities that challenge statistical discrimination was seen in 
the mismatches of glu1 query mutants to the dct reference instead 
of glu1 references when R2 and BWMC were used as similarity 
measures (Table 1). The GLU1 and DiT2.1 enzymes affected in 
glu1 and dct mutants are not as directly biochemically coupled 
as GDC and SHMT. However, DiT2.1 supports GLU1 by its 
involvement in the import of the 2-oxoglutarate consumed by 
GLU1 into the chloroplast and the export of the glutamate GLU1 
produces (Somerville and Ogren, 1983; Renné et al., 2003). Thus, 
impairment of either enzyme will cause a similar disruption of 
photorespiratory nitrogen recycling pathway and lead to similar 
responses in the metabolome. Effective phenotypic matching 
tools should be as reliable as possible at discriminating between 
similar responses and we therefore recommend testing the ability 
to discriminate biological pathway mutants as a general approach 
to benchmarking phenotypic similarity scoring methods that aim 
to detect functional links.

Quantitative correlation and Qualitative overlap: 
complementary Indicators
Quantitative correlations are often used to assess similarities 
between molecular response profiles (Langfelder and Horvath, 
2012) while Fisher’s Exact Tests have been used widely to calculate 
the significance of qualitative overlaps between gene sets (Huang 
et al., 2009) so these were obvious starting points in our hunt for 
an effective similarity measure. We observed that R2 and FET2p 
gave different sets of mismatches in our performance test while 
the hybrid PM score based on both parameters outperformed 
either parameter alone (Table 1). Significantly, this suggests that 
quantitative correlation and qualitative overlap are complemen-
tary indicators of functional links between metabolic phenotypes 
and that statistical similarity measures that utilize both effectively 
will likely outperform those that utilize only one.

To contribute to the FET2p term of the PM score, metabolites 
need only be increased or decreased by more than the minimum 

fold-change threshold (1.5-fold by default) in both the query and 
reference; there is no requirement for statistical significance and 
no weighting according to fold-change. The FET2p term can 
therefore be large in the absence of any strong or statistically 
significant metabolite responses, as long as the directions of the 
metabolite responses overlap with the reference. Achieving a high 
R2 term does not depend on a query having strong or statistically 
significant responses either. Taken together, our observations 
highlight the importance of publishing and sharing complete 
sets of metabolite responses, including small and statistically 
insignificant changes, rather than only those responses that have a 
high fold change or low p-value. While individual non-significant 
trends may seem unworthy of publication in themselves, collec-
tively, they can contain crucial information.

Facile cross-Study comparisons will Facilitate 
the Discussion of Metabolomics Results
When the sequences of new genes or proteins are reported in 
the literature, it is standard practice to report and discuss some 
measure of their similarity (e.g., % identity) to already known 
sequences, as determined using a similarity search like BLAST 
(Altschul et al., 1990). By contrast, with few exceptions (Fukushima 
et al., 2014), when new metabolite responses are reported, com-
parisons to previous results tend to be of a subjective and qualita-
tive nature, comparing only selected features (e.g., “… authors Y 
also observed an increase in metabolite X…”) and not providing 
an objective statistical measure of similarity. Metabolomics data-
bases such as MetaboLights (Haug et  al., 2013), Metabolomics 
Workbench, and MetabolomeExpress (Carroll et  al., 2010) 
already contain sufficient volumes of metabolite response data 
to make PM-like searches a worthwhile and effective means of 
establishing where newly observed metabolic phenotypes and 
responses lay in the collective phenomic landscape. What features 
do new observations have in common with previous ones? Are 
there any features of a newly observed phenotype which distin-
guish it from its nearest neighbors in phenotypic space? If a new 
metabolite response is significantly similar to one or more entries 
in a public database, this match should be reported because it 
may point to an underlying mechanistic functional link that may 
otherwise escape detection. Conversely, if a new response bears 
no similarity to known responses, this is also worth reporting 
because it points to an under-explored type of response linked 
to an under-explored response mechanism just as a gene with 
no homology to known genes points to an under-explored new 
class of genes.

The phenoMeter is Suited to large-Scale 
Metabolic phenotypic Forward Screening
The emergence of fast NGS-based bulk segregant analysis meth-
ods has dramatically reduced the time and effort involved in map-
ping causative mutations in mutants isolated by forward genetic 
screens (Schneeberger et  al., 2009; Hartwig et  al., 2012). Thus, 
these techniques increase the attractiveness of forward genetic 
screening as a functional genomics gene discovery approach. 
Forward screens have traditionally relied on visual phenotypic 
signals such as a visible change in appearance or expression of a vis-
ible marker signal. However, high-throughput biochemical assays 
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that allow thousands of individuals to be assayed in practical time 
frames offer a powerful alternative approach to mine large mutant 
populations for mutants affected in specific metabolic pathways. 
In our speed performance tests, we showed that, using the PM, a 
single metabolic phenotype can be searched against 14 reference 
phenotypes, giving a reliable diagnosis of any of 14 metabolic 
lesions in less than 2 s. Thus, high-throughput robotic metabolite 
extractions combined with, for example, high-throughput direct 
infusion MS (Koulman et al., 2007), automated data processing 
and PM diagnosis could potentially provide sufficient throughput 
to be used for metabolomics-based forward screening.

challenges and limitations of the  
phenoMeter Approach
While our results demonstrate that the PM approach performs 
well at its task of retrieving from the database metabolite response 
patterns that are most similar to a query pattern, there are a num-
ber of important limitations to this approach that the user should 
be aware of. Firstly, there is the issue of bias. The simplest bias is 
that related to database content. The range of potential hits to any 
query is obviously limited to what is represented in the reference 
database. Thus, the best hit returned to a query does not neces-
sarily represent the best hit that would be returned if the database 
contained all data available in the literature. Fortunately, however, 
the computation of the PM score using familiar statistical con-
cepts and the incorporation of statistical significance testing into 
PM results means that the significance of returned hits can be 
interpreted at “face value”. That is, a “strong” hit is likely to reflect a 
real functional link regardless of whether another response might 
exist that would give a stronger hit. This is comparable to a strong 
BLAST match between a query and reference gene which suggests 
an evolutionary link between them even though closer homologs 
exist for each gene.

Another source of bias is linked to metabolome coverage (the 
sets of metabolites represented in metabolic phenotypes). The 
maximum score achievable for any given phenotype comparison 
is dependent upon the number of metabolites involved in the 
comparison. Matches based on more metabolites have more 
statistical power in the Fisher’s Exact Test and can thus achieve 
lower FET2p p-values and thus higher (–log(FET2p)) terms than 
matches based on fewer metabolites. While this means that hits 
are, appropriately, ranked according to the strength of the statisti-
cal evidence for their similarity, it does introduce the potential 
for “technology platform bias” whereby reference phenotypes 
that have an inherently higher degree of overlap in metabolome 
coverage with the query have the capacity to achieve a higher 
score than other phenotypes that have less coverage. Higher 
metabolome coverage overlap can be achieved, e.g., because both 
reference and queried metabolome were acquired on the same or 
similar analytical platform detecting a similar set of metabolites. 
Fortunately, metabolite response directions and correlations 
between metabolic phenotypes are not influenced by technology 
platform. That is, a strong hit will not arise simply because it 
was acquired on a similar platform to the query. Moreover, the 
permutation-based significance test (Figures 3 and 4) inherently 
adjusts for “platform bias” in its determination of statistical 
significance because it determines the null score distribution by 

repeatedly shuffling the same set of metabolites as included in 
the query. Thus, the null score distribution from which pnon-bio is 
estimated will reflect the influence of any platform bias arising 
from metabolite coverage.

Another factor challenging the PM (also encountered with 
any tool attempting to detecting similarities between indepen-
dently observed molecular response patterns for the purposes 
of inferring functional links) is experimental reproducibility. 
The variable success of our attempts at cross-study matching 
(Table 4) highlights the fact that similar if not identical pertur-
bations do not always result in significantly similar metabolite 
responses being reported, even when the species, genetic 
background, analytical technology, and growth conditions are 
the same or similar. For example, the failure of the phenotypes 
reported for hpr1 by Timm et al. (2012) to match strongly our 
hpr1 reference phenotype highlights the low reproducibility of 
the metabolic phenotype in this mutant. This perhaps reflected 
a rather high sensitivity to differences in growth conditions or 
the subtlety of its phenotype (i.e., characterized by weak meta-
bolic changes) causing its phenotypic signal to be obscured by 
analytical noise.

Taken together, the above observations underline the value in 
having the highest possible metabolome coverage, standardizing 
the annotation of unidentified metabolites (sharing of standard-
ized spectral reference libraries) while employing effective bio-
logical replication and experimental design to minimize random 
experimental noise and systematic errors.

conclusion

Metabolomics databases are growing rapidly in size and maturing 
in their development toward becoming analytical tools. By allowing 
individual datasets to be analyzed and visualized using integrated 
tools, added-value metabolomics databases like Metabolomics 
Workbench3 are making data more accessible, transparent, and 
useful. However, to our knowledge, there are currently no other 
metabolomics databases besides MetabolomeExpress equipped 
tools allowing data from independent studies to be compared, 
aligned, and thereby mined collectively for interesting patterns. 
The incorporation of tools allowing cross-study analysis into 
metabolomics databases offers to make metabolomics databases 
more than the sum of their parts since the number of compari-
sons possible between m metabolite response patterns is m2. We 
hope others find our observations and approaches useful in the 
development of similar tools.

Materials and Methods

plant genotypes
The line used as the wild-type reference for metabolomics in 
this study was A. thaliana ecotype Col-0. Analyzed mutant lines 
included: GDC-impaired mtkas-1 (Somerville and Ogren, 1982; 
Ewald et  al., 2007), SHMT-impaired shm1-1 (Somerville and 
Ogren, 1981; Voll et  al., 2006), Fd-GOGAT-impaired gls1-103 
and gls1-113 (Somerville and Ogren, 1980a; Coschigano et  al., 
1998), DiT2-impaired dct (Somerville and Ogren, 1983; Renné 
et al., 2003), rubisco activase-impaired rca (Somerville et al., 1982; 
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Orozco et  al., 1993), GLYK-impaired glyk (Boldt et  al., 2005), 
SGAT-impaired agt1-1 and agt1-2 (Somerville and Ogren, 1980b; 
Liepman and Olsen, 2001), HPR1-impaired hpr1-1 (Timm et al., 
2008), peroxisomal catalase 2 (CAT2)-impaired cat2-2 (Queval 
et  al., 2007), peroxisomal malate dehydrogenase 1 (pMDH1)-
impaired pmdh1, and peroxisomal malate dehydrogenase 2 
(pMDH2)-impaired pmdh2, pMDH1- and pMDH2-impaired 
double mutant pmdh1pmdh2 (Pracharoenwattana et  al., 2007; 
Cousins et al., 2008). Seed for these lines were obtained through 
the Arabidopsis Biological Resource Center with the exception of 
the pmdh, cat2-2, and agt1 mutant lines that were kindly provided 
by Pracharoenwattana et  al. (2007), Graham Noctor (Queval 
et al., 2007), and (Liepman and Olsen, 2001), respectively.

plant growth and Tissue harvest for 
Metabolomics experiments
Arabidopsis thaliana seeds were allowed to imbibe on wet filter 
paper and stratified for 5 days. Seeds were germinated and grown 
on a mixture of potting soil (Debco seed raising mix) and 4  g 
Osmocote L−1 soil (Osmocote Exact Mini; Scotts Australia). Five 
replicate plants of each genotype were grown under high CO2 
conditions at 6 mL L−1 CO2 in a controlled environment growth 
cabinet at an irradiance of 140 μmol quanta m−2 s−1 and air tem-
perature of 22°C during the day and 18°C at night, with a day 
length of 14 h. After 5 weeks, plants were transferred from high 
(CO2) to ambient (CO2) (400 μL L−1 CO2 but otherwise similar) 
conditions for 2 h before leaves were harvested for metabolomic 
analysis. Harvesting was carried out by rapidly excising and 
sealing 50–100  mg of leaf tissue, cut at the base of the petiole, 
in a 2 ml polypropylene round-bottom safe-lock Eppendorf tube 
(Eppendorf; Cat. No. 0030 120.094) containing a 5 mm diameter 
stainless steel ball (Qiagen; Cat. No. 69989) and freezing in liquid 
nitrogen within 15 s. Harvested samples were kept frozen at −80°C 
until analysis. The genotypes were analyzed over three separate 
experiments, each with its own set of wild-type control plants.

Metabolite extraction
Frozen leaf samples were pulverized in a TissueLyser II bead mill 
(Qiagen; Cat. No. 85300) for 1 min at 20 Hz. Approximately 30 mg 
of the resulting tissue powder was transferred and accurately 
weighed, without thawing, to a new, cold 2  mL round-bottom 
safe-lock Eppendorf tube (Eppendorf; Cat. No. 0030 120.094). 
Tubes were kept frozen on a tube rack chilled with liquid nitro-
gen as five volumes (5 μL per mg fresh weight of tissue) of room 
temperature extraction medium [85% (v/v) HPLC grade MeOH 
(Sigma), 15% (v/v) untreated MilliQ H2O, 100 ng μL−1 ribitol] was 
added to each tube followed by brief vortexing to give thorough 
mixing of the solvent and tissue powder. Tubes were placed back 
on liquid nitrogen until all the samples had been mixed with 
extraction medium. The tubes were then quickly transferred to 
an Eppendorf Thermomixer Comfort (Eppendorf; Cat. No. 5355 
000.011), rapidly heated to 60°C and shaken at 1400 RPM for 
15 min with internal gas pressure being released from tubes by 
momentarily opening tube lids after 1 min of heating. Tubes were 
then centrifuged at 20000 g for 10 min to pellet insoluble mate-
rial and the supernatants transferred to new 2 mL round-bottom 
safe-lock Eppendorf microfuge tubes (Eppendorf; Cat. No. 5355 

000.011). These stock extracts were centrifuged again at 20000 g 
for 10 min to ensure the complete absence of insoluble material 
and 20 μL aliquots of the supernatants were dried in 2 mL amber 
crimp-cap autosampler vials (Grace Davison Discovery Sciences; 
Catalog Number 31811E-1232A) fitted with silanized glass 250 μL 
low-volume inserts (Grace Davison Discovery Sciences; Cat. No. 
983228) using a Labconco CentriVap Acid-Resistant System 
(Labconco; Cat. No. 7983014) operated at room temperature.

Metabolite Derivatization
Dried metabolite extracts were chemically derivatized by 
methoximation and trimethylsilylation on a Gerstel MPS2XL 
Multipurpose Sampler (Gerstel) operating in the PrepAhead 
mode for automated online derivatization and sample injection. 
The derivatization procedure consisted of the following steps: (1) 
addition of 10 μL of 20 mg ml−1 methoxyamine hydrochloride 
(Supelco, Cat. # 33045-U) in anhydrous derivatization-grade 
pyridine (Sigma-Aldrich, Cat. # 270970) and incubation at 37°C 
for 90 min with agitation at 750 RPM; (2) addition of 15 μL of 
derivatization grade N-methyl-N-(trimethylsilyl)trifluoroaceta-
mide (MSTFA; Sigma-Aldrich; Cat. No. 394866) and incubation 
at 37°C for 30 min with agitation at 750 RPM; 3) addition of 5 μL 
of alkane mix [0.029% (v/v) n-dodecane, 0.029% (v/v) n-penta-
decane, 0.029% (w/v) n-non-adecane, 0.029% (w/v) n-docosane, 
0.029% (w/v) n-octacosane, 0.029% (w/v) n-dotriacontane, and 
0.029% (w/v) n-hexatriacontane dissolved in anhydrous pyri-
dine] and incubation for 1 min at 37°C with agitation at 750 RPM. 
Samples were injected into the GC/MS instrument immediately 
after derivatization.

gas chromatography/Mass Spectrometry 
Metabolomic Analysis
Derivatized metabolite samples were analyzed on an Agilent 
5975C GC/MSD system comprised of an Agilent GC 7890N 
gas chromatograph (Agilent Technologies, Palo Alto, CA, 
USA) and 5975C Inert MSD quadrupole MS detector (Agilent 
Technologies, Palo Alto, CA, USA). The GC was fitted with a 
0.25  mm ID, 0.25  μm film thickness, 30  m Varian FactorFour 
VF-5 ms capillary column with 10 m integrated guard column 
(Varian, Inc., Palo Alto, CA, USA; Product No. CP9013). Samples 
were injected into the split/splitless injector operating in splitless 
mode with an injection volume of 1 μL, an initial septum purge 
flow of 3 mL min−1 increasing to 20 mL min−1 after 1 min and 
a constant inlet temperature of 230°C. Helium carrier gas flow 
rate was held constant at 1 mL min−1. The GC column oven was 
held at the initial temperature of 70°C for 1  min before being 
increased to 325°C at 15°C  min−1 before being held at 325°C 
for 3 min. Total run time was 21 min. Transfer line temperature 
was 250°C. MS source temperature was 250°C. Quadrupole 
temperature was 150°C. Electron Impact ionization energy was 
70  eV and the MS detector was operated in full scan mode in 
the range of 40–600 m/z with a scan rate of 3.6  Hz. The MSD 
was pre-tuned against perfluorotributylamine (PFTBA) mass 
calibrant using the “atune.u” autotune method provided with 
Agilent GC/MSD Productivity ChemStation Software (Revision 
E.02.01.1177; Agilent Technologies, Palo Alto, CA, USA; Product 
No. G1701EA).
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Metabolomics Data processing  
and Statistical Analysis
All GC/MS data were processed using the online MetabolomeExpress 
data processing pipeline4 (Carroll et al., 2010). Raw GC/MS files 
were exported to NetCDF format using Agilent MSD ChemStation 
software (Revision E.02.01.1177; Agilent Technologies, Palo 
Alto, CA, USA; Product No. G1701EA) and NetCDF files were 
uploaded to the ANU_Badger MetabolomeExpress data reposi-
tory. Peak detection settings were: Slope threshold =  200; Min 
Peak Area =  1000; Min. Peak Height =  500; Min. Peak Purity 
Factor = 2; Min. Peak Width (Scans) = 5; Extract Peaks = on. 
Peaks were identified by MSRI library matching which used 
retention index and mass-spectral similarity as identification 
criteria. MSRI library matching parameters were as follows: RI 
Window = ± 2 RI Units; MST Centroid Distance = ± 1 RI Unit; 
Min. Peak Area (for peak import): 5000; MS Qualifier Ion Ratio 
Error Tolerance = 30%; Min. Number of Correct Ratio Qualifier 
Ions = 2; Max. Average MS Ratio Error = 70%; Remove quali-
fier ion not time-correlated with quantifier ion = OFF; Primary 
MSRI Library =  “Carroll_2014_Arabidopsis_Photorespiration_
Mutants.MSRI”; Add Unidentified Peaks to Custom MSRI 
Library  =  OFF; Use RI calibration file specified in metadata 
file  =  ON; Carry out per-sample fine RI calibration using 
internal RI standards  =  OFF. The Carroll_2014_Arabidopsis_
Photorespiration_Mutants.MSRI primary library contains entries 
derived manually from analyses of authentic metabolite standards 
run under the same GC/MS conditions as the biological samples 
as well as entries for unidentified peaks that were automatically 
generated by MetabolomeExpress while processing the data from 
the reference photorespiration mutants.

Library matching results were then used to construct a 
metabolite x sample data matrix with peak areas being nor-
malized to internal standard (i.e., ribitol). As a quality control 
filter, samples were checked for the presence of a strong ribitol 
peak with a peak area of at least 1 × 105 and a deviation from 
the median internal standard peak area (for that GC/MS batch 
sequence) of less than 70% of the median value. Statistical 
normalization to tissue mass was not required because chemi-
cal normalization to tissue mass had already been carried out 
by adjusting extraction solvent volume proportionally to tissue 
mass. For determination of metabolic phenotypes, the mutant/
genotype SIR of each metabolite was calculated by dividing the 
mean (normalized) signal intensity of each metabolite in each 
set of mutant plants by its mean (normalized) signal intensity 
in its associated set of wild-type control plants. Statistical sig-
nificances were calculated by two-tailed Welch’s t-tests (n =  5) 
in the MetabolomeExpress Comparative Statistics tool. The full 
dataset has been uploaded to the MetabolomeExpress Phenotype 
Database (MetabolomeExpress Dataset IDs 36, 42, and 43) and 
will be made publicly accessible upon publication of this article.

next-generation genome Sequencing
Genomic DNA was extracted using the Qiagen DNeasy Plant 
Mini Kit following the manufacturer’s instruction. Quality 

4 https://www.metabolome-express.org

was checked using spectrophotometer and agarose gel electro-
phoresis. DNA concentrations were determined by the Qubit 
(Invitrogen) system. Genomic libraries were constructed using 
the TruSeqTM DNA Sample Preparation kit (Illumina) following 
the manufacturer’s Low-Throughput Protocol. Briefly, 1  μg of 
genomic DNA was fragmented by Covaris shearing to produce 
300–400 bp fragments. After repairing the ends of the fragments 
to produce blunt ends, 3′ adenylation was performed, followed by 
ligating distinct DNA adapter indexes to distinct genotypes. The 
ligation products were enriched by 10 cycles of PCR. The size of 
the products was analyzed using the Bioanalyzer 2100 (Agilent 
Technology). The DNA libraries were diluted and pooled so that 
equal amount of DNA from each genotype was sequenced on a 
lane of a flow cell, with seven libraries on a single lane. DNA was 
sequenced using a HiSeq 2000 (Illumina) 100  bp paired-ends 
reads at the Biomolecular Research Facility at the Australian 
National University John Curtin School of Medical Research 
(JCSMR). Reads that had been de-multiplexed and filtered using 
the instrument manufacturer’s software were supplied by the facil-
ity. Alignment of reads from each mutant to the Col-0 reference 
genome assembly (ftp://ftp.jgi-psf.org/pub/compgen/phytozome/
v9.0/Athaliana/annotation/Athaliana_167_protein.fa.gz) avail-
able at Phytozome (Goodstein et al., 2012) was performed using 
BWA (Li and Durbin, 2009). Single nucleotide polymorphisms 
(SNPs) were detected using SAMtools (Li et al., 2009). The scripts 
used to align reads and detect SNPs are provided in Data Sheet 
S1 in Supplementary Material. SNPs within or close to known 
photorespiratory genes were retrieved from VCF files generated 
by SAMtools using a custom PHP script to retrieve any SNPs 
lying between 1000bp upstream of the start coordinates and the 
end coordinates of the known photorespiratory genes provided in 
Table S2 in Supplementary Material. The effects of SNPs on pro-
tein sequences were predicted using the ENSEMBL Plant Variant 
Effect Predictor.5 The conservation of the affected amino acids 
across plants was assessed using PipeAlign (Plewniak et al., 2003).

protein extraction, electrophoresis  
and Immunodetection
Leaf total protein was extracted with buffer containing 50 mM 
EPPS, 1 mM EDTA pH 7.8, 5 mM MgCl2, 1% PVPP, 1% Triton 
X-100, and 10  mM DTT. Protein (10  μg) was separated using 
4 -12% NuPAGE® Bis-Tris Precast Gel (Inivitrogen), then 
transferred onto PVDF membrane. The Fd-GOGAT protein was 
detected with rabbit anti-Fd-GOGAT antibody (Agrisera). An 
AP-conjugated Goat anti-rabbit secondary antibody (Sigma) and 
AP-conjugate substrate kit (BioRad) were used for detection of 
the primary antibody.
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