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Molecular Dynamics simulations are a powerful approach to study biomolecular confor-
mational changes or protein–ligand, protein–protein, and protein–DNA/RNA interactions.
Straightforward applications, however, are often hampered by incomplete sampling,
since in a typical simulated trajectory the system will spend most of its time trapped
by high energy barriers in restricted regions of the configuration space. Over the years,
several techniques have been designed to overcome this problem and enhance space
sampling. Here, we review a class of methods that rely on the idea of extending
the set of dynamical variables of the system by adding extra ones associated to
functions describing the process under study. In particular, we illustrate the Temperature
Accelerated Molecular Dynamics (TAMD), Logarithmic Mean Force Dynamics (LogMFD),
and Multiscale Enhanced Sampling (MSES) algorithms. We also discuss combinations
with techniques for searching reaction paths. We show the advantages presented by
this approach and how it allows to quickly sample important regions of the free-energy
landscape via automatic exploration.

Keywords: molecular dynamics, rare events, free energy, biomolecular interactions, conformational transitions,
protein–ligand binding

1. Introduction

Molecular dynamics (MD) simulations have become a fundamental tool to study biological systems
at atomic scale (Perilla et al., 2015).MD allows to simulate themotion of each single atomof complex
biomolecules in accurately modeled environments, thus providing information about molecular
mechanisms at a scale which is still impossible to access experimentally. Such information can in
turn be of extreme value to design new, more insight-driven experiments. A major difficulty in
MD is, however, the well known time-scale issue: most of the phenomena of (biophysical) interest
occur on times that are still unaccessible by standard simulations. Few remarkable exceptions exist
(Freddolino et al., 2010; Lindorff-Larsen et al., 2011), although even in these cases it remains
challenging to accrue enough statistics for a comprehensive understanding of the process.

The problem originates from the presence of dynamical hindrances of energetic or entropic
nature, which confine the system in specific regions of phase space. Transitions among those
metastable states, while being rare events on the simulation timescale, are often a manda-
tory requirement for biological function. This is the case, for example, of a receptor changing
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conformation to accommodate a ligand, or of two associating
proteins in solvent forming the encounter complex.

A thermodynamic quantity of pivotal importance inMD simu-
lations of rare events is the free energy, or potential of mean force
(Roux, 1995), since it provides information on the metastable
states and the transitions between them. In particular, via the
free energy it is possible to obtain the relative probability of
differentmolecular conformations, or the rate at which dynamical
transitions occur between them. From its statistical mechanics
definition, the free energy is related to the probability density
of a set of collective variables (CVs), which are typically used
to study a reactive event. These are functions of the Cartesian
variables of the original system, such as distances and angles
between atoms, or more complicated functions. Unfortunately,
due to the sampling issue described above, free-energy calcula-
tions are quite demanding. Many numerical methods have been
developed in order to accelerate, or enhance, sampling in MD
simulations and thus facilitate free-energy calculations. Notable
examples include umbrella sampling (Torrie and Valleau, 1974),
metadynamics (Laio and Parrinello, 2002), accelerated molecular
dynamics (Hamelberg et al., 2004), adaptive biasing force (Darve
and Pohorille, 2001), or replica exchange methods (Fukunishi
et al., 2002). For a recent review, see Bernardi et al. (2015).

In this review, we illustrate a number of methods that were
developed in recent years to reconstruct free-energy surfaces and
transition pathways between regions over them. The distinctive
feature of these methods is that they are all based on the introduc-
tion of an extended systemwhere a set of extra variables is evolved
dynamically together with the variables of the physical system.
Extending the thermodynamic ensemble of the simulated system
is a compelling strategy in computational chemistry/physics, and
it has been exploited for example to control temperature and pres-
sure (Nosé, 1984; Hoover, 1985), calculate chemical free energies
(Kong and Brooks, 1996; Bitetti-Putzer et al., 2003), or enhance
sampling by introducing generalized ensembles made of multiple
replicas of the full physical system (Mitsutake et al., 2001). In
the present context, the added variables are typically associated
to the CVs, and evolved together with the physical variables in
either a sequential or a concurrent setting. This strategy can be
considered within the framework of multiscale computational
approaches (E et al., 2007a), and presents several advantages,
which are discussed in this review. In the next sections, we divide
the discussedmethods in two classes. First, we examine techniques
designed to explore and reconstruct free-energy surfaces, while
afterwards we illustrate methods devised to determine optimal
reaction pathways between metastable states.

2. Methods to Explore and Reconstruct the
Free-Energy Landscape

Let us consider a system whose configurational state is speci-
fied by x∈RN, and suppose we are interested in the statistical
behavior of a set of collective variables θ(x)= (θ1(x), . . . , θn(x)).
If z= (z1, . . . , zn) is a particular realization of these variables, the
free energy F(z) of the system is defined as

F(z) = −β−1 ln

(
Z−1

∫
RN

e−βV(x)
n∏

α=1
δ(θα(x)− zα)dx

)
, (1)

where Z =
∫
RN e−βV(x)dx, V(x) is the potential energy of the

system and β= 1/kBT, where kB is the Boltzmann constant and
T the temperature. Note that F(z) depends on a specific tem-
perature β−1, determined, for example, based on experimental
information on the process to be studied. The definition equation
(1) implies that e−βF(z) is the probability density function of the
variables z.

A natural way to reconstruct F(z) would be to consider an artifi-
cial dynamics where the variables z are evolved on the free-energy
landscape F(z) defined at β−1 using an artificial temperature β̄−1

higher than the physical one. This can be realized for example
using the dynamics

µαz̈α = −∂F(z)
∂zα

+ thermostat at β̄−1 , (2)

where µα is the artificial mass of the fictitious particle α, and
β̄ = 1/kBT̄ is the inverse of an artificial temperature T̄, higher
than physical temperature T (more details will be given below).
The choice of the thermostat in equation (2) has no effect on
the argument discussed here, and one could use Langevin, or
Nosé-Hoover (Nosé, 1984; Hoover, 1985) or related techniques
(Martyna et al., 1992; Liu and Tuckerman, 2000; Morishita, 2010).
Since the equilibrium density of the dynamics equation (2) is
proportional to e−β̄F(z), by setting β̄−1

> β−1 the z(t) solution of
equation (2) will meander through F(z) being able to cross energy
barriers higher than β−1, thus visiting also regions unaccessible to
the physical system with thermal energy β−1.

Such approach is indeed possible, at least in principle, even if
the full F(z) is not known, since the quantity −∂F(z)/∂zα (called
the mean force) can be calculated locally at any point z, via con-
strained simulations on θ(x)= z using the blue moon ensemble
method (Carter et al., 1989; Ciccotti et al., 2005). In fact, this idea is
at the basis of themethods that we will review in the next sections.

2.1. Temperature Accelerated Molecular
Dynamics (TAMD)
2.1.1. Overview of the Method
As anticipated at the end of the previous section, integrating
equation (2) can be an efficient way to explore the unknown free-
energy surface F(z), since the mean force −▽F at a point z can
be estimated via a conditional expectation on θ(x)= z (Carter
et al., 1989; Ciccotti et al., 2005), even when F(z) is unknown.
This approach, however, has two difficulties: first, after each inte-
gration step providing the updated z values, the configuration
of the physical system may be far from satisfying the new con-
straints [i.e., θ(x) will be different from z], which may lead to re-
initialization problems; second, it requires to determine the length
of the time-averaging window to compute ▽F, which is an extra
parameter to adjust.

To overcome these difficulties, in TAMD (Maragliano and
Vanden-Eijnden, 2006), it is proposed to simulate effectively equa-
tion (2) by using the following extended system of equationsmi ẍi = −∂V(x)

∂xi −κ
n∑

α=1
(θα(x)− zα)∂θα(x)

∂xi +thermostat at β−1,

µα z̈α = κ(θα(x)− zα) + thermostat at β̄−1
,

(3)
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where κ is a parameter whose role will be specified later, andmi is
the mass of the atom i. We note that the specific dynamics of the
x and z variables in equation (3) is not important. In the original
formulation, TAMD was presented using overdamped Langevin
in equations (3) and (2), while several further applications have
shown the effectiveness of other dynamical schemes, such as sec-
ond order Langevin (Monteferrante et al., 2008), or Nosé-Hoover
(Trigila, 2007). For simplicity, we use here second order dynamics
for both x and z leaving the thermostatting technique unspecified.

The system (3) describes the evolution of the extended system
(x, z) under the effect of the potential energy

Uκ(x, z) = V(x) + 1
2κ

n∑
α=1

(zα − θα(x))2. (4)

In the TAMD paper (Maragliano and Vanden-Eijnden, 2006),
it was shown why a system like equation (3) can be used to sample
the free energy F(z). Here, we summarize the results and refer
to the original paper the reader interested in the details. The key
argument is that if in equation (3) the artificial masses µα are cho-
sen such that µα >>mi, then the variables z(t) evolve muchmore
slowly than the x(t), feeling only their average effect. As a conse-
quence, the variables z(t) evolve according to an effective equation
which is obtained by averaging the z(t) equations (3) with respect
to the probability density function for x(t) from equation (3) at
z(t)= z fixed. More in detail, if we introduce the quantity

Fκ(z) = −β−1 ln
(
Z−1
κ

∫
RN

e−βUκ(x,z)dx
)
, (5)

with Zκ =
∫
RN×Rn e−βUκ(x,z)dxdz, if µα >>mi the variables

z(t) solution of equation (3) satisfy approximately the effective
equation

µαz̈α = −∂Fκ(z)
∂zα

+ thermostat at β̄−1, (6)

where

− ∂Fκ(z)
∂zα

= −Z−1
κ

∫
RN

κ(zα − θα(x))e−βUκ(x,z)dx. (7)

The quantity Fk (z) in equation (5) is related to the free energy
equation (1): it is a smoothed, also said mollified, version of the
true free energy equation (1), which can be made as similar as
desired to it by taking κ large in equation (3). How large, can be
decided by observing that

e−βFκ(z) =

∫
Rn

e−βF(z′)e−β
1
2κ

∑n
α=1 (z′α−zα)2dz′, (8)

i.e., Fk(z) is a filtered version of F(z) with variance 1/βκ. Hence,
κ should be chosen considering that 1/

√
βκ sets the scale at

which F(z) will be resolved. Finally, since in the same condition
of large κ we also have that−∂Fκ(z)

∂zα ≈ −∂F(z)
∂zα , we obtain that the

evolution equation (6) is an approximation of equation (2) [for
explicit expressions of the errors this introduces, see Maragliano
and Vanden-Eijnden (2006)].

The interesting property of equation (6) is that the probability
distribution of the z variables obeying that dynamics is e−β̄Fκ(z).
This means that if we simulate the extended system equation (3)
and we reconstruct the probability distribution of the z variables
we can directly obtain the free energy Fk(z). Since this holds at
any artificial temperature β̄−1, we can choose it such that β̄−1 &
∆F, where ∆F is an estimate of the free-energy barriers, so that
the z variables will be able to cross barriers that are higher than
the thermal energy at the physical temperature. Indeed, note that
increasing the temperature of the CVs is equivalent to decreasing
the height of the free-energy barriers.

The other important parameters to adjust to simulate equa-
tion (3) are the effective masses µα. In practice, the condition
µα >>mi introduces an effective adiabatic separation between
the z and the x variables, i.e., it guarantees that the x have time to
equilibrate at the new value of z. This property relies on averaging
theorems for systems with multiple time scales (Papanicolaou,
1977; Vanden-Eijnden, 2003; Pavliotis and Stuart, 2008), and
it yields a useful criterion to choose the effective masses µα:
specifically, the dynamics of the z must be damped so that it is
possible to find a time interval over which the time average of the
κ(θα(x)−zα) term in equation (3) [see equation (7)] converges as
if the z were essentially fixed.

TAMD shares ideas with other enhanced sampling techniques,
in particular, for what concerns the extended phase-space formu-
lation and the use of two temperatures. For the extended system,
TAMD borrows from the extended Lagrangian version of meta-
dynamics (Iannuzzi et al., 2003). It is also important to recall that
a more recent version of metadynamics uses two different tem-
peratures on the physical and collective variables (Barducci et al.,
2008). As it is well-known, however, in metadynamics the CVs are
pushed to exit the free-energyminima by flooding their spacewith
Gaussian packets, which accumulate in a history-dependent term
entering the equations of motion. Conversely, TAMD achieves
barriers crossing by assigning a high temperature to the CVs.
This simplifies the use of the technique, since in TAMD the
acceleration is controlled by one parameter only (β̄−1), while in
metadynamics one has to specify the width, height, and dropping
frequency of the Gaussians. It also makes it more efficient in
principle since due to the history-dependent term the cost of a
metadynamics run increases rapidly with simulation time. This is
particularly true in cases where the number of collective variables
is large, since filling a multi-dimensional volume requires a lot of
Gaussian packets and thus increases the computational burden
to calculate the history-dependent term [for possible numerical
strategies to facilitate the calculation of this term, see Babin et al.
(2006), Smiatek and Heuer (2011), while an extensive discussion
of the parameters of metadynamics can be found in Laio et al.
(2005)].

As for the use of different temperatures, efficient control of
double temperature systems based on adiabaticity was introduced
long ago in MD (Blöchl and Parrinello, 1992), and revised later
in the context of enhanced sampling by the work of Rothlis-
berger [CAFESmethod (VandeVondele and Rothlisberger, 2002)]
and Tuckerman [AFED method (Rosso et al., 2002)]. In CAFES,
however, there are no additional equations of motion for the
CVs: the full system is divided in a reactive subsystem (S) and the
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environment (E), and the dynamics of S is decoupled from E by
using large masses and accelerated via a high temperature. The
statistics of a CV is then extracted directly from the dynamics of
S. AFED equations were also originally formulated in the space
of the physical variables x only, however, collective variables are
introduced in this case, and their equations ofmotion obtained via
appropriate coordinate transformations. Using an extended sys-
tem as in TAMD provides a significant simplification, especially
for non-trivial θ(x), and, in fact, the most recent version of AFED,
called driven-AFED (Abrams and Tuckerman, 2008), exploits the
same idea and is essentially the same as TAMD.

2.1.2. Generalizations and Biophysical Applications
of TAMD
As already noted, the equilibrium probability distribution of the
z(t) variables that are solution of the system equation (3) is
ρκ(z) ∝ e−β̄Fκ(z), where Fk(z) is given by equation (5). This
implies that if we simulate equation (3) and we bin the values
of z(t) to get an estimate of ρκ(z), we can directly reconstruct
the free-energy associated to these variables (an operation called
Boltzmann inversion). This was indeed the original idea for
TAMD. Later (Maragliano and Vanden-Eijnden, 2008), it was
demonstrated that TAMD can be used as an efficient means to
rapidly browse through the relevant regions of the free-energy
landscape (including those surrounded by high energy barriers),
generating points where the mean forces are accurately com-
puted at a second stage and used in a variational procedure
to reconstruct the free-energy globally. This approach, termed
Single-Sweep, has been successfully applied to calculate free-
energy surfaces for CO (Maragliano et al., 2010), H2O (Lapelosa
and Abrams, 2013), andO2 (Bucci and Abrams, 2014) diffusion in
myoglobin and sarcosine oxidase.

TAMD has also been used to explore the free-energy space
associated to a large number of CVs in several applications: from
structure determination of solvated polymers (Lucid et al., 2012)
to large-scale protein conformational transitions, such as those of
the GroEL chaperonin subunit and the HIV-1 envelope glycopro-
tein gp120 (Abrams and Vanden-Eijnden, 2010), a maltose trans-
porter (Vashisth and Brooks, 2012), the β2-adrenergic receptor
(Nygaard et al., 2013), allosteric inhibition (Vashisth et al., 2013),
and nucleotide release (Dror et al., 2015) in G proteins, the insulin
receptor kinase (Vashisth et al., 2012a), an adenyl cyclase (Selwa
et al., 2014), and the acetylcholine binding protein (Mohammad
Hosseini Naveh et al., 2014).

Other attractive applications of TAMD are the determination
of coarse-grained force-field parameters (Abrams and Vanden-
Eijnden, 2012) and protein structure refinement from electron
microscopy maps (Vashisth et al., 2012b). In particular, in the
latter case, TAMD was used to enhance the flexible fitting of
all-atom protein and RNA models into low-resolution density
maps. In Yamamori and Kitao (2013), an interesting combina-
tion of TAMD and Replica Exchange Umbrella Sampling (REUS)
was proposed. More recently, TAMD was combined with a soft-
ratcheting algorithm to achieve a focused exploration of the CV
space by relying on low-resolution or even qualitative experimen-
tal information (Cortes-Ciriano et al., 2015). Such an approach
was successful in providing previously unavailable conformations

of calmoduline-free adenyl cyclase toxin from the causative agent
of whooping cough.

2.2. Logarithmic Mean Force Dynamics (LogMFD)
LogMFD was introduced in Morishita et al. (2012) and further
discussed in Morishita et al. (2013). In Nakamura et al. (2014),
it was combined with a Density Functional Theory approach to
study the conformational dynamics of a glycine peptide. Similarly
towhat was suggestedwith equation (2), in LogMFD the collective
variables are considered dynamical variables, and they are evolved
using the following equation of motion

µαz̈α = −
(

σλ

σF(z) + 1

)
∂F(z)
∂zα

+ thermostat at β̄−1, (9)

where σ and λ are real positive parameters discussed below, and
β̄ = 1/kBT̄ is again the inverse of an effective temperature, which
is in general different from the physical temperature, although in
LogMFD is often set as equal to it. By comparing equations (9)
with (2), we see that in LogMFD the force acting on the CVs is
not simply the gradient of the free energy F(z), but instead that of
its logarithmic form λ log(σF(z)+ 1). Using a logarithmic scaling
for F(z) is convenient since it is a non-linear transformation, i.e., it
preserves the details of the landscape at low F(z) while it smooths
the regions at high values. To avoid (σF+ 1)< 1, F(z) is shifted by
a constant c, i.e., F= F′ + c.

The advantage of using equation (9) becomes clearer if we
consider the Nosé-Hoover thermostat and we introduce the con-
served quantity associated to it (Nosé, 1984; Hoover, 1985),

Ĥ =

n∑
α=1

1
2µαż2α + λ log(σF(z) + 1) + 1

2mη η̇
2 + nβ̄−1, (10)

where η is the thermostat variable andmη its fictitiousmass. From
equation (10), it is possible to obtain an expression for the free
energy F(z),

F(z) = 1
σ

{
exp

[
1
λ

(
Ĥ−

n∑
α=1

1
2µαż2α − 1

2mη η̇
2 − nβ̄−1

)]
−1

}
.

(11)
This indicates that we do not need to explicitly set the shifting

constant c, but instead the conserved quantity Ĥ needs to be set at
the beginning of a LogMFD run to guarantee F(= F′ + c)≥ 0. In
particular, Ĥ should be chosen to satisfy(

Ĥ−
n∑

α=1

1
2µαż2α − 1

2mη η̇
2 − nβ̄−1

)
≡ F∗(z) ≥ 0. (12)

Since the average of the kinetic energy of z and the terms asso-
ciated with the thermostat variables can be easily determined for a
defined temperature β̄−1, one can roughly estimate an appropriate
value of Ĥ. In order to take full advantage of the logarithmic
form, F*/λ should be close to 0 at the bottom of the free-energy
landscape. Obviously, we do not know the exact position of the
minimumof F(z) before running a LogMFD calculation, but since
results are not sensitive to the choice of Ĥ, only a rough estimate
of the conserved quantity is sufficient.
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Equation (11) shows that a free-energy profile F(z) can be
reconstructed directly as the z(t) evolve in a LogMFD run
obtained by solving equation (9). The key to this direct estima-
tion is the existence of the conserved quantity Ĥ, and hence,
in equation (9), it is possible to use any Nosé-Hoover (NH)
type thermostat [NH chains (Martyna et al., 1992), recursive NH
(RNH) (Morishita, 2010), or Gaussian moment thermostats (Liu
and Tuckerman, 2000)], as long as it exists a conserved quantity
analogous to Ĥ in equation (10). Similarly to equation (2), the
mean force in equation (9) can be estimated via conditional aver-
ages using the blue moon ensemble or with harmonic restraints as
in equation (7).

Moreover, to avoid the problems with averaging and re-
initialization discussed in Section 2.1.1, a concurrent evolution
scheme for z(t) and x(t) as in TAMD system of equations equa-
tion (3) can be envisioned, where the z(t) are damped with respect
to the x(t) by larger masses.

Two important parameters are introduced in LogMFD, σ and
λ. For simplicity, λ is usually set as 1/σ. The role of σ is to
flatten the free-energy landscape during the evolution of z(t). The
choice of optimal σ comes from a trade-off between a large value
which would enhance barrier crossing and a small value to reduce
numerical errors originating from the exponential form of F(z)
equation (11). A reasonable choice is to set σ such that β̄−1 is
of the order of log(σ∆F+ 1)/σ, where ∆F is an estimate of the
free-energy barrier and we have used λ= 1/σ. Note that, as a
consequence, the temperature β̄

−1 in LogMFD is usually lower
than then the one needed in TAMD for barrier crossing (β̄−1 ≈
∆F), and it can be even lower than the physical temperature.
However, this comes at the price of setting two more parameters,
σ and λ. For an extensive investigation on the role of the different
LogMFDparameters, we refer the reader toMorishita et al. (2013).

2.3. Multiscale Enhanced Sampling (MSES)
The MSES technique was introduced in Moritsugu et al. (2010)
and applied so far to study the disorder to order transition in
a sortase protein (Moritsugu et al., 2012), and the formation of
a Barnase–Barstar complex (Moritsugu et al., 2014a). In MSES, a
physical system x is again coupled to a set of extra variables z via
the use of CVs functions θ(x). The equations of motion for MSES
can be written asmi ẍi= −∂V(x)

∂xi − κ
n∑

α=1
(θα(x)−zα)∂θα(x)

∂xi +thermostat at β−1,

µα z̈α = κ(θα(x)− zα)− ∂VCV(z)
∂zα + thermostat at β̄−1

.

(13)
At variance with TAMD equations (3), the system equation

(13) contains also a force on the z variables coming from a
potential energy acting on these variables, VCV (z) [a version
of MSES using multiple and mutually interacting z sets was
presented in Moritsugu et al. (2014b)]. This potential is arbi-
trarily chosen based on prior knowledge or experimental infor-
mation. In general, it is designed to guide sampling by rely-
ing on well-established coarse-grained models. For example, in
the study of the Barnase–Barstar complex (Moritsugu et al.,
2014a), Cα–Cα distances were used as CVs, and the CV poten-
tial VCV (z) was prepared as the sum of two terms representing

intra- and inter-molecular interactions. For intra-molecular inter-
actions the potential function of the Cα elastic network model
was used (Tirion, 1996), while for inter-molecular interactions
the Lennard–Jones potential was applied to selected Cα atom
pairs.

Another difference with TAMD is that in MSES the adiabatic
separation between x and z variables is not necessarily assumed,
although in practice the values of µα and β̄−1 can be set to achieve
maximal sampling efficiency. Rather, it is suggested to use equa-
tion (13) in a Hamiltonian replica exchange scheme (Fukunishi
et al., 2002), by introducing a set of replicas of the extended (x,
z) system, each characterized by a different value of the coupling
constant κ. Harvesting data from the replica with κ= 0 enable
the elimination of the biasing coupling potential, recovering a
canonical probability distribution for the x and thus the possibility
to reconstruct free-energy surfaces from any other CV by simply
monitoring their probability distribution. In practice, 20 and 12
replicas were used to study the sortase disorder to order transition
and the Barnstar–Barnase complex, respectively. Note that in
principle any kind of biasing potential can be used. However,
using stronger bias will lead to a larger number of replicas for
unbiasing to κ= 0.

3. Methods to Determine Reactive Paths

In many cases, rather than reconstructing large portions of the
free-energy space, one is interested in directly finding paths con-
necting differentminima in this landscape. This different perspec-
tive was first introduced by Pratt (1986) using a “chain-of-states”
linking two minima, and successively developed by Chandler and
collaborators in the transition path sampling (TPS) technique
(Bolhuis et al., 2002), where the basic idea is to reconstruct the
ensemble of transition paths directly from pieces of dynamical
trajectories joining the two minima. These pioneer methods and
many others such as those of Elber and collaborators [see Májek
et al. (2008) for a comprehensive review], theNudged Elastic Band
(Jonsson et al., 1998) or the zero temperature string method (E
et al., 2002, 2007b), were developed to work in the full Cartesian
space, thus searching for transition paths in the potential energy
space. This approach becomes difficult when the dimensionality
of the system is large (as it is often encountered in relevant bio-
physical problems), since in this case the potential energy space is
very noisy (i.e., rugged on a scale smaller than the thermal energy),
and as a consequence the reactive paths are highly twisted. To
get around this hurdle, the string method in collective variables
algorithm was introduced inMaragliano et al. (2006) to find reac-
tion paths in free-energy space, by identifying them as Minimum
Free Energy Paths (MFEPs). The main advantage of this approach
with respect to those working in potential energy space is that
the free energy is usually much smoother. Moreover, with respect
to techniques for sampling and reconstructing globally the free-
energy space, the stringmethod permits the use of a larger number
of collective variables.

The basic idea of the stringmethod is to represent the transition
path between two free-energy minima in the space of a set of
CVs θ(x)= (θ1(x), . . . ,θn(x)) as a curve (the string), discretized
in a collection of points called images. The positions of these
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images are evolved until convergence using information harvested
fromMD simulations of replicas of the full system, constrained or
restrained at the CV values that define the images. To avoid that
all images collapse in the two minima, a curve parametrization is
enforced during the evolution. The path obtained at convergence
depends on the version of the algorithmused. The original version
in Maragliano et al. (2006) converges to the MFEP, while other
successive versions yield a slightly different path (more details
will be given below). A detailed comparison of different string
method algorithms and of the paths they converge to is presented
in Maragliano et al. (2014) [for a comprehensive review, see
also E and Vanden-Eijnden (2010)]. In the next paragraph, we
briefly review the definition of these paths and their relevance in
the study of reactive events, while in Section 3.1.2, we describe
the main features of the on-the-fly version of the string method
in CVs.

3.1. The On-The-Fly String Method in Collective
Variables
3.1.1. The Minimum Free-Energy Path and its
Relevance
Given two minima A and B of the free energy F(z), the MFEP was
defined in Maragliano et al. (2006) as the curve that connects A
andB and towhich the vectorM(z) ·▽F(z) is everywhere tangent.
Hence, it is the curve satisfying the equation

[M(z) · ∇F(z)]⊥ = 0 (14)

where the superscript ⊥ indicates projection in the direction
perpendicular to the curve itself. In equation (14), ▽F(z) is the
gradient of the free energy (the mean force), andM(z) is a metric
tensor which accounts for the curvilinear nature of the CVs,
defined component-wise by the conditional average

Mαβ(z) =

⟨ N∑
i=1

1
mi

∂θα(x)
∂xi

∂θβ(x)
∂xi

⟩
θ(x)=z

(15)

or explicitly

Mαβ(z) = eF(z)/kBTZ−1
∫

dx
N∑
i=1

1
mi

∂θα(x)
∂xi

∂θβ(x)
∂xi

e−V(x)/kBTδ(θ(x)− z). (16)

As already anticipated in Sections 1 and 2.1.1, the mean force
can be obtained using the bluemoon ensemble technique (Ciccotti
et al., 2005) or by harmonic restraints [see equation (7)]. The same
is valid for the tensorM(z).

The MFEP equation (14) is the curve obtained by the original
string method algorithm in CVs described in Maragliano et al.
(2006). The importance of the MFEP in order to understand the
mechanism of the transitions between a reactant state A and the
product state B is established within the framework of Transi-
tion Path Theory (Vanden-Eijnden, 2007; E and Vanden-Eijnden,
2010). Indeed, using TPT, it is possible to demonstrate that in
appropriate regimes, and when the reaction is described in the

space of a set of collective variables, theMFEP is themost probable
transition path between A and B.

Let us recall here briefly this result, while for more details we
refer any interested reader to Vanden-Eijnden (2007) and E and
Vanden-Eijnden (2010). From TPT, the key quantity to describe
the statistical properties of the reactive trajectories is the com-
mittor q(x, v), a function of the positions and velocities of the
physical system, which gives the probability that the trajectory
initiated at (x, v) will reach the product B before the reactant
A. Via the committor function it is possible to obtain analytic
expressions for the probability density of reactive trajectories,
their probability current, and the rate of the reaction, and for
this reason, it is the optimal reaction coordinate. The commit-
tor satisfies a Fokker–Planck equation, which is too complicated
to be solved by standard numerical methods when the dimen-
sionality of the system is large. To get around this difficulty, in
the string method it is assumed that q(x, v) can be approxi-
mated by a function that depends only on the positions x, via a
set of collective variables θ(x)= (θ1(x), . . . , θn(x)), i.e., q(x, v)≈
Q(θ(x)).

As shown in Maragliano et al. (2006), Q(z) satisfies a much
simpler Fokker–Planck equation, the equation for the committor
function associated to the following overdamped equation for the
collective variables (α= 1, . . . ,n)

γz
dzα
dt =

n∑
β=1

(
−Mαβ(z)

∂F(z)
∂zβ

+ kBT
∂

∂zβ
Mαβ(z)

)
+
√
2kBT

∑
β

M1/2
αβ (z)ηβ (17)

where Mαβ is the tensor defined in equation (16) and γz is an
artificial friction coefficient. Notably, this reasoning does not
require to specify a value for γz. The discussion above implies
that we can use equation (17) to study the mechanism of the
reaction from A to B. Indeed, if the temperature is low compared
to the relevant free-energy barriers, the trajectories solution of
equation (17) concentrate around a curve in collective variable
space which (i) connects the two minima A and B of the free-
energy surface via a saddle point and (ii) is everywhere tangent to
the vector fieldM(z)▽F(z) [consider the limit T→ 0 of equation
(17)]. In otherwords, the reactive trajectories inCV space lie along
the MFEP defined as in equation (14). Hence, the string method
is a practical procedure to identify globally these transition
paths by evolving their representative curve in collective variable
space.

It is also possible to include in the definition of the reaction path
equation (14) the extra term in the drift from equation (17), which
contains the divergence of M(z), kBTΣβ∂Mα,β/∂zβ . In this case,
the relevant path becomes the curve solution of

0 = [−M(z)∇F(z) + kBT∇ ·M(z)]⊥. (18)

where ▽·M(z) is compact notation for the divergence of M(z).
The path solution of equation (18) is the one identified by
a particular implementation of the on-the-fly string method
(Maragliano and Vanden-Eijnden, 2007) (see below), and also
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by other successive variants of the method (Pan et al., 2008;
Johnson and Hummer, 2012). Note that the solution of equation
(18) does not go through the same critical points as the MFEP,
i.e., unlike the MFEP it cannot be used to identify the saddle
points on the free-energy landscape. However, because the extra
term in equation (18) is proportional to kBT it should not have
much influence, and the differences between the MFEP solution
of equation (14) and the curve solution of equation (18) are
expected to be small and difficult to distinguish from numerical
fluctuations. This was indeed the result observed for the specific
cases of solvated (Maragliano andVanden-Eijnden, 2007) and gas-
phase (Maragliano et al., 2014) alanine dipeptide, using dihedral
angles as collective variables.

3.1.2. The on-the-Fly String Method Algorithm
In the original formulation of the string method in CVs
(Maragliano et al., 2006), one MD replica per image is used, and
the force driving the evolution of the images is the product of the
mean force (the gradient of free energy) and the tensorM(z), both
of which can be expressed in terms of expectations conditional on
θ(x)= z. This procedure requires that once the new values of the
images are obtained, the MD system is re-initialized to have that
at each image the θ(x) are close to the new z.

Successively (Maragliano and Vanden-Eijnden, 2007), a differ-
ent version of the string method, called on-the-fly, was devel-
oped, which exploits the same ideas at the basis of TAMD that
were described in Section 2.1.1. The basic idea of this other
algorithm is to evolve the string images concurrently with the
attached replicas of the MD system, which provide on-the-fly
the data needed to the evolution of the images. This is attained
by introducing an extended system comprising the physical and
collective variables, which are evolved concurrently. Similarly
to TAMD, the motion of the string images is dampened with
respect to the MD replicas, so that, by relying on the same aver-
aging theorems for systems with multiple time scales that are
at the basis of TAMD, one can bypass the computation of the
string driving force via averaging. This approach also eliminates
the need for re-initializing the MD systems after every string
update, thus providing a simpler, more stable and more efficient
algorithm.

There are two versions of the on-the-fly string method algo-
rithm, which differ by the number of independent MD replicas
attached to each image. Indeed, it was shown in Maragliano and
Vanden-Eijnden (2007) that when two replicas per image are used,
the algorithm converges to the MFEP equation (14), while when
only one replica is used the algorithm converges to the curve
defined by equation (18). We illustrate here for simplicity the
one-replica version, and we address the reader to Maragliano and
Vanden-Eijnden (2007) for more details about the one with two
replicas and the method in general.

It is useful to present the method in the continuous formula-
tion, i.e., by considering the moving string as a time-dependent
curve parametrized as {z(s, t) : s∈ [0, 1]}. Such curve is evolved
concurrently with a one-parameter family of replicas of the
MD system {x(s, t) : s∈ [0, 1]}. Written component-wise for
α= 1, . . . , n and i= 1, . . . , N, the equations for the concurrent

dynamics are

γz żα(s, t) =
n∑

β=1
M̃αβ(x(s, t))κ(θβ(x(s, t)− zβ(s, t)))

+Λ(s, t) z′α(s, t)

mi ẍi(s, t) = −∂V(x(s, t))
∂xi − κ

n∑
β=1

(θβ(x(s, t)

−zβ(s, t)))
∂θβ(x(s, t))

∂xi + thermostat at β−1

(19)
where γz is an effective friction term acting on the collective
variables and

M̃αβ(x) =
N∑
i=1

1
mi

∂θα(x)
∂xi

∂θβ(x)
∂xi

. (20)

In equation (19), Λ(s, t)z′α(s, t), with z′α = ∂zα/∂s, is a
Lagrange multiplier term used to enforce the particular
parametrization chosen for the curve (for example, normalized
arc length). Note that, at variance with equation (3), in equation
(19), we use first order dynamics for the z variables. This is done
for simplicity and because the evolution of z(s, t) in equation
(19) has a different purpose than that of z(t) in equation (3), i.e.,
it is not an exploratory dynamics but rather a steepest descent
along the driving force. Analogously to equation (3), however,
the system equation (19) describes the evolution of the extended
system (x, z) under the effect of the potential energy equation (4).
Here, the friction coefficient γz plays the role of the masses µα in
equation (3).

Following the same reasoning illustrated in Section 2.1.1, in
Maragliano and Vanden-Eijnden (2007), it was shown that by
simulating the system equation (19) with κ and γz sufficiently
large, the z(s, t) evolve according to an effective equation obtained
by averaging the equations for z(s, t) in equation (19) with respect
to the probability density function for the equation for x(s, t)
in equation (19) at z(s, t)= z(s) fixed. In this case, the effective
equation is

γzżα(s, t) =
n∑

β=1

(
−Mαβ(z(s, t))

∂F(z(s, t))
∂zβ

+kBT
∂

∂zβ
Mαβ(z(s, t)

)
+ λ(s, t)z′α(s, t). (21)

It can be easily seen that the steady state solution of equation
(21) is precisely the curve equation (18). Hence, if we evolve a
string {z(s) : s∈ [0, 1]} by simulating equation (19) using large but
finite values of κ and γz, this will converge to the curve defined by
equation (18).

As a final comment, note that, at variance with equation (3),
the system equation (19) does not include a thermostat acting on
the z(s, t) variables. This generates a steepest descent dynamics
for z(s, t) on the free-energy surface, which is appropriate when
the surface is smooth. In cases where the free-energy landscape
is rugged, albeit on a scale smaller than the barrier defining the
transition state, a thermostat term can be added to the z(s, t) equa-
tion in order to let the string overcome local free-energy asper-
ities. This idea was explored in Vanden-Eijnden and Venturoli
(2009) and Stober and Abrams (2012). However, it is important to
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note that in practical implementations of the system equation (19)
the timescale separation between x and z is usually approximate,
which means that z(s, t) satisfy the limiting equation (21) only up
to a residual error. This error produces a noise on the evolution
of z(s, t), which is comparable to a low-temperature thermostat.
Basing on our experience, we believe that it is possible to impose
a separation of timescales such that z(s, t) obey equation (21) to a
satisfactory accuracy, but with enough residual noise to navigate
over the local ruggedness of F(z).

3.1.3. Biophysical Applications of the OTF String
Method
So far, the OTF string method has been successfully utilized
to study the ligand-induced conformational change of adeny-
late kinase (Matsunaga et al., 2012), the formation of a stalk
between two apposedmembrane bilayers (Müller et al., 2012), and
the normal-to-amyloidogenic isomerization of β2-microglobulin
(Stober andAbrams, 2012). Notably, in Stober andAbrams (2012),
the authors introduce a clever implementation of the method by
simulating a single MD system comprising all the string images
embedded in a single, large solvent box. In Ovchinnikov et al.
(2011), an intermediate variant between the original and on-
the-fly string method was employed to study the conformational
transition of myosin VI. Finally, in Zinovjev et al. (2013) the on-
the-fly string method was used in combination with a Quantum
Mechanics/Molecular Mechanics approach to study the reaction
catalyzed by guanidinoacetate methyltransferase.

3.2. The Onsager–Machlup Multiscale Enhanced
Sampling Method
An enticing idea to sample transition paths has been devel-
oped in Fujisaki et al. (2013) by combining the MSES tech-
nique presented in Section 2.3 with an Onsager–Machlup (OM)
action approach (MSES-OM). In MSES-OM, an extended sys-
tem is again considered, comprising the physical and CV vari-
ables (x, z), and a global OM action is defined as the sum of
the OM actions for the x and z variables and an interaction
term, S(x, z)= S(x)+ SCV(z)+κSint(x, z). The basic idea is that
the CG variables z move rather freely in path space, dragging
with them the x variables. Similarly to MSES, a replica exchange
framework is introduced by using many replicas of the system
(x, z), each one with a different values of k. The canonical OM
path weight exp(−S[(x)]) is then recovered from the replica with
κ= 0. TheMSES-OMmethod has been extensively investigated in

Fujisaki et al. (2013) by applying it to study the unlooping kinetics
of a model polymer, revealing a substantial gain in computational
time with respect to conventional OMmethod.

The advantages in using action methods are that they provide
dynamical information on the transition studied, and from a
numerical standpoint that the time step for the action discretiza-
tion can be takenmuch larger than the typicalMD step (≈ 1fs). On
the other hand, known limitations of the approach are that one is
required to know beforehand the total time of the transition, and
numerical difficulties due to the use of high order derivatives of
the potential (Vanden-Eijnden and Heymann, 2008).

4. Concluding Remarks

We have reviewed a few enhanced sampling methods that allow
to accelerate MD simulations and to study rare reactive events.
The common feature of these methods is that they rely on
extending the phase space of the physical system under study
by adding a set of extra variables also considered as dynami-
cal ones, linked to the original system via CV functions of the
physical coordinates. This setting allows efficient exploration of
the CV space, i.e., of the free-energy landscape of the original
system with respect to the CVs. The various methods achieve
this exploration via different means. In TAMD, the CVs are
evolved at a higher temperature than the physical variables, so
that they can efficiently cross free-energy barriers higher than
the physiological temperature. In LogMFD, a logarithmic trans-
formation of the free energy is employed together with the
conserved quantity from deterministic dynamics to reconstruct
directly the free energy during CV evolution. In MSES, a model
potential is introduced for the CVs also, and different replicas of
the extended system are used in a replica exchange framework,
each with a different value of the coupling parameter between
the CVs and the original system. The statistical properties of
the unbiased physical system are then reconstructed from the
replica with zero coupling. We have also reviewed path sam-
pling methods based on the same extended phase-space ideas,
namely as the on-the-fly stringmethod and theOnsager–Machlup
action MSES.
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