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Tissue-engineering technologies have progressed rapidly through last decades resulting 
in the manufacture of quite complex bioartificial tissues with potential use for human 
organ and tissue regeneration. The manufacture of avascular monolayered tissues such 
as simple squamous epithelia was initiated a few decades ago and is attracting increasing 
interest. Their relative morphostructural simplicity makes of their biomimetization a goal, 
which is currently accessible. The mesothelium is a simple squamous epithelium in nature 
and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, peri-
cardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can 
be harvested in clinically relevant numbers from several anatomical sources and not less 
important, they also display high transdifferentiation capacities and are low immunogenic 
characteristics, which endow these cells with therapeutic interest. Their combination with 
a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the 
manufacture of tailored serosal membranes biomimetics with potential spanning a wide 
range of therapeutic applications, principally for the regeneration of simple squamous-like 
epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal 
endothelium among others. Herein, we review recent research progresses in mesothelial 
cells biology and their clinical sources. We make a particular emphasis on reviewing the 
different types of biological scaffolds suitable for the manufacture of serosal mesothelial 
membranes biomimetics. Finally, we also review progresses made in mesothelial cells-
based therapeutic applications and propose some possible future directions.

Keywords: tissue engineering, epithelial surrogates, biological matrices, biomaterials, simple epithelia, 
mesothelial cells, serosal membranes, corneal endothelium

introduction

Tissue engineering has emerged as a promising alternative to conventional medicine to achieve the 
healing and regeneration of human damaged tissues and organs. The manufacture of functionally 
optimal bioartificial tissues is an extremely complex process relying on a comprehensive stepwise 
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combination of cells with scaffolds, extracellular matrices (ECM), 
and molecular signals. The achievement of such objective usually 
relies on the combination of advanced knowledge and skills from 
interdisciplinary specialists, making tissue engineering one of the 
most challenging fields of biomedical research.

Elaborated bioartificial soft tissues and inclusively some bioar-
tificial organs are under current experimental development and 
evaluation in laboratories (Mikos et al., 2006; Atala, 2009; Atala 
et al., 2012). Unfortunately, their clinical application in humans 
is still far away from being accessible and to date only a limited 
number of bioartificial tissues including skin substitutes (Debels 
et  al., 2015) or bioprosthetic aortic valves (Brown et  al., 2009) 
have been successfully transferred to clinical practice in humans.

The majority of tissue-engineering applications aiming at 
regenerating complex human tissues remain still a great chal-
lenge, principally because they should be functionally prevascu-
larized to be efficiently integrated into the host (Nomi et al., 2002; 
Novosel et al., 2011). This has been principally the case for large 
3D bioartificial tissues performed so far and that acquired only 
superficial neovascularization by the surrounding host tissues 
vasculature during their initial stage of implantation in animal 
models (Nomi et al., 2002; Park and Gerecht, 2014). To solve this 
issue, a host of experimental therapeutic angiogenic strategies 
involving endothelial progenitor cells, proangiogenic growth fac-
tors, bioactive microcarriers, or preformed bioartificial vascular 
networks among others are currently under intense research to 
achieve the generation of functional prevascularized neotissues 
[for specific review, see Kaully et al. (2009), Lovett et al. (2009), 
Roy et al. (2011), and Park and Gerecht (2014)].

In sharp contrast with complex 3D vascularized tissues are 
avascular monolayered tissues such as simple epithelia, which are 
made up of a single layer of simple epithelial cells anchored onto a 
thin basement membrane. Simple epithelia are basically subclas-
sified as columnar, cuboidal, or squamous depending on the size 
and shape of their cellular component. Simple squamous epithelia 
are highly distributed within the adult body. Its major form, the 
mesothelium is the monolayered tissue lining the walls of the 
largest celomic cavities (pleural, pericardial, and peritoneal) and 
the surface of celomic visceral organs (Mutsaers, 2002). A layer 
of mesothelial cells is additionally found lining the side of the 
Reissner’s membrane facing the scala vestibuli within the cochlea. 
Interestingly, other tissues such as the vascular endothelium, cor-
neal endothelium, and also the synovial membrane lining display 
in diverse degrees morphological hallmarks as well as structural 
and biochemical markers consistent with simple epithelial cells 
(reviewed in Table 1).

There has been a growing consensus about the concept that 
these distinct tissues could somehow be considered other forms 
of simple squamous epithelia. The synovial membrane lining, 
mesothelium, vascular endothelium, and corneal endothelium 
are each of them endowed with specific functions and distinct 
endogenous regenerative capacities, which is high for the meso-
thelium (Mutsaers et  al., 2007), intermediate for the vascular 
endothelium (Toya and Malik, 2012) and barely inexistent for the 
corneal endothelium (Bourne, 2003). Despite such divergences, 
the inherent regenerative capacity of some forms of simple epi-
thelia is however strongly linked to the extent of their damage. In 

some instances, accidents, surgical trauma, or diseases can lead to 
their irreparable damage and ultimately to their loss of function. 
Their reconstruction or substitution can be eventually achieved 
through transplantation of autologous or allogeneic native tissues, 
the accessibility of which is however limited by the important 
shortage of suitable donor tissues. Tissue engineering of artificial 
tissues biomimetics has emerged as a promising alternative to the 
lack of native replacement tissues. The use of mesothelial cells in 
tissue engineering of simple epithelial-like tissues such as the vas-
cular endothelium or the corneal endothelium has been already 
initiated and is technically accessible. Sources of mesothelial cells 
and appropriate biological scaffolds for these applications have 
been already identified. Additionally, the transdifferentiative 
capacity of mesothelial cells is also better understood and con-
trolled and should be taken in account in the tissue-engineering 
procedures of these bioartificial tissues.

Herein, we provide an overview of the main biological and 
biochemical properties of mesothelial cells and detail their differ-
ent clinical sources. A particular emphasis is done on reviewing 
biological scaffolds suitable for tissue engineering of simple 
epithelial-like tissues. Finally, we review the use of mesothelial 
cells in different tissue-engineering applications and also suggest 
some possible future directions.

Mesothelium: Structure and Functions

The single layer of flattened cells covering celomic serous 
membranes was first described by Bichat in 1827 and later 
on termed “mesothelium” by Minot in 1880 in reference to 
its mesodermal origin. Although the mesothelium cells layer 
appears to be morphostructurally similar between different 
anatomical locations at a macroscopic level, posterior studies 
however led to the evidence that parietal mesothelial cells 
show morphological and biochemical differences with vis-
ceral mesothelial cells when examined at an ultrastructural 
level (Michailova et al., 1999). Parietal mesothelial cells which 
are the cells lining the walls of celomic cavities are rather 
large and flattened polygonal cells with low-to-intermediate 
intracellular organelles, whereas visceral mesothelial cells 
lining celomic organs are by contrast more tightly compacted 
and cuboidal and rich in intracellular organelles, principally 
mitochondria and rough endoplasmic reticulum (RER), 
indicative of their higher metabolic state (Mutsaers and 
Wilkosz, 2007).

Biostructurally, the mesothelium represents a semi-permeable 
laminar interface that separate fluid-filled body cavities from 
blood vessels and lymphatics running within the underneath 
submesothelial connective tissue layers. Besides its property of 
physical barrier, the mesothelium acts also as bioactive interface 
regulating fluid flows interchanges across its surface to maintain 
an optimal osmolarity and ionic activity of body cavity fluids; 
these functions are mainly accomplished by transmembrane 
ion pumps (Na+/K+-ATPase) and water channels (aquaporins) 
(Witowski et  al., 1997; Ji and Nie, 2008). Among other main 
functions, mesothelial cells also secrete lubricants that stay 
electrochemically entrapped between their numerous surface 
microvilli to create a lubricated thin film or glycocalyx allowing TA
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M
esothelial cells as new

 therapeutic option

som
e instances, accidents, surgical traum

a, or diseases can lead to 
their irreparable dam

age and ultim
ately to their loss of function. 

Th
eir reconstruction or substitution can be eventually achieved 

through transplantation of autologous or allogeneic native tissues, 
the accessibility of w

hich is how
ever lim

ited by the im
portant 

shortage of suitable donor tissues. Tissue engineering of artificial 
tissues biom

im
etics has em

erged as a prom
ising alternative to the 

lack of native replacem
ent tissues. Th

e use of m
esothelial cells in 

tissue engineering of sim
ple epithelial-like tissues such as the vas-

cular endothelium
 or the corneal endothelium

 has been already 
initiated and is technically accessible. Sources of m

esothelial cells 
and appropriate biological scaffolds for these applications have 
been already identified. A

dditionally, the transdifferentiative 
capacity of m

esothelial cells is also better understood and con-
trolled and should be taken in account in the tissue-engineering 
procedures of these bioartificial tissues.

H
erein, w

e provide an overview
 of the m

ain biological and 
biochem

ical properties of m
esothelial cells and detail their differ-

ent clinical sources. A
 particular em

phasis is done on review
ing 

biological scaffolds suitable for tissue engineering of sim
ple 

epithelial-like tissues. Finally, w
e review

 the use of m
esothelial 

cells in different tissue-engineering applications and also suggest 
som

e possible future directions.

M
eso

thelium
: S

tructure and
 Functio

ns

The single layer of flattened cells covering celom
ic serous 

m
em

branes w
as first described by Bichat in 1827 and later 

on term
ed “m

esothelium
” by M

inot in 1880 in reference to 
its m

esoderm
al origin. A

lthough the m
esothelium

 cells layer 
appears to be m

orphostructurally sim
ilar betw

een different 
anatom

ical locations at a m
acroscopic level, posterior studies 

how
ever led to the evidence that parietal m

esothelial cells 
show

 m
orphological and biochem

ical differences w
ith vis-

ceral m
esothelial cells w

hen exam
ined at an ultrastructural 

level (M
ichailova et al., 1999). Parietal m

esothelial cells w
hich 

are the cells lining the w
alls of celom

ic cavities are rather 
large and flattened polygonal cells w

ith low
-to-interm

ediate 
intracellular organelles, w

hereas visceral m
esothelial cells 

lining celom
ic organs are by contrast m

ore tightly com
pacted 

and cuboidal and rich in intracellular organelles, principally 
m

itochondria 
and 

rough 
endoplasm

ic 
reticulum

 
(RER), 

indicative of their higher m
etabolic state (M

utsaers and 
W

ilkosz, 2007).
Biostructurally, the m

esothelium
 represents a sem

i-perm
eable 

lam
inar interface that separate fluid-filled body cavities from

 
blood vessels and lym

phatics running w
ithin the underneath 

subm
esothelial connective tissue layers. Besides its property of 

physical barrier, the m
esothelium

 acts also as bioactive interface 
regulating fluid flow

s interchanges across its surface to m
aintain 

an optim
al osm

olarity and ionic activity of body cavity fluids; 
these functions are m

ainly accom
plished by transm

em
brane 

ion pum
ps (N

a
+/K

+-ATPase) and w
ater channels (aquaporins) 

(W
itow

ski et al., 1997; Ji and N
ie, 2008). A

m
ong other m

ain 
functions, m

esothelial cells also secrete lubricants that stay 
electrochem

ically entrapped betw
een their num

erous surface 
m

icrovilli to create a lubricated thin film
 or glycocalyx allow

ing 

TABLe 1 | Phenotypic marker profiles of different types of simple epithelial-like cells.

Markers vascular endothelial cells Corneal endothelial cells Fibroblast-like synoviocytes Mesothelial cells

Vimentin ++ (Chung-Welch et al., 1997b) ++ (Vazquez et al., 2015) ++ (Bartok and Firestein, 2010) ++ (Lachaud et al., 2014a)

N-cadherin ++ (Chung-Welch et al., 1997b) ++ (Zhu et al., 2008b; Lachaud et al., 2014b) ++ (Agarwal et al., 2008) ++ (Lachaud et al., 2014b)

Pan-Cytokeratin − (Chung-Welch et al., 1997b) ? ? ++ (Yanez-Mo et al., 2003)

Cytokeratin 18 − (Chung-Welch et al., 1997b) ++ (Merjava et al., 2009) ? ++ (Chung-Welch et al., 1997b)

Mesothelin ? ++ (Lachaud et al., 2014b) ? + (Lachaud et al., 2014b)

WT1 −/+* (Wagner et al., 2008; Duim et al., 2015) ? ? ++ (Lachaud et al., 2014a)

E-cadherin − + (Zhu et al., 2008b) − (Agarwal et al., 2008) −/+* (Lachaud et al., 2014a)

VE-cadherin ++ (Tsai et al., 2007; Chlupac et al., 2014) +*/+ (Zhu et al., 2008b; Huang et al., 2010b) ? −

ZO-1 ++ (Medina et al., 2010; Shao et al., 2011) ++ (Zhu et al., 2008b; Lachaud et al., 2014b) ++ ++ (Lachaud et al., 2013, 2014a)

β-catenin ++ (Medina et al., 2010) ++ (Zhu et al., 2008b; Lachaud et al., 2014b) ++ (Xiao et al., 2011) ++ (Lachaud et al., 2013, 2014a)

Aquaporin 1 ++ (Mobasheri and Marples, 2004) ++ (Chng et al., 2013) + (Mobasheri and Marples, 2004) + (Lai et al., 2001; Ji and Nie, 2008)

COL8A1 + (Muragaki et al., 1991) ++ (Chng et al., 2013) ? ?

COL8A2 + (Muragaki et al., 1991) ++ (Chng et al., 2013; Lachaud et al., 2014b) ? ++ (Lachaud et al., 2014b)

SLC4A4 − (Romero et al., 2013) ++ (Chng et al., 2013; Lachaud et al., 2014b) ? ++ (Lachaud et al., 2014b)

SLC4A11 ? ++ (Damkier et al., 2007) ? ?

CA-II ++ (Su et al., 2004) ++ (Chng et al., 2013; Lachaud et al., 2014b) ? ++ (Lachaud et al., 2014b)

NA+/K+-ATPase ++ (Trevisi et al., 2006) ++ (Lachaud et al., 2014b; Vazquez et al., 2015) ? ++ (Witowski et al., 1997; Lachaud 
et al., 2014b)

CD166 (ALCAM) ++ (Swart, 2002) ++ (Okumura et al., 2014) ++ (Joo et al., 2000) ++ (Ross et al., 1998)

vWF (Factor VIII) ++ (Tsai et al., 2007; Chlupac et al., 2014) −/+ (Shamsuddin et al., 1986) − (Schwachula et al., 1994) +* (Chung-Welch et al., 1997b)

CD31 (PECAM-1) ++ (Tsai et al., 2007; Chlupac et al., 2014) − (Shamsuddin et al., 1986; Huang et al., 2010b) − (Schwachula et al., 1994) − (Lachaud et al., 2013, 2014a)

Dil-Ac-LDL ++ (Chung-Welch et al., 1997b; Medina et al., 2010) − (Huang et al., 2010b) + (Schwachula et al., 1994) +* (Chung-Welch et al., 1997b)

CD45 (LCA) − (Medina et al., 2010) − (Huang et al., 2010b) − (Tran et al., 2008) − (Lachaud et al., 2013, 2014a)

CD29 (integrin β1) ++ (Chlupac et al., 2014; Kawasaki et al., 2015) ? ? ++ (Lachaud et al., 2013, 2014a)

CD106 (VCAM-1) ++ (Su et al., 2004) − (Foets et al., 1992) +*/+ (Bombara et al., 1993; Bartok and 
Firestein, 2010)

− (Lachaud et al., 2013, 2014a)

CD44 (HCAM) + (Su et al., 2004) − (Foets et al., 1992) ++ (Schwarting et al., 1996) + (Lachaud et al., 2013, 2014a)

CD90 (Thy-1) ++ (Su et al., 2004) ? ++ (Bartok and Firestein, 2010) +/++ (Lachaud et al., 2014a)

CD54 (ICAM-1) ++ (Murohara et al., 1999) + (Foets et al., 1992) ++ (Bartok and Firestein, 2010) ++ (Lachaud et al., 2013, 2014a)

Markers expression levels: −, negative; +*, very weak; +, intermediate; ++, strong. /, this symbol is used when expression varies between distinct published works. For example, −/+* indicates a variation in reported expression 
ranging from negative to weak. ?, this symbol is used for unknown expression levels.
ALCAM, activated leukocyte cell adhesion molecule; CA-II, carbonic anhydrase II; COL8A1, collagen type VIII, alpha 1; COL8A2, collagen type VIII, alpha 2; HCAM, homing cell adhesion molecule; ICAM-1, intercellular cell adhesion 
molecule 1; NA+/K+-ATPase, sodium–potassium adenosine triphosphatase; PECAM-1, platelet endothelial cell adhesion molecule 1; SLC4A4, electrogenic sodium bicarbonate cotransporter 1; SLC4A11, sodium bicarbonate 
transporter-like protein 11; VCAM-1, vascular cell adhesion molecule 1; vWF, von Willebrand factor; WT1, Wilms tumor protein; ZO-1, zona occludens 1.
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the free sliding of opposite parietal and visceral mesotheliums 
with minimal abrasion (Mutsaers, 2002). The mesothelial gly-
cocalyx is mainly composed by glycosaminoglycans, especially 
hyaluronan, a large anionic polymer of disaccharides with high 
hydrophilicity which forms a highly hydrated gel layer (Yung 
and Chan, 2007). Mesothelial cells also actively regulate celomic 
cavities homeostasis and inflammatory status via their secretion 
of numerous pro- and anti-inflammatory cytokines (Lanfrancone 
et al., 1992; Mutsaers and Wilkosz, 2007; Ji and Nie, 2008). It has 
also been evidenced that mesothelial cells are actively recruited 
during serosal regeneration, through processes of proliferation, 
migration or delamination, and secretion of a large variety of 
growth factors or cytokines (Foley-Comer et al., 2002; Mutsaers, 
2002; Herrick and Mutsaers, 2004; Mutsaers, 2004; Mutsaers and 
Wilkosz, 2007; Carmona et al., 2011).

Plasticity of Mesothelial Cells

Mesothelial cells are intriguing cells, because they are mesoder-
mal in origin but however display phenotypic properties rather 
consistent with simple epithelial cells, an ambiguous phenotype 
that is reflected by their coexpression of both mesenchymal and 
epithelial lineage markers (Mutsaers, 2002; Herrick and Mutsaers, 
2004; Mutsaers and Wilkosz, 2007).

The concept that the mesothelium may represent a primitive 
mesoderm was first postulated by Donna and Betta, based on their 
observation of areas of cartilaginous and osseous differentiation 
in malignant mesotheliomas (Donna and Betta, 1981; Debels 
et al., 2015), a tumor arising from mesothelial cells [for review, 
see Carbone et al. (2012)]. This concept was further reinforced 
by several lineage tracing studies conducted in the mouse embryo 
where mesothelial cells were found to originate stromal VSMCs 
and fibroblasts through a process of epithelial-to-mesenchymal 
transition in the developing heart, lung, gut, and liver (Dettman 
et al., 1998; Wilm et al., 2005; Cai et al., 2008; Que et al., 2008; 
Zhou et al., 2008; Asahina et al., 2011). Furthermore, embryonic 
mesothelial cells were also shown to generate stellate cells and 
a subset of cardiomyocytes in the developing liver and heart, 
respectively (Cai et  al., 2008; Zhou et  al., 2008; Asahina et  al., 
2011). Additionally, several in vitro differentiation studies dem-
onstrated that adult mesothelial cells isolated from human and 
adult rodents could recapitulate an epithelial-to-mesenchymal 
transition and differentiate along the VSMCs, fibroblasts, chon-
drocytes, osteocytes, and adipocytes lineages when cultured 
upon adequate inductive conditions (van Tuyn et  al., 2007; 
Lansley et al., 2011; Lachaud et al., 2013; Lachaud et al., 2014a). 
Consistent with these in  vitro findings, a recent in  vivo meso-
thelial lineage tracing study, conducted in the postnatal mouse, 
demonstrated that mesothelial cells covering the visceral adipose 
tissue are the precursor cells giving rise to white adipocytes (Chau 
et al., 2014). Furthermore, the ability of adult mesothelial cells to 
adopt myofibroblasts or inclusively macrophage-like features in 
response to pathological conditions of the peritoneal cavity may 
represent another evidence of their inherent plasticity and ability 
to switch their phenotype upon the microenvironment milieu 
(Yanez-Mo et al., 2003; Katz et al., 2011). Altogether, these studies 
provide converging evidence supporting the concept that adult 

mesothelial cells retain embryonic mesodermal multilineage dif-
ferentiation capacity and could represent a population of primi-
tive mesodermal stem cells. Their inherent plasticity is strongly 
supporting their use as cellular surrogate for tissue engineering of 
different types of specialized simple squamous epithelia.

immunomodulatory and Anti-inflammatory 
Properties of Mesothelial Cells

The capacity of a cellular phenotype to reverse or ameliorate the 
clinical course of inflammatory diseases is of critical therapeutic 
relevance. Such capacity has been first described in mesenchymal 
stromal cells (MSCs) used in experimental animal models for 
human inflammatory diseases. Their protective effects was found 
to be largely attributed to their hypoimmunogenicity and capac-
ity to regulate innate immune cells functions through secretion of 
soluble and membrane-bound factors with potent immunosup-
pressive and/or immunomodulatory activities [for review, see 
Glenn and Whartenby (2014)].

This major discovery has prompted a general interest in 
elucidating whether other cell types are endowed with similar 
properties. The first evidence that cells of the mesothelial lineage 
could display anti-inflammatory and immunosuppressive prop-
erties arose from studies of human malignant mesotheliomas, 
where it was found that mesothelial tumorigenic cells escape 
from the control of the immune system through suppression of 
the proliferation and functions of T lymphocytes and increased 
recruitment of immunosuppressive regulatory T cells (Hegmans 
et al., 2006). Later on, normal human omental mesothelial cells 
were found capable to potently suppress the proliferation of pro-
inflammatory γδ T cells as well as of CD4+ and CD8+ T lympho-
cytes (T cells), through their secretion of the immunosuppressor 
TGF-β (Lin et al., 2013). A recent work also indicated that CD90+/
CD45− human mesothelial cells belonging to peritoneal fluid 
could immunosuppress CD4+ T cells in vitro through their potent 
expression of arginase I and consequent depletion of L-arginine, 
a major molecule required for T cells activation (Kitayama et al., 
2014). Taking in account these in vitro results, it may therefore be 
expected that bioengineered artificial tissues performed with het-
erologous mesothelial cells should be globally hypoimmunogenic 
with a prognostic of good host-tissue integration.

Clinical Sources of Mesothelial Cells

A critical issue in autologous cellular therapies is the identifica-
tion of accessible anatomical sources from which can be harvested 
cells in therapeutically relevant numbers and with minimal health 
impact. In this way, the presence of several celomic cavities in the 
adult human body offers a large range of approaches (anatomical 
sources and procedures) to harvest mesothelial cells. Due to its 
largest size, the abdominal cavity is the predominant anatomi-
cal source from where mesothelial cells are harvested. Specific 
peritoneal sources and isolation procedures are reviewed below.

Greater Omentum
The greater omentum is broadly considered as an optimal and reli-
able source of mesothelial cells, principally because large pieces of 
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this tissue can be surgically harvested with minimal health concerns 
and can provide clinically relevant numbers of mesothelial cells 
(Riera et al., 2006). In humans, the greater omentum or epiploon 
is the largest fold of peritoneum filled with abundant visceral adi-
pose tissue with a surface area ranging from 300 to 1500 cm2. Like 
other visceral mesotheliums, the omental mesothelium displays a 
high cellularity and can provide around one million mesothelial 
cells from each square centimeter of omental tissue (Pronk et al., 
1993). Furthermore, laparoscopy represents an effective minimal 
invasive approach to collect reduced pieces of omental tissue.

Mesenteric Membrane
The peritoneal cavity harbors several portions of serous mem-
branes connecting parietal and visceral components. The mes-
entery is found to fully meet with such characteristics, and the 
mesentery is a reticular laminar structure resulting from a fold of 
the dorsal parietal mesothelium that enwraps in its extremity the 
overall length of the intestinal tract (Coffey, 2013). The mesen-
teric membrane acts as a connective supportive structure to hold 
the reticular network of intestinal vasculature, lymphatics, and 
nerves. Interestingly, some portions of the mesenteric membrane 
lack vasculature and associated perivascular adipose tissue, thus 
appearing as a transparent sheet composed of a double layer of 
mesothelium enclosing loosely arranged collagenous and elastic 
fibers (Coffey, 2013). Although previous studies already reported 
the isolation of rat and human mesenteric mesothelial cells for 
experimental research procedures (Chailley-Heu et  al., 1997; 
Takazawa et al., 2005), their application in tissue engineering has 
not been reported. Despite this, it is reasonable to believe that 
laparoscopic surgery could allow the excision of small areas of 
avascular mesenteric membrane with minimal clinical impact 
and from which a relevant number of autologous or heterologous 
mesothelial cells could be isolated for tissue engineering of serosal 
membranes biomimetics.

Peritoneal Fluid
The peritoneal serosal fluid harbors a quite relevant population of 
free-floating cells, which were initially described as correspond-
ing to resident macrophages and in lower extent to polymor-
phonuclear leukocytes and lymphocytes. Later studies however 
indicated that a significant subset of free-floating mesothelial cells 
normally coexists within the peritoneal fluid of healthy humans 
and rodents (Bercovici and Gallily, 1978; Stauffer et  al., 1978). 
Interestingly, the prevalence of free-floating mesothelial cells 
strongly increases in the peritoneal fluid of patients undergoing 
continuous ambulatory peritoneal dialysis (CAPD) (Fok et  al., 
1989) and during serosal regeneration processes (Foley-Comer 
et al., 2002; Mutsaers et al., 2007).

Cultures of human peritoneal mesothelial cells could be suc-
cessfully established from peritoneal lavage cells collected through 
laparoscopic needle aspiration in healthy humans (Ivarsson et al., 
1998). This minimal invasive approach to collect mesothelial cells 
will however require further improvements to obtain clinically 
relevant numbers of cells for regenerative medicine applica-
tions. Additionally, the effluent peritoneal dialysis fluid from 
CAPD patients may also be considered as an alternative source 
of mesothelial cells, principally for heterologous cell therapies 

and tissue-engineering applications. However, in some instances 
these cells may have undergone partial to advanced myofibroblas-
tic transdifferentiation, particularly when they are collected from 
long-term CAPD patients (Yanez-Mo et al., 2003; Zhang et al., 
2013). The ability of mesothelial cells to transit between epithelial 
and mesenchymal phenotypes under specific in  vitro culture 
conditions indicates that “myofibroblastic mesothelial cells” 
could be forced back to their original mesothelial phenotype and 
therefore potentially useful for the manufacture of bioartificial 
serosal mesothelial membranes.

Parietal Tunica vaginalis
The parietal tunica vaginalis (lamina parietalis), which is the 
parietal mesothelium of the testicular cavity, has been iden-
tified as another reliable source of mesothelial cells (Asano 
et al., 2005; Asano et al., 2006; Asano et al., 2007). It originates 
from an invagination of the peritoneum mesothelium that 
posteriorly descends into the scrotum. The parietal tunica 
vaginalis is a quite extensible membrane from which small 
pieces could be easily excised with minimal health concerns. 
The authors demonstrated the feasibility to harvest portions 
of 3.5 × 4.0 cm2 of tissue from each testis of beagles. Around 
4.0  ×  105 mesothelial cells were obtained from each por-
tion by using enzymatic digestion with Dispase I and could 
be successfully expanded in  vitro to generate a confluent 
cobblestone-type monolayer of cells. Their subculture onto a 
fibrin gel could allow the generation of autologous mesothelial 
cells sheets. Interestingly, their apposition onto the surface of 
injured peritoneum areas (lacking mesothelium) could signifi-
cantly improve their healing and reduce the score of peritoneal 
adhesions (Asano et  al., 2006). On this basis, the authors 
suggested that small biopsies of parietal tunica vaginalis offer 
the advantage of representing an easy accessing and attractive 
therapeutic source of mesothelial cells, principally for patients 
with abdominal complications.

Biomaterials Useful for Tissue engineering of 
Simple Squamous epithelia
Animal tissue-derived ECM proteins or purified natural 
polymeric molecules (proteins or polysaccharides) derived 
from plants or animals are highly sophisticated molecules that 
emerged from millions of years of natural evolution. They are 
usually endowed with desirable properties such as high degrada-
bility, excellent biocompatibility, and biomechanical properties 
such as elasticity, tensile strength, and transparency, which make 
them excellent candidate materials in biomedical engineering 
applications (Shin et al., 2003; Badylak, 2007; Ma, 2008).

Of further relevance, biopolymers-based scaffolds or acellular 
tissues usually provide a highly porous environment for cell inva-
sion and excellent cell adhesion and growth properties (Velema 
and Kaplan, 2006). In many instances, natural polymers are also 
easy accessible and cheap to manufacture. Furthermore, and not 
less important, natural polymeric molecules are also usually rich 
in chemical side groups to which functionalizing molecules can 
be bound through chemical post treatments to generate hybrid 
biological scaffolds with improved cells adhesion, growth, and 
colonization outcomes.
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TABLe 2 | Biological laminar scaffolds potentially applicable for tissue engineering of human simple epithelia.

Scaffolds Basic component Reference Application

Native tissues [decellularized] 

Animal Amniotic membrane
Omental mesothelium
Small intestinal mucosa
Pericardium
Cornea

Tsai et al. (2007)
Hoganson et al. (2010)
Andree et al. (2013)
Dong et al. (2013)
Feng et al. (2014)

VTE
RM
VTE, SE
VTE
Cornea, CE

Human Amniotic membrane
Cornea
Lens Capsule

Wilshaw et al. (2006) and Kuriu et al. (2009)
Feng et al. (2014)
Lachaud et al. (2014b)

VTE, PA
Cornea, CE
CE.

Bioengineered sheets Chitosan 
Alginate
Silk fibroin+gelatin

Grolik et al. (2012)
d’Ayala et al. (2008)
Taddei et al. (2013)

CE
SE
SE

Hydrogels [compressed and/or 
cross-linked]

Gelatin
Silk Fibroin+Gelatin
Chitosan
Chitosan+Collagen

Lai and Li (2010), Watanabe et al. (2011), and Lai et al. (2013)
Grolik et al. (2012)
Rafat et al. (2008) and Lai and Li (2010)
Rafat et al. (2008)

CE, Cornea
C. Epi.
CE, Cornea
CE, Cornea

Fibrous meshes [electrospun fibers]

Simple Silk Fibroin
Collagen
Laminin I

Liu et al. (2011), Madden et al. (2011), and Lv et al. (2014)
Jiang et al. (2013)
Neal et al. (2009)

VTE, SE, CE
SE
SE

Hybrid biologic SF+Gelatin
SF+Chitosan
SF+Collagen IV
SF+Fibronectin
SF+Chondroitin−Laminin
Keratin+Chitosan
Chitosan+Laminins peptides
Alginate+Laminins peptides

Feng et al. (2014)
Guan et al. (2013a,b)
Madden et al. (2011)
Madden et al. (2011)
Madden et al. (2011)
Vazquez et al. (2015)
Yamada et al. (2011)
Yamada et al. (2011)

CE, Cornea
Cornea
CE
CE
CE
Cornea
SE
SE

Hybrid bio-synthetic SF+poly (ϵ-caprolactone) Lv et al. (2014) SE

CE, corneal endothelium; C.Epi, corneal epithelium; ECM, extracellular matrix; SF, silk fibroin; PA, peritoneal adhesions; RM, regenerative medicine; SE, simple epithelia;  
VTE, vascular tissue engineering.
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To date, biological materials have been already used to 
manufacture biomimetics of the mesothelium, the vascular 
endothelium, or the corneal endothelium (detailed in further 
sections). We below review different types of biologic materials 
that have been previously proposed or used in tissue engineering 
of diverse types of simple squamous epithelia or related tissues 
(see also Table 2, for summary).

Decellularized Animal Tissues
The manufacture of humanized tissues with biological scaffolds 
derived from the decellularization of animal tissues has gained 
increased interest in recent years, principally because they 
provide many advantages over the use of artificial biomaterial 
scaffolds (Fu et al., 2014). Indeed, animal tissues of porcine, ovine, 
or bovine origin are easily available and cheap, and their decel-
lularized forms are low immunogenic, bioactive, and biocompat-
ible, and retain mostly original mechanical properties of native 
tissues. Not less important, animal tissues and most particularly 
those of porcine origin usually display similarities in size and 
histoarchitecture with their human counterparts. In light of this 
evidence are several studies that reported the usefulness of decel-
lularized porcine tissues such as heart valves, arteries, dermis, 

tendons, or cornea in human clinical applications or in animal 
models research (Hoshiba et  al., 2010; Klopsch and Steinhoff, 
2012; Yoeruek et al., 2012).

The manufacture of humanized serosal membranes bio-
mimetics is still in its early stages of development and as such 
only a limited number of works have already reported the use 
of animal-derived decellularized tissues for their manufacture. 
It may however be expected that they will be focus of broader 
interest in next future, particularly regarding to the use of the 
decellularized porcine epicardium, omental mesothelium, and 
mesentery. In support of this concept, a previous study indicated 
that a decellularized porcine mesothelium represents an optimal 
biological laminar scaffold, which preserves in most extent its 
original mechanical and biochemical properties (Hoganson et al., 
2010). The decellularized porcine pericardium has also been 
proposed as potential biological scaffold for tissue engineering of 
heart valves (Dong et al., 2013). Additionally, the use of a decel-
lularized porcine small intestinal submucosa has been focus of 
intense research for a variety of experimental tissue-engineering 
applications including skin, esophageal, cardiovascular, gastro-
intestinal, and musculotendinous regeneration [for review, see 
Andree et al. (2013)]. Its application in combination with human 
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mesothelial cells should facilitate the manufacture of biomimetics 
of the vascular endothelium, the corneal endothelium or inclu-
sively of the synovial intimal lining.

It is therefore reasonable to hypothesize that the use of porcine 
decellularized tissues such as the mesenteric membrane could be 
successfully combined with human mesothelial cells and poten-
tially useful for the regeneration of simple squamous epithelia. 
This consideration will remain to be experimentally addressed.

Decellularized Amniotic Membrane
The human amniotic membrane is a thin avascular membrane 
composed of a stromal layer and a basement membrane on which 
is anchored a layer of amniotic cells that are bath in amniotic fluid. 
The use of the amniotic membrane as potential scaffold in tissue 
engineering has attracted growing interest since many decades 
ago, principally because of its wide availability, large surface, and 
remarkable biological and mechanical properties of its matrix. 
At term, the human amniotic membrane reaches a total surface 
area ranging between 1300 and 1500 cm2 (Niknejad et al., 2008). 
An adequate decellularization process of the amniotic membrane 
could strongly minimizes the loss of its original bioactivity 
(growth factors) and mechanical properties of its stromal matrix 
and particularly those of its basement membrane, which is critical 
for an optimal cells adhesion and growth (Hopkinson et al., 2008). 
However, and soon before parturition, the ECM proteins of amni-
otic and chorionic membranes are rapidly broken down by matrix 
metalloproteinases (MMPs) to facilitate their mechanical rupture. 
The loss of their original mechanical properties may therefore 
potentially compromise their use for tissue-engineering applica-
tions where tensile strength is a critical factor. Amniotic mem-
branes obtained from cesarean will overcome these limitations.

Decellularized amnion has been already used to build grafts 
that were experimentally applied for wound dressing, skin 
regeneration (Wilshaw et al., 2006), peritoneal adhesions (Kuriu 
et  al., 2009; Yetkin et  al., 2009), peritoneum reconstruction, 
vascular endothelium replacement (Tsai et  al., 2007), or even 
more for corneal epithelium and endothelium replacement (Xu 
et al., 2012; Fan et al., 2013; Feng et al., 2014). Technical advances 
in decellularization processes have permit the generation of a 
commercially available decellularized and dehydrated human 
amniotic membrane (DDHAM) allograft which demonstrated 
positive clinical outcomes for healing of chronic wounds in 
humans (Smiell et al., 2015) and potential use in ocular surface 
surgery (Lim et al., 2010).

Natural Polymers and extracellular Matrix 
Proteins
Polymeric biomolecules produced either by plants or animals 
have attracted increasing interest for many tissue-engineering 
applications. Technological progresses made in the field of bio-
materials have permitted that many of these natural polymeric 
molecules were better isolated, purified, chemically modified, 
and processed in the form of biological scaffolds (Shin et  al., 
2003; Ma, 2008). A host of natural biopolymers have been already 
tested to create thin laminar scaffolds applicable to tissue engi-
neering of serosal membranes biomimetics. Cellulose is the best 
example of plant biopolymer potentially useful in biomedical 

research. Alginate, a large polysaccharide principally extracted 
from brown algae is also another good example of useful plant-
derived biopolymer for biomedical applications. Regarding 
animal-derived biopolymers, the suitability of native polymeric 
ECM such as collagen, chitosan, or inclusively hyaluronic acid 
used alone or in combination in order to build biological lami-
nar scaffolds is under intense focus and is detailed below.

Collagen
Collagen proteins are the predominant structural matrix com-
ponents in connective animal tissues, representing an average 
of 25–35% of the total body weight. Collagen proteins are very 
diverse, and each of them endowed with unique properties [for 
review, see Kadler et al. (2007)]. Their excellent biocompatibility, 
bioactivity, degradability, and processing capacities into diverse 
solid formats (sheets, tubes, gels, or porous sponges) make of 
collagens excellent biomaterials to engineer tailored biological 
scaffolds and produce them on a large scale. Collagen type I is the 
predominant type of collagen used in tissue engineering, allow-
ing the formation of rope-like structures that confer strength to 
bioengineered scaffolds. Collagen-based scaffolds used in tissue 
engineering of simple squamous epithelium biomimetics should 
be thin membranes with high collagen density and tensile strength 
to minimize their contraction by cell shrinkage. Ideally, this 
limitation can be strongly overcome by reinforcing collagen fib-
ers cohesion by physical or chemical post-crosslinking (Fathima 
et al., 2010; Jiang et al., 2013) or through combination with other 
biological materials conferring additional strength such as silk 
fibroin (SF) (Madden et al., 2011). Collagen-based scaffolds sub-
jected to post-crosslinking have been already used to bioengineer 
corneal endothelium biomimetics (Mimura et al., 2012).

Fibronectin
Fibronectin is a multifunctional glycoprotein actively involved 
in a variety of cells–cells and cells–matrix interactions through 
distinct classes of binding domains specific to integrins, growth 
factors, fibrin, heparin, collagen, glycosaminoglycans, and pro-
teoglycans (Zhu and Clark, 2014). Fibronectin is a significant 
ECM component of the basal lamina in native simple epithelial 
tissues and in the endothelium (Laurie et  al., 1982; Yen et  al., 
1997; Witz et al., 2001). Its role in tissue engineering has gained 
increasing force as functionalizing molecule increasing the bio-
activity of biological scaffolds, principally since the discovery of 
its RGD binding domain, a tripeptide composed of L-arginine, 
glycine, and L-aspartic acid, also present in other ECM proteins 
such as collagen, that could be synthetically used as substitution 
of fibronectin for coating of material scaffolds and increase their 
cellular adhesion capacity (Pierschbacher and Ruoslahti, 1984).

Laminins
Laminins are key protein components of the basal lamina layer 
of basement membranes of distinct types simple epithelia (Laurie 
et  al., 1982). As such, different tissue-engineering applications 
already integrated a laminin coating treatment of biological scaf-
folds as a critical step to enhance cells adhesion. Laminin coating 
of collagen compressed gels was already performed to create a 
bioartificial cornea (Mi and Connon, 2013). In a similar way, 
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coating of prosthetic vascular small conduit grafts with laminin 
alone or in combination with collagen, considerably increased 
endothelial cells adhesion on the luminal graft surface (Chlupac 
et al., 2014). Of particular interest is the generation of a fibrillar 
mesh with electrospun laminin that under adequate conditions 
could generate a thin basement membrane-like carrier for cells 
adhesion and growth (Neal et  al., 2009). The identification of 
laminin’s peptide sequences with cell-binding activities is of 
particular interest to develop synthetic basement membrane by 
covalently binding synthetic laminin peptides with polysaccha-
rides such as chitosan or alginate (Yamada et al., 2011).

Gelatin
Gelatin is obtained through partial hydrolysis of collagen, leading 
to a mixture of peptides and amino acids. As gelatinous substance, 
gelatin is a highly malleable substance that could be cast in a large 
variety of 3D scaffold molds. Given to its excellent biocompatibil-
ity and malleability, gelatin is also commonly used in combination 
with solid biomaterials providing strength, while gelatin is used 
as complement to increase cell adhesion and growth, by provid-
ing a soft substrate closer to native ECM (Santoro et al., 2014). 
Gelatin is particularly useful to generate thin laminar scaffolds 
somehow mimicking native basement membranes and also to 
provide a carrier for cells sheet establishment and transplantation. 
In this way, gelatin hydrogels have been demonstrated useful for 
tissue engineering of a basement membrane biomimetic for the 
vascular endothelium (Bruggeman et al., 2012) and also for the 
corneal endothelium, through establishment of porous gelatin 
disk generated through cross-linking with carbodiimide (Lai and 
Li, 2010; Lai et al., 2013).

Alginate
Alginate or alginic acid is an anionic polysaccharide with high 
hydration capacity and which is widely distributed into brown 
algae (d’Ayala et al., 2008). Hydrated alginate can form a viscous 
gel highly compatible for cells and with high biodegradability. By 
controlling its processing, purified alginate powder can form a 
solid gel that is mainly useful for cells encapsulation procedures 
(d’Ayala et al., 2008). Alginate gels have however the downsides of 
displaying reduced mechanical strength and limited cell adhesion 
capacities. Like gelatin or inclusively collagens, alginate is gener-
ally mixed with other types of biomaterials with higher strength 
and cell adhesion properties such as chitosan or SF (Lai et  al., 
2007; Watanabe et al., 2011).

Chitosan
Chitosan is a long-chain polysaccharide derived by deacetylation 
of chitin, a polymer of N-acetylglucosamine, the structural com-
ponent of the exoskeleton of arthropods and insects. Commercial 
chitosan is generally obtained from crustacean shells, mainly 
from shrimps and crabs. The high-abundance of chitin in nature, 
makes of its derivative, chitosan a very easy accessible and cheap 
biomaterial with several desired biological properties for tissue 
engineering of biological scaffolds, such as a high biocompabil-
ity, easily processable by only pH modification, highly malle-
able (molding, casting) to generate scaffold with a desired form, 
porosity, and stiffness. Furthermore, and not less important, the 

polymer chitosan is particularly rich in chemical side groups, 
that allow covalent binding with other biomaterials to produce 
biodegradable biocomposites with increased strength and cell 
adhesion potential (d’Ayala et al., 2008). Mixtures of chitosan with 
other biopolymers such as SF or collagen represent useful biocom-
posites to create laminar biological scaffolds (Grolik et al., 2012; 
Guan et al., 2013a; Guan et al., 2013b). Additionally, chitosan has 
also been combined with synthetic polymers such as polyethylene 
glycol (PEG) for corneal tissue engineering (Rafat et al., 2008).

Silk Fibroin
Silk fibroin obtained from the silkworm (bombyx mori) is con-
sidered as a new bioengineering treasure by a majority of the bio-
medical community. Its outstanding biophysical and biochemical 
properties such as robustness, flexibility, biocompatibility, bio-
degradability, and processing properties have prompted a general 
interest for its use in tissue-engineering applications [for review, 
see Chen et  al. (2011)]. The process of electrospinning allows 
the production of nano/micro SF fibers and their arrangement 
in a large varieties of scaffolds including aligned biofunctional 
nanofibers (Wittmer et al., 2011) and fibrous meshworks mimick-
ing closely native ECM of a given type of tissue [for review, see 
Zhang et al. (2009)]. Interestingly, electrospun SF nanofibers can 
provide a high surface area improving cells surface adhesion, while 
maintaining high porosity for oxygen and molecules permeation, 
two of the properties provided by the basal lamina in serous 
membranes. Electrospun SF fibers can be alternatively post-
treated with either synthetic or biologic compounds [hyaluronic 
acid, gelatin, chitosan, polycaprolactone (PC), polypyrrole, etc.] to 
generate hybrid scaffolds with increased properties or inclusively 
newly acquired functions (Huang et al., 2013; Yan et al., 2013).

Bioartificial functionalized SF fibrous scaffolds have been 
yet applied for tissue engineering of vascular endothelium and 
corneal endothelium biomimetics (Liu et al., 2011; Madden et al., 
2011). In these works, the authors described how vascular and 
corneal endothelial cells (CECs) could readily adhere onto these 
constructs, proliferate, and form confluent monolayers of cells 
retaining original phenotypic characteristics. Despite such inter-
esting results, SF-based fibrous meshes have still not been applied 
to the manufacture a mesothelial tissue biomimetic. Similar 
positive outcomes with the use of mesothelial cells are likely to be 
expected, given their close phenotypic similarities with vascular 
endothelial cells (Chung-Welch et al., 1989, 1997a,b) and CECs 
(Jirsova et al., 2010; Lachaud et al., 2014b).

Mesothelialization Processes of Biological 
Scaffolds

The fabrication of a scaffold and its subsequent cellularization 
are critical steps conditioning the success of the resulting bio-
engineered tissue. Usually, different type of artificial biological 
scaffolds may be eventually post-treated with combined proteins 
generating an artificial basement membrane with are critical for 
the establishment of artificial simple epithelia. Their subsequent 
cellularization process is also complex and should basically take 
into account the phenotypic properties of the cells to be seeded 
and the cellular architecture of native tissues to be replaced.

http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org


August 2015 | Volume 3 | Article 1179

Lachaud et al. Mesothelial cells as new therapeutic option

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

The manufacture of simple squamous epithelia biomimet-
ics with the use of mesothelial cells can be roughly achieved 
by using two distinct cellularization approaches, which can be 
either through classical static cell-seeding and culture of the scaf-
fold or alternatively through culture of harvestable mesothelial 
cells sheets that are further layered on top of the scaffold (Asano 
et al., 2006).

Precoating of Biological Scaffolds with an 
Artificial Basement Membrane
The basement membrane is a thin multilayered matrix that acts 
as an anchoring substrate for the epithelium, mesothelium, and 
endothelium and represents a separating barrier from the under-
lying connective tissue. In some instances, some hybrid biological 
scaffolds (i.e., hybrid electrospun SF/polycaprolactone meshes), 
or scaffolds subjected to posterior treatments (cross-linking) to 
improve their mechanical properties, can however lose biological 
properties such as poor cells adhesion index and may require sur-
face treatments with basement membrane proteins. In that sense, 
different tissue-engineering applications aimed at reproducing 
and fixing a synthetic basement membrane on top of biologic or 
synthetic scaffolds to improve adhesive and functional properties 
of their surface. As example, a study demonstrated that electro-
spun SF/polycaprolactone meshes posteriorly coated with major 
basement membrane proteins such as collagen IV, laminins, 
entactins, and proteoglycans could  improve in  vivo esophageal 
epithelium regeneration (Lv et al., 2014).

Static Cell-Seeding
The cellular homogeneity and density achieved in a bioengineered 
mesothelium or in other types of simple squamous epithelial-
like tissues are two critical parameters. The static cell-seeding 
technique, which basically consists in the manual pipetting of a 
concentrated cells suspension onto the scaffold, has been shown 
to be a convenient approach for the establishment of mesothelial 
cells layers (Takazawa et al., 2005; Asano et al., 2006; Kawanishi 
et al., 2013). Additionally, our laboratory recently reported that 
a suspension of mesothelial cells adequately dropped on top of 
human lens capsules, followed by their subsequent culture for 
a short period in a media enhancing their proliferation and 
blocking their epithelial-to-mesenchymal transition is reliable 
procedure to generate an efficient (homogeneous and cellularity) 
mesothelialization of their surface (Lachaud et al., 2014b).

Cell Sheet-Based Tissue engineering
The generation of non-invasive methods to detach intact cells 
monolayer with its deposited ECM has been made possible 
thanks to the development of thermoresponsive cell culture 
dishes, which are classical polystyrene Petri culture dishes grafted 
with the thermoresponsive polymer poly-N-isopropylacrylamide 
(PNIPAAm), this “smart polymer” is capable of hydrophobic 
to hydrophilic reversible transition in response to temperature 
changes. By only decreasing the culture temperature below its 
lower critical solution temperature (LCST) that is around 32°C 
in pure water, PNIPAAm become hydrophobic, and consequently 
force the release of cells monolayer from the dishes (Takezawa 
et al., 1990; Okano et al., 1995). The cell sheet technology (CST) 

is particularly useful to obtain intact cells monolayer along with 
their underlying organized extracellular matrix (ECM) without 
the need to use a supportive scaffold. Not less important, this 
technique provides monolayered cells with intact plasma mem-
brane proteins (e.g., cell-surface receptors and ion channels) 
that otherwise should be severely damaged by the proteolytic 
activity of trypsin required for classical subculture of adherent 
cells (Huang et  al., 2010a). Of further importance, cells in the 
detaching monolayer can self-retract, a process which leads to 
a certain compaction of cells sheets. This issue is particularly 
important for certain therapeutic applications such as corneal 
endothelium regeneration where the density of the replacement 
cells monolayer is a critical factor related to tissue functionality.

The generation of mesothelial cells sheets with thermore-
sponsive dishes has already been reported (Asano et  al., 2006; 
Kawanishi et  al., 2013; Inagaki et  al., 2015). Additionally, this 
technology was also employed to manufacture corneal epithelium 
and corneal endothelium biomimetics (Hsiue et  al., 2006; Lai 
et al., 2007; Kobayashi et al., 2013). The possibility to manufac-
ture sandwiched layers of cultured cells may inclusively facilitate 
tissue engineering of complex multilayered artificial tissues such 
as artificial blood vessels or a bioartificial cornea, through appli-
cations of corneal epithelium and endothelium biomimetics on 
opposite sides of a bioartificial corneal stroma.

Therapeutic Applications of Mesothelial 
Serosal Membranes Biomimetics

The use of mesothelial cells in regenerative medicine has gained 
increased interest over the course of the last decades. The clinical 
accessibility and plasticity of mesothelial cells, among other prop-
erties of these cells, have stimulated the interest of a significant 
number of researchers in evaluating their usefulness for diverse 
regenerative applications, which are reviewed below.

Prevention of Peritoneal Adhesions
The secretion of lubricants by mesothelial cells provides a slip-
pery, non-adhesive, and protective surface enabling visceral 
organs to freely move inside celomic cavities (Mutsaers and 
Wilkosz, 2007). A loss of mesothelium lining provoked either 
by surgery, ischemia, infection, and foreign bodies or by trauma 
can lead to adhesions between opposite injured surfaces and the 
formation of a connective band of fibrous tissue (diZerega and 
Campeau, 2001).

Post-operative peritoneal adhesions are very frequent in 
patients undergoing open abdominal surgery and can frequently 
provoke critical intestinal obstructions. In women, endometriosis 
is a major cause of pelvic adhesion that could lead to chronic 
pelvic pain and infertility. Peritoneal adhesions are generally 
very painful since they strongly limit organs from moving freely. 
The physical separation of damaged serosal with biodegradable 
adhesion barriers such as Seprafilm (hyaluronic acid + carboxy-
methylcellulose) represents the main clinical strategy to prevent 
or reduce post-operative peritoneal adhesions [for review, see 
Caglayan et al. (2014)].

The development of new adhesion barriers remains however 
under current research due to the partial effectiveness of the 
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commercially available adhesion barriers. A host of experi-
mental approaches involving pharmacologic treatments and 
anti-adhesive polymers or molecules promoting endogenous 
mesothelialization are also under intense research (Arung et al., 
2011; Brochhausen et  al., 2012). There is a clear consensus 
among researchers about the idea that an instantaneous regen-
eration of the injured mesothelial cells layer represents the ideal 
anti-adhesive strategy to avoid serosal membranes adhesions. 
Working in this direction, several studies showed the effective-
ness of tissue-engineered mesothelial cells sheets in preventing 
experimentally induced intraperitoneal adhesions in animals 
(Takazawa et al., 2005; Asano et al., 2006; Kawanishi et al., 2013; 
Inagaki et al., 2015).

vascular Grafts
Coronary and peripheral vascular occlusive diseases are among 
leading health problems worldwide. They currently require 
vascular bypass procedures, being autogenous veins the ideal 
replacement option as they show optimal engraftment and do 
not require immunosuppressive therapies (Thomas et al., 1988). 
Unfortunately, patients do not always present suitable healthy 
vascular tissues and are therefore subjected to an interposition of 
a prosthetic vascular graft. These artificial conduits are however 
prone to thrombotic occlusion as the materials [mainly polyethyl-
ene terephthalate, or Dacron, and polytetrafluorethylene (PTFE)] 
by which they are made cannot properly avoid platelet adhesion 
and they usually develop neointimal hyperplasia. Their poor 
patency is particularly increased in synthetic conduits with a 
luminal diameter lower than 8–10 μm [for review, see Kapadia 
et al. (2008) and Palumbo et al. (2014)]. None of the experimental 
antithrombogenic strategies tested so far could generate artificial 
small-diameter vascular grafts displaying successful long-term 
patency (Seifu et  al., 2013). Ideally, prosthetic vascular grafts 
should be lined with autologous vascular endothelial cells to 
provide an optimal antithrombogenic luminal surface. However, 
autologous healthy vascular endothelial cells are not always easily 
accessible or available. These limitations have prompted a general 
interest in identifying whether other cellular phenotypes could 
display similar antithrombogenic activities.

Almost quite similar to the vascular endothelium (Tsuzuki, 
2009; Hagensen et  al., 2012), the mesothelium is also a spe-
cialized simple squamous epithelium that retains intrinsic 
regenerative capacities (Foley-Comer et  al., 2002). The initial 
misidentification of human omentum-derived mesothelial cells 
cultures with microvascular endothelial cells (Knedler et  al., 
1989; Takahashi et al., 1989) led to the evidence that mesothe-
lial and endothelial cells are not only morphologically similar 
but also display phenotypic similarities as evidenced by their 
common expression of specific endothelial and simple epithelial 
cells markers (Chung-Welch et  al., 1989; Potzsch et  al., 1990; 
Takahashi et al., 1991; Chung-Welch et al., 1997a,b). It was con-
cluded that only the use of a comprehensive panel of endothelial 
and mesothelial cells markers could readily allow the distinction 
of one cell phenotype from another. Not less important, it has 
also become evident that human mesothelial cells partially dis-
play some of the functional features specific to endothelial cells 
such as the ability to produce the fibrinolytic enzyme tissue-type 

plasminogen activator (t-PA), urokinase plasminogen activator 
(Chlupac et  al.), plasminogen activator inhibitor type-1 and 
type-2 (PAI-1 and PAI-2), and the procoagulant protein tis-
sue factor (TF) (Sitter et al., 1996; Chung-Welch et al., 1997a; 
Ivarsson et  al., 1998). Furthermore, and similar to vascular 
endothelial cells, mesothelial cells similarly synthesize prostacy-
clin (prostaglandin I2), a molecule inhibiting platelet activation 
and acting also as vasodilator (Van de Velde et al., 1986). The 
close similarities between both cell phenotypes thus led some 
researchers to test whether the mesothelial cell is a good cellular 
surrogate for vascular endothelium tissue engineering (Louagie 
et  al., 1986; Bull et  al., 1988; Bearn et  al., 1992; Theuer et  al., 
1996; Verhagen et al., 1998; Sparks et al., 2002).

Interestingly, the work of Louagie et al. indicated that patches 
of mesothelium grafted into the anterior wall of the common 
iliac vein in dogs did not suffer major damage after several 
weeks of implantation. Two canine transplantation studies using 
prosthetic (Dacron) arterial grafts seeded with mesothelial cells 
however generated markedly divergent outcomes, suggesting that 
the adhesion capacity of mesothelial cells on this type of synthetic 
material is reduced and thus strongly influences their long-term 
patency (Bull et al., 1988; Bearn et al., 1992; Bearn et al., 1993). 
Other study inclusively indicated the luminal mesothelialization 
of small-diameter ePTFE vascular prostheses with omental mes-
othelial cells decreased their patency and increased neointimal 
formation respective to control unseeded prostheses interposed 
in the same dogs (Verhagen et al., 1998).

Despite these diverging results regarding the potential of 
mesothelial cells in vascular tissue engineering, it should be con-
sidered that Dacron- or ePTFE-based vascular scaffolds display 
limited adhesive properties for cells attachment (Sarkar et  al., 
2007). Therefore, mesothelial cells should be rather preferentially 
combined with vascular scaffolds of biological origin. Porcine 
decellularized arteries or veins represent useful candidates as they 
display morphometric similarity to their human counterparts. 
Furthermore, efficiently decellularized animal arteries retain 
almost intact native ECM and basement membrane ensuring 
optimal adhesion of cells onto their luminal surface, which con-
sequently minimize their delamination in response to the strong 
shear stress variation proper to the arterial blood flow (Zhu et al., 
2008a; Quint et al., 2011).

Corneal endothelium
The corneal endothelium is the innermost layer of the cornea 
bathed in the aqueous humor of the eye’s anterior chamber. It 
is made up of a monolayer of CECs anchored on top of a basal 
membrane, the Descemet membrane. The corneal endothelium 
layer is critically required for the functionality of the cornea, since 
CECs are the cells that actively regulate the hydration state of the 
cornea by pumping out the excess of water in the cornea stroma 
into the aqueous humor (Bourne, 2003). At the same time, the 
corneal endothelium is a semi-permeable barrier allowing the 
transit of solute and nutrients from the aqueous humor toward 
more superficial layers of the cornea to nourish corneal stromal 
fibroblasts and corneal epithelial cells. Adult CECs are post-
mitotic cells that almost lack endogenous regenerative capacities. 
Diverse studies have shown that the healthy corneal endothelium 
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suffers an inexorable age-related decline in cellularity, which is 
compensated through hypertrophy of preexisting cells (Senoo 
and Joyce, 2000; Bourne, 2003). The corneal endothelium could 
suffer a critical loss of cellularity as a result of either physical 
or chemical damages or genetic disorders. A loss of corneal 
endothelium cellularity below a critical threshold leads to an 
inevitable loss of functionality and a subsequent accumulation of 
water into the corneal stroma and ultimately to the loss of vision 
(Bourne, 2003). The only effective clinical treatment available 
so far is the transplantation of a donor whole cornea or corneal 
endothelium layer. The important shortage of suitable donor 
corneas has stimulated the development of host of experimental 
tissue-engineering strategies to create a bioartificial corneal 
endothelium or inclusively to achieve the manufacturing of a 
whole bioartificial cornea [for review, see Mimura et al. (2013)]. 
Although the majority of these experimental approaches were 
performed with human CECs, several other studies also reported 
that CECs-like cells could be obtained through directed differen-
tiation of stem cells populations such as neural crest stem cells, 
mesenchymal stem cells, and embryonic stem cells [for review, 
see Yuan and Fan (2015)]. Our laboratory recently reported 
that mesothelial cells isolated from the mouse visceral adipose 
tissue sharing many phenotypical similarities with mouse CECs 
(Lachaud et al., 2014b). Furthermore, we found that mesothelial 
cells could readily adhere onto decellularized epithelial side sur-
face of human lens capsules. Mesothelial could actively proliferate 
and generate a compact cell monolayer mimicking some of the 
main morphological features of the native corneal endothelium 
(Lachaud et al., 2014b).

Further studies remain to address whether a mesothelial 
cells monolayer could also be established on other types of bio-
logical scaffolds fulfilling the main biophysical characteristics 
of the Descemet membrane such are transparency, strength, 
elasticity, and permeability to small molecules (i.e., nutrients). 
Thin membranes created from electrospun bombyx mori silk 
fibroin (BMSF) are transparent and were shown to support the 
growth of human corneal epithelial (HCE) cells (Hogerheyde 
et al., 2014). Additionally, biological scaffolds that were already 
tested with human CECs may also be suitable to establish a 
mesothelial cells monolayer. Among them are found chitosan-
based membranes, donor Descemet’s membrane, cross-linked 
collagen matrix, human corneal stromal disks, gelatin hydrogel 
disks, acellular porcine corneal matrix, plastic compressed 
collagen, and decellularized human amniotic membrane [for 
review, see Mimura et  al. (2012), Mimura et  al. (2013), and 
Zavala et al. (2013)].

Potential Therapeutic Applications of 
Mesothelial Serosal Membranes 
Biomimetics

The evidence that mesothelial cells share structural and bio-
chemical markers with other types of simple epithelial-like cells 
(see Table 1) supports the idea that these cells might be useful for 
the regeneration of other types of simple epithelial-like tissues. 
Some possible applications are suggested below.

Synovial Membrane
The synovial membrane is a thin membrane lining the inner 
surface of the fibrous joint capsule, tendon sheaths, and bursae. 
The healthy synovium surface layer of cells (intima) is made 
up of two types of synoviocytes: “phagocytic or absorptive” 
macrophage-like cells (Type A) and “secretory” fibroblast-like 
synoviocytes (Type B), these later accounting for around 80% of 
the total intimal cells (Smith, 2011). Synovial cavities are filled 
with synovial fluid, a viscous lubricating fluid which forms from 
an ultrafiltrate of plasma and the secretion of lubricant molecules 
(mainly proteoglycan-4 and hyaluronan) secreted by fibroblast-
like synoviocytes and chondrocytes (Smith, 2011). Distinct to 
a true epithelium, intimal surface synoviocytes are not tightly 
adhered to each other by junctional complexes and do not rest 
on a clearly well developed and continuous basement membrane, 
even if some basement membrane proteins such as collagen 
IV and laminin are expressed beneath the basal membrane of 
fibroblast-like synoviocytes (Pollock et al., 1990; Smith, 2011).

Interestingly, a careful revision of the literature provides 
evidence of phenotypic similarities between fibroblast-like 
synoviocytes and mesothelial cells. Hence, both cellular phe-
notypes are mesodermal epithelial-like cells which display 
abundant microvilli on their apical membrane, a structural 
feature that is commonly found in cells secreting fluid (Smith, 
2011). In addition, they both abundantly secrete hyaluronan 
(Hesseldahl and Larsen, 1969; Yung and Chan, 2007; Koyama 
et  al., 2008). Furthermore,  both cell phenotypes also express 
the pan  mesenchymal marker vimentin and the intercellular 
adhesion molecule β-catenin, CD54 (ICAM-1), N-cadherin, and 
cadherin-11 (Shibata et al., 1996; Agarwal et al., 2008; Kato et al., 
2013; Lee et al., 2013; Lachaud et al., 2014a; Lachaud et al., 2014b). 
Similar to mesothelial cells, fibroblast-like synoviocytes are also 
antigen-presenting cells and as such they express detectable levels 
of MHC-II and costimulatory molecule CD40 (Valle et al., 1995; 
Yang et al., 2004; Kato et al., 2013).

The evidence of phenotypic similarities between fibroblast-
like synoviocytes and mesothelial cells stated above could lead 
to the suggestion that mesothelial cells may represent a putative 
cellular surrogate of fibroblast-like synoviocytes and suggest thus 
that mesothelial cells could be potentially useful for the regenera-
tion of the synovial membrane lining.

Mesothelium Lining of the Reissner’s Membrane
The vestibular duct (scala vestibuli) is a small cavity filled with 
perilymph inside the cochlea of the inner ear. The scala vestibuli is 
separated from the scala media by a very thin membrane termed 
vestibular membrane or Reissner’s membrane. The Reissner’s 
membrane facing the scala vestibuli is covered by a monolayer 
of mesothelial cells. The opposite side facing the cochlear duct 
a cavity filled by endolymph is covered by an epithelium. A thin 
basal lamina separates the mesothelium and epithelium layers 
(Qvortrup et al., 1994). The Reissner’s membrane acts principally 
as permeable barrier to separate the perilymph from the endo-
lymph. It allows a selective diffusion of solutes and nutrients from 
the perilymph to the endolymph that tightly controls endolymph/
perilymph homeostasis. The rupture of the Reissner’s membrane 
caused either by physical trauma or inclusively due to an increased 
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endolymph pressure (endolymphatic hydrops in Ménières 
disease) leads to severe hearing loss. To date, no experimental 
cell-based therapies or tissue-engineering applications have been 
proposed to reconstruct or substitute the damaged Reissner’s 
membrane. The use of autologous peritoneal mesothelial cells in 
combination with adequate biological matrices may hypotheti-
cally allow the development of tissue-engineered surrogates of 
the Reissner’s membrane.
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Glossary

Allograft: The transplant of an organ or tissue from one indi-
vidual to another of the same species with a different genotype.

Autologous cells: Cells isolated from and transferred to the same 
individual’s body.

Autologous transplantation: Transplantation of cells or tissues, 
which are derived, stored, and later given back to the same person.

Bioartificial tissue: Biological tissue manufactured in vitro and 
mimicking the properties and functions of the native tissue to be 
replaced.

Biocompatible material: A material that is biologically tolerated 
by the surrounding tissue or organ in which it is transplanted.

Biological scaffold: A structural support of biologic origin that 
serves for cell attachment and subsequent tissue development.

Biomaterials: Materials used to construct artificial organs, reha-
bilitation devices, or prostheses and replace natural body tissues.

Bioprosthetic: Referring to prosthesis of biological origin that 
can be either native tissues or prosthesis manufactured from 
biological materials.

Coelomic cavities: Fluid-filled body cavities, which are lined by 
an epithelium derived from the mesoderm.

Peritoneal dialysis: Process by which the peritoneal membrane is 
used as ultrafiltration interface to eliminate blood waste products 
through the use of a hypertonic solution flowing into and out of 
the peritoneal cavity through.

Corneal endothelium: The single layer of simple squamous 
epithelial-like cells lining the inner surface of the cornea.

Decellularization: The process by which cells are removed from 
tissues or organs to obtain their extracellular components. It is 
mainly achieved through perfusion or immersion and the use of 
enzymes and/or detergents.

Epithelial-to-mesenchymal transition: The process by which 
epithelial cells undergo a transformation into cells with mesen-
chymal characteristics.

Extracellular matrix (ECM): Structural molecules produced by 
cells and excreted to the extracellular space within the tissues and 
that provide cohesive structure to hold tissues together.

Great omentum: A large fold of the peritoneum hanging down 
from the stomach and containing abundant vasculature and 
perivascular adipose tissue.

Heterologous transplant: Cells, grafts, or tissues derived from an 
individual of a different species in which they are transplanted, 
being therefore antigenically dissimilar.

Immunomodulation: The adjustment of the immune response 
to a desired level through immunopotentiation, immunosuppres-
sion, or induction of immunologic tolerance.

Immunosuppression: Reduction of the immune response, 
generally through the use of drugs, active molecules, or cells to 
prevent grafts rejection or control autoimmune diseases.

Lineage tracing study: Identification and follow-up of all progeny 
of a single cell using different experimental strategies available for 
lineage tracing such as live-cell imaging, fluorescent reporter con-
structs, inducible gene expression, and inducible recombinases.

Matrix: The intercellular substance of a tissue or the tissue from 
which a structure develops.

Mesoderm: One of the three primary germ layers developing 
in the early embryo.

Mesothelial cells: A type of simple squamous epithelial cells 
lining the walls of celomic body cavities and visceral organs 
located inside.

Mesothelioma: Tumor arising from malignant transforma-
tion of mesothelial cells.

Myofibroblast: A fibroblastic cell with some contractile 
properties and that is usually considered an intermediate cell 
between fibroblasts and smooth muscle cells.

Parietal mesothelial cells: The mesothelial cells lining the 
parietal surface of serous body cavities.

Polymeric molecules: Molecules of high molecular weight gener-
ated through polymerization of smaller molecules (monomers). 
They are produced either by living organisms or chemically.

Regulatory T cells: A subtype of T lymphocytes with immuno-
suppressive properties and capacities to abrogate autoimmune 
diseases.

Serosal membranes: Membranes lining serous cavities and 
composed of a single layer of simple squamous epithelial 
resting on a basement membrane underneath.
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