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Signal processing on digitally sampled vowel sounds for the detection of pathological
voices has been firmly established. This work examines compression artifacts on vowel
speech samples that have been compressed using the adaptive multi-rate codec at
various bit-rates. Whereas previous work has used the sensitivity of machine learning
algorithm to test for accuracy, this work examines the changes in the extracted speech
features themselves and thus report new findings on the usefulness of a particular feature.
We believe this work will have potential impact for future research on remote monitoring
as the identification and exclusion of an ill-defined speech feature that has been hitherto
used, will ultimately increase the robustness of the system.
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1. Introduction

Detection of a pathological voice from a digitally sampled waveform has long been established in
a clinical environment; however, there is growing interest in capturing and using speech data-sets
in a naturalistic environment. The ubiquitous use of smart-phone technology presents many open
questions as to their efficacy in remote monitoring. The name smart-phone albeit common is rather
ambiguous; they are in-fact a computer with a cellular transceiver and sensor array. Using a combi-
nation of the microphone, cellular transceiver, and Internet connectivity, gives some rather alluring
possibility of obtaining large, naturalistic data-sets of speech acoustics that could be captured, post-
processed and logged remotely. So-called remote or tele-monitoring is a rapidly growing field that
aims to provide fast and frequent data collection in order to minimize the frequency of clinic visits
and ultimately alleviate the workload of medical personnel. Specific examples for speech signals
can be found in Little et al. (2009), Tsanas et al. (2010), and Arora et al. (2014). In most instances,
specialized audio recording equipment was used. However, in gathering this data, it is likely that the
signal would be compressed to allow for successful terrestrial communication and for storage. The
adaptive multi-rate (AMR) codec is an audio compression format optimized for speech coding and
widely used in the Global System for Mobile Communications standard (GSM). The AMR speech
coder selects the rate adaptively depending on the channel condition. At present, AMR encoding
comprises the narrow-band codec (AMR-NB), which encodes at 200–3400Hz at variable bit ranges
ranging from 4.75 to 12.2 kilobits per second (kbps), and the wideband codec (AWB-WB) which
uses a bandwidth of 50–7000Hz with bit-rates ranging from 6.6 to 23.85 kbps, achieving a higher
quality of speech intelligibility. AMR-WB is now the default speech codec for the wideband code
division multiple access (WCDMA) 3G systems.

Processing speech signals for detecting pathological biomarkers can be done in a variety of ways.
The most common is the extraction of vowel sounds. Vowel sounds are produced when the vocal
cords are resonating with the vocal tract open and fixed in position. In neurodegenerative diseases,
such as Parkinson’s disease, there is preliminary evidence for abnormal vowel articulation even at

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2015 | Volume 3 | Article 1181

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://dx.doi.org/10.3389/fbioe.2015.00118
https://creativecommons.org/licenses/by/4.0/
mailto:d.ireland@csiro.au
http://dx.doi.org/10.3389/fbioe.2015.00118
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00118/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00118/abstract
http://loop.frontiersin.org/people/186491/overview
http://loop.frontiersin.org/people/186796/overview
http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Ireland et al. Compression effects on vowels

FIGURE 1 | Error for each speech feature when the audio signal is compressed using AMR-NB codec at 4.75 kbps.

TABLE 1 | Average fundamental frequencies and formant frequencies of the vowel data-set produced by 45 men, 48 women, and 46 children.

Vowel symbols

IPA / / / / / / / / / / / / / / / / / / / / / / / /
ASCII iy ih ey eh ae ah aw oa oo uw uh er

F0 M 243 192 267 189 278 267 283 265 192 237 188 263
F 306 237 320 254 332 323 353 326 249 303 226 321
C 297 248 314 235 322 311 319 310 247 278 234 307

F1 M 342 427 476 580 588 768 652 497 469 378 623 474
F 437 483 536 731 669 936 781 555 519 459 753 523
C 452 511 564 749 717 1002 803 597 568 494 749 586

F2 M 2322 2034 2089 1799 1952 1333 997 910 1122 997 1200 1379
F 2761 2365 2530 2058 2349 1551 1136 1035 1225 1105 1426 1588
C 3081 2552 2656 2267 2501 1688 1210 1137 149 1345 1546 1719

All measurements in Hz.
M, males, F, females, C, children.

the early stages of the disease (Sapir et al., 2007; Skodda et al.,
2011, 2012). Healthy voices produce vowel sounds that are
mostly periodic with a fundamental frequency f 0 and uniform
in amplitude; in contrast, pathological voices, show deviations
in the fundamental frequency and amplitude of the articulated
sound. Two common features to quantify this effect are jitter and
shimmer. The first characterizes deviation in the fundamental
frequency while the latter quantifies deviations in the amplitude.
It is also commonplace to compute the formants of a vowel
sound. Formants are the resonant frequencies of the vocal tract.
If the vocal tract is fixed, formant computation can measure the
placement and use of the speech articulators, which includes
the lips, teeth, tongue, alveolar ridge, hard and soft palate,
uvula, and glottis. A more modern feature is the mel-frequency
cepstrum coefficients (MFCC). These coefficients are derived
from a cepstral representation of the frequency spectrum of the
audio signal. The spectrum is filtered according to a mel-scale
which approximates the human auditory system response more
closely than frequency bands spaced linearly across the spectrum.
MFCC have shown promise in detecting pathological voices
(Godino-Llorente et al., 2006). Although the use of these features

have been shown useful in high-quality datasets, their efficacy on
signals corrupted by compression is largely unknown. Thus, it is
prudent to fully investigate the effects telecommunication com-
pressionwould have on the analysis of voice signals so that suitable
robust features are identified and error-prone features discarded.

Compression artifacts in speech samples were first examined in
Besacier et al. (2001) and Gonzalez et al. (2003). A comprehensive
comparison is given for control and pathological voices in Gonza-
lez et al. (2003), which examined the MP3 audio compression at
bit-rates 32, 64, 98, and 128 kbps. It was found bit-rates >96 kbps
preserved the relevant acoustic properties. A more recent effort
is given in Tsanas et al. (2012). Here a realistic simulation of a
cellular network was used to investigate the efficacy of obtaining
speech samples via remote monitoring of a cellular network. The
implemented simulator uses the AMR-NB codec with a fixed bit-
rate of 12.2 kbps. A data-set of speech samples from people with
Parkinson’s diseases was piped into the simulator. Subsequently,
speech data at the end of the pipe was processed to extract 132
speech features that are used to predict the severity of the Parkin-
son’s disease that is known a priori. This work concluded that
the performance degradation caused by the audio compression
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TABLE 2 | Mean and SD (in brackets) of error for AMR-NB compression at various bit-rates.

Feature Gender Bitrate (kbps)

4.75 5.15 5.90 6.70 7.40 7.95 10.2 12.2

f0 M 0 (4) 0 (4) 0 (2) 0 (4) 0 (0) 0 (5) 0 (4) 0 (4)
F 0 (4) 0 (5) 0 (6) 0 (6) 0 (4) 0 (6) −−−1 (7) 0 (5)
C 0 (6) −−−1 (9) −−−1 (8) −−−1 (7) −−−1 (7) 0 (4) −−−1 (7) 0 (0)

Jitter M −−−24 (43) −−−23 (42) −−−23 (39) −−−19 (42) −−−18 (38) −−−16 (36) −−−16 (38) −−−18 (28)
F −−−33 (40) −−−30 (40) −−−26 (35) −−−23 (33) −−−19 (30) −−−18 (31) −−−16 (26) −−−27 (31)
C −−−33 (44) −−−29 (40) −−−27 (39) −−−24 (37) −−−22 (35) −−−19 (34) −−−17 (32) −−−22 (26)

Shimmer M −−−68 (59) −−−46 (48) −−−42 (48) −−−33 (39) −−−29 (37) −−−27 (35) −−−25 (34) −−−18 (28)
F −−−92 (59) −−−57 (45) −−−56 (48) −−−43 (43) −−−38 (40) −−−38 (39) −−−30 (31) −−−27 (31)
C −−−80 (57) −−−50 (43) −−−48 (45) −−−38 (40) −−−34 (38) −−−32 (37) −−−27 (30) −−−22 (26)

HNR M 2 (3) 2 (3) 2 (3) 2 (3) 2 (3) 2 (3) 2 (3) 2 (3)
F 5 (5) 5 (5) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4)
C 9 (8) 8 (8) 7 (7) 7 (7) 7 (7) 7 (7) 6 (7) 6 (6)

F1 M 16 (14) 15 (14) 13 (12) 13 (13) 13 (13) 13 (12) 11 (11) 11 (11)
F 36 (18) 35 (18) 31 (19) 31 (19) 32 (19) 32 (19) 29 (19) 29 (19)
C 44 (18) 43 (18) 40 (19) 40 (19) 40 (19) 40 (18) 39 (19) 38 (19)

F2 M 20 (11) 19 (11) 17 (11) 17 (11) 18 (11) 18 (11) 16 (11) 16 (10)
F 30 (13) 30 (14) 29 (13) 29 (13) 29 (14) 29 (14) 28 (13) 28 (13)
C 31 (13) 31 (13) 30 (14) 30 (14) 30 (14) 30 (14) 30 (13) 30 (14)

MFCC1 M 23 (22) 24 (22) 25 (22) 25 (21) 26 (21) 26 (21) 29 (20) 29 (19)
F 35 (18) 35 (17) 35 (17) 35 (17) 35 (17) 36 (17) 37 (16) 37 (16)
C 34 (18) 35 (17) 35 (17) 35 (17) 35 (17) 35 (17) 36 (16) 36 (16)

MFCC2 M 101 (48) 101 (48) 98 (47) 98 (47) 98 (47) 98 (47) 95 (42) 95 (42)
F 83 (25) 83 (24) 81 (24) 81 (24) 80 (24) 80 (23) 78 (21) 78 (21)
C 83 (25) 83 (24) 81 (24) 81 (24) 80 (24) 80 (23) 78 (21) 78 (21)

MFCC3 M 47 (51) 48 (51) 48 (51) 48 (51) 48 (51) 48 (50) 48 (49) 48 (48)
F 24 (37) 25 (37) 26 (36) 26 (36) 25 (36) 25 (35) 24 (34) 25 (34)
C 33 (31) 34 (30) 34 (30) 34 (30) 33 (30) 33 (30) 32 (29) 32 (29)

Table elements in boldface represent metrics that showed a significant difference compared to metrics based on uncompressed audio files.
Gender: M, males, F, females, C, children.

FIGURE 2 | Error for each speech feature when the audio signal is compressed using AMR-NB codec at 4.75 kbps.

and simulated channel noise would unlikely prohibit predicting
the severity of Parkinson’s disease. This article differs from the
aforementioned work in the following regards:

1. Here we examine AMR-based codecs which are currently the
state-of-art for speech compression.

2. All currently available bit-rates and modes are tested.

3. Rather than relying on a machine learning algorithm as in
Tsanas et al. (2012) to test for accuracy, we examine the changes
in the features themselves and thus report new findings on the
usefulness of a particular feature.

Anticipating the effects compression has on speech metrics is
arduous. Figure 1 gives the power spectrum density (PSD) of an

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2015 | Volume 3 | Article 1183

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Ireland et al. Compression effects on vowels

FIGURE 3 | Error for each speech feature when the audio signal is compressed using AMR-NB codec at 7.95 kbps.

FIGURE 4 | Error for each speech feature when the audio signal is compressed using AMR-NB codec at 12.20 kbps.

adult male speaker uttering a vowel. This Figure shows the PSD
of the original signal, and after being compressed by the lowest
possible bit-rate of the AMR codec (4.75 kbps). The difference
between the two spectra is also given. Clearly the difference is large
near the maximum limit of the frequency spectrum (>3000Hz),
which comprises the fine grain structure of the signal. However,
there are differences across the spectrum likely caused by the
codec encoding the signal using fewer bits than the original
representation.

We believe that this work will have potential impact on future
research on remote monitoring as the identification and exclusion
of an ill-defined speech feature that has been hitherto used will
ultimately increase the robustness of the system.

2. Materials and Methods

2.1. Speech Corpus
The speech corpus used consisted of 45 men, 48 women, and
46 children (27 boys and 19 girls; age ranging from 10 to 12)
and was first described by Hillenbrand et al. (1995) and sub-
sequently released publicly at Hillenbrand (2008). The major-
ity of the speakers (87%) were raised in Michigan, while the
remainder was primarily from Illinois, Wisconsin, Minnesota,

northern Ohio, and northern Indiana, all located in the United
States ofAmerica. Audio recordingsweremade of subjects reading
lists containing 12 vowels. Subjects read from one of 12 differ-
ent randomizations of a list containing the words “heed”, “hid”,
“hayed”, “head”, “had”, “hod”, “hawed”, “hoed”, “hood”, “who’d”,
“hud”, “heard”, “hoyed”, “hide”, “hewed”, and “how’d”. A list of the
extracted vowels in ASCII and the International Phonetic Alpha-
bet library (IPA) is given in Table 1. Here, the average fundamen-
tal frequency and first and second formant frequencies are also
given.

The recordings were made with a digital audio recorder
(Sony PCM-F1) and a dynamic microphone (Shure 570-S). Each
obtained signal was low-pass filtered at 7.2 kHz, sampled at 16 kHz
and quantized with 12-bits. The gain on an input amplifier was
adjusted individually for each token so that the peak amplitude
was at least 80% of the dynamic range of the analog to dig-
ital converter ensuring the amplitude peaks were not clipped.
The reader is directed to Hillenbrand et al. (1995) for more
information.

2.2. Speech Compressing and Analysis
In order to quantify the effects of the AMR compression, the
voice samples are encoded and decoded using the OpenCORE
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TABLE 3 | Mean and SD (in brackets) of error for AMR-WB compression at various bit-rates.

Feature Gender Bitrate (kbps)

6.60 8.85 12.65 14.25 15.85 18.25 19.85 23.05 23.85

f0 M 0 (5) 0 (4) 0 (4) 0 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
F −−−1 (9) −−−1 (7) 0 (4) 0 (6) 0 (6) 0 (4) 0 (6) 0 (6) −−−1 (7)
C −−−1 (8) −−−1 (7) 0 (2) 0 (4) 0 (4) 0 (1) 0 (4) 0 (4) 0 (0)

Jitter M −−−27 (45) −−−21 (39) −−−15 (35) −−−13 (34) −−−13 (33) −−−14 (34) −−−12 (34) −−−12 (32) −−−12 (34)
F −−−37 (40) −−−27 (34) −−−16 (27) −−−16 (29) −−−16 (26) −−−15 (26) −−−15 (25) −−−15 (26) −−−14 (26)
C −−−38 (43) −−−27 (38) −−−16 (33) −−−14 (30) −−−16 (31) −−−15 (32) −−−13 (28) −−−15 (31) −−−13 (28)

Shimmer M −−−83 (64) −−−66 (59) −−−38 (40) −−−38 (43) −−−36 (42) −−−35 (39) −−−33 (38) −−−33 (38) −−−32 (36)
F −−−105 (63) −−−82 (53) −−−44 (36) −−−41 (34) −−−42 (34) −−−40 (32) −−−38 (32) −−−37 (31) −−−37 (31)
C −−−91 (63) −−−69 (50) −−−33 (30) −−−31 (29) −−−31 (29) −−−30 (27) −−−28 (28) −−−27 (24) −−−28 (29)

HNR M 0 (2) 0 (3) −−−1 (2) −−−1 (3) −−−1 (2) −−−1 (3) −−−1 (2) −−−1 (3) −−−1 (3)
F 0 (2) 0 (2) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1)
C 0 (3) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1)

F1 M 1 (4) 1 (3) 0 (3) 0 (3) 0 (3) 0 (2) 0 (3) 0 (2) 0 (2)
F 3 (5) 3 (4) 1 (2) 1 (2) 1 (2) 0 (2) 0 (2) 0 (1) 0 (2)
C 5 (9) 4 (8) 1 (4) 1 (4) 1 (4) 0 (3) 0 (3) 0 (3) 0 (2)

F2 M 0 (4) 0 (3) −−−1 (2) −−−1 (2) −−−1 (2) −−−1 (2) −−−1 (2) −−−1 (2) −−−1 (2)
F 0 (4) 1 (3) 0 (2) 0 (2) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1)
C 2 (6) 2 (5) 0 (2) 0 (3) 0 (2) 0 (2) 0 (2) 0 (2) 0 (2)

MFCC1 M 10 (9) 9 (8) 3 (7) 2 (7) 2 (7) 2 (6) 2 (6) 1 (6) 1 (6)
F 17 (8) 16 (7) 9 (7) 8 (7) 8 (6) 7 (6) 7 (6) 6 (6) 6 (6)
C 22 (8) 19 (7) 13 (6) 12 (6) 12 (6) 11 (6) 10 (6) 9 (6) 9 (6)

MFCC2 M 12 (21) 10 (17) 7 (14) 6 (13) 6 (14) 5 (12) 5 (12) 5 (11) 5 (11)
F 20 (11) 17 (10) 13 (9) 12 (9) 12 (8) 11 (8) 11 (8) 10 (8) 10 (8)
C 26 (12) 22 (10) 18 (9) 17 (9) 17 (9) 16 (8) 15 (8) 14 (8) 14 (8)

MFCC3 M 12 (17) 9 (15) 8 (12) 8 (12) 7 (11) 7 (11) 6 (11) 5 (10) 5 (10)
F 21 (15) 19 (14) 16 (12) 15 (12) 14 (11) 13 (11) 13 (11) 11 (10) 12 (10)
C 28 (14) 25 (13) 22 (11) 21 (11) 20 (11) 19 (11) 18 (10) 17 (10) 17 (10)

Table elements in boldface represent metrics that showed a significant difference compared to metrics based on uncompressed audio files.
Gender: M, males, F, females, C, children.

FIGURE 5 | Error for each speech feature when the audio signal is compressed using AMR-WB codec at 12.65 kbps.

library framework (OpenCore, 2013), which provides the required
codecs. The speech signals are then analyzed using the open
source, speech analysis software Praat (Boersma and Weenink,
2015) in their original and AMR compressed forms for the
various bandwidths and bit-rates. In each instance the funda-
mental frequency, jitter, shimmer, harmonic-noise ratio (HNR),
formant frequencies are obtained from Praat; the MFCCs

are obtained from a program developed by the authors and
released in open-source (Ireland, 2014). In this instance, the
MFCC coefficients were produced from a set of 12 tri-
angular filters spread between 50 and 4000Hz and a fast
Fourier transform size of 4096. All obtained values from Praat
and the MFCC program are compared with and without
compression.
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FIGURE 6 | Error for each speech feature when the audio signal is compressed using AMR-WB codec at 18.25 kbps.

FIGURE 7 | Error for each speech feature when the audio signal is compressed using AMR-WB codec at 23.85 kbps.

3. Results

In order to quantify the error associated with the particular
compression the following relative error equation was applied:

E =
M−M∗

M × 100% (1)

where M is a particular feature computed from uncompressed
data, while M* is the feature computed from speech signals
that have undergone compression. If E> 0, then compression
of the audio signal has caused the feature to be over-estimated,
conversely if E< 0, the feature has been under-estimated.

To further support the error metric, tests of significance using
Welch’s unequal variances t-test was used. This test is an adap-
tation of Student’s t-test, however it has been shown to be more
reliable when two sample populations have unequal variances.
The Bonferroni correction method is used to counteract the
problem of multiple comparisons by adjusting the nominal test
of significance (α= 0.05) based on the number of hypotheses
resulting in a corrected threshold level denoted αc.

Table 2 shows the mean and SD of the resultant error when
the audio is compressed using AMR-NB codec at all possible
bit-rates. The complete data for bit-rates 4.75 kbps, 7.95 kbps,

and 12.2 kbps are given in box-and-whisker form in Figures 2–4,
respectively. The box-and-whisker plot was chosen because it
readily displays key measures: the enclosed box depicts the lower
quartile, median, and upper quartile while the arms extending
from the box (whiskers) show the smallest and largest observation
of the statistical data. Table elements in boldface represent the
metrics that showed a high significance (p-value<αc).

Referring to Table 2, it is apparent that f 0, and HNR showed
very little distortion when compressed using AMR-NB; this was
supported by theWelch t-test, which shows no significance at any
bit-rate except for HNR in males. The MFCC, formants, jitter,
and shimmer showed significant distortion with no noticeable
improvement when the bit-rate increased. TheWelch t-test shows
the null-hypothesis is disproved across all bit-rates and gender
groups for shimmer, MFCC, F1, and F2. Jitter at higher bit-
rates (>7.4 kbps) showed no significance according to the Welch
t-tests.

The jitter and shimmer errors indicate the estimated features
are being consistently over-estimated for all bit-rates and genders.
Conversely, the formants and MFCC are seen to be consistently
under-estimated for all bit-rates and all genders. Except for the
MFCC, male audio signals displayed the lowest errors followed by
women and children.
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FIGURE 8 | Jitter, shimmer, and HNR errors for each spoken vowel when the audio signal is compressed using AMR-WB codec at 23.85 kbps.

FIGURE 9 | f0 and formant errors for each spoken vowel when the audio signal is compressed using AMR-WB codec at 23.85 kbps.

Table 3 shows the mean and SD (in brackets) of the resultant
error when the audio is compressed using the AMR-WB codec at
all possible bit-rates.Table elements in boldface represent metrics
that show a high significance using theWelch t-test. The complete
data for bit-rates 12.65 kbps, 18.25 kbps, and 23.85 kbps are given
in box-and-whisker form in Figures 5–7, respectively. These
figures reflect the lowest and highest possible bit-rate currently
possible usingAMR-WB codec. Referring to theTable 3, jitter and
shimmer are shown to still exhibit significant distortion when the
audio signal is compressed. The Welch-t test shows significance
for each gender group and bit-rate for shimmer. The jitter metric
showed no significance for bit-rates >8.85 kbps. The remaining
features however showed a significant reduction in error partic-
ularly when the bit-rate increased. As in the AMR-NB, jitter and
shimmer showed a tendency to be over-estimatedwhile theMFCC
were under-estimated. Clearly the AMR-WB codec is superior as
expected due to the higher bit-rate and frequency bandwidth.

3.1. Vowel Analysis
Given the significant distortion of some speech features, it is
desirable to examine if these distortions are equal for each vowel,
or if certain vowels are more sensitive to audio compression.
To that end, the computed error values are further categorized
into each unique vowel rather than gender. For brevity, this
work only considers vowel signals compressed only with AMR-
WB codec at 23.85 kbps; thus, this work reflects the highest
obtainable accuracy with the AMR-WB codec. Figures 8–10
show the error for each vowel and feature. Here, the vowels
are ordered based on the position of F1 in the frequency spec-
trum, where vowel oa has the lowest F1 and vowel iy has the
highest; the remaining vowels are ordered in ascending order.
Initially, it was suspected that this order shows a steady increase
in error but Figures 8–10 show this not to be entirely true.
Table 4 gives the order of the vowels with ascending mean
and SD.
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FIGURE 10 | MFCC errors for each spoken vowel when the audio signal is compressed using AMR-WB codec at 23.85 kbps.

TABLE 4 | Vowel error in ascending order (left to right) sorted by mean and SD (in brackets).

Feature Vowel error in ascending order

f0 oa(oa) uw(ae) ae(ah) uh(uw) ah(eh) eh(iy) iy(uh) ih(ih) er(er) aw(aw) ei(ei) oo(oo)
Jitter aw(ah) ah(aw) ei(oa) oa(ae) er(iy) ae(er) iy(ei) uh(uh) eh(ih) ih(uw) oo(oo) uw(eh)
Shimmer ih(aw) aw(oa) oa(ah) ei(uh) uh(ih) ah(ei) eh(eh) oo(ae) er(oo) ae(er) uw(uw) iy(iy)
HNR ih(ih) ae(ei) oo(aw) uw(uh) aw(oa) er(oo) ah(ah) iy(ae) eh(eh) oa(iw) ei(er) uh(iy)
F1 ae(aw) oa(uh) er(ah) ei(oa) iy(iy) uw(ih) eh(er) ah(eh) ih(oo) oo(ei) aw(ae) uh(uw)
F2 aw(oa) uh(ei) ah(uh) ae(iy) oo(aw) ei(ih) er(oo) eh(eh) iy(ae) ih(er) oa(ah) uw(uw)
MFCC1 uw(ae) oo(iy) oa(aw) uh(ei) er(ah) aw(ih) ah(er) iy(oa) ae(eh) eh(uh) ih(uw) ei(oo)
MFCC2 uw(ae) oo(aw) oa(ah) uh(ih) aw(ei) er(eh) eh(uh) ae(oa) ah(oo) ih(her) ei(iy) iy(uw)
MFCC3 uw(iy) oo(ih) oa(ei) er(ae) uh(eh) ih(ah) ei(aw) iy(er) aw(uw) eh(oo) ae(oa) ah(uh)

4. Discussion

An analysis of the effects of AMR-NB compression showed f 0 and
HNR to be almost unaffected by compression in any bit-rate or
bandwidth for all genders. The HNR feature did show a consistent
albeit small tendency to be over-estimated by as much as 9% for
children. The formant frequencies and MFCC were found to be
significantly over-estimated in the AMR-NB codec in any bit-
rate while the jitter and shimmer values were found to undergo
significant distortion by consistently being under-estimated by as
much as 101%. Clearly, f 0 and HNR from the given list of features
are the only viable ones when using the AMR-NB codec. When
comparing genders, it is apparent that males generally produce
less error compared to females and children. This is likely due to
the lower voice pitch inherent in male voices and thus most of

the speech energy is lower in the spectrum. Error analysis when
using AMR-WB codec showed f 0, HNR, and the formant fre-
quencies to be almost unaffected. The latter has shown significant
improvement even at a bit-rate 6.60 kbps suggesting the increase in
frequency bandwidth in AMR-WB allows the formant estimation
algorithm in Praat to be more accurate. MFCC estimations have
improved by no more than 26% at the lowest bit-rate for children.
The error decreases as the bit-rate increases. The shimmer and
jitter values still remained significantly over-estimated by asmuch
as 105% and do not improve significantly as the bit-rate increases.
It can thus be concluded that the reliance on the use of jitter and
shimmer in remote monitoring using cellular data-sets must be
entirely avoided. The use of MFCC and formant frequencies must
be used with caution, particularly when the cellular system is only
using the AMR-NB codec, such as the 2G network.
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