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Approximating attractors of Boolean
networks by iterative CTL model
checking
Hannes Klarner* and Heike Siebert

Fachbereich Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany

This paper introduces the notion of approximating asynchronous attractors of Boolean
networks by minimal trap spaces. We define three criteria for determining the quality of an
approximation: “faithfulness” which requires that the oscillating variables of all attractors
in a trap space correspond to their dimensions, “univocality” which requires that there
is a unique attractor in each trap space, and “completeness” which requires that there
are no attractors outside of a given set of trap spaces. Each is a reachability property for
which we give equivalent model checking queries. Whereas faithfulness and univocality
can be decided by model checking the corresponding subnetworks, the naive query for
completeness must be evaluated on the full state space. Our main result is an alternative
approach which is based on the iterative refinement of an initially poor approximation.
The algorithm detects so-called autonomous sets in the interaction graph, variables that
contain all their regulators, and considers their intersection and extension in order to
perform model checking on the smallest possible state spaces. A benchmark, in which
we apply the algorithm to 18 published Boolean networks, is given. In each case, the
minimal trap spaces are faithful, univocal, and complete, which suggests that they are in
general good approximations for the asymptotics of Boolean networks.

Keywords: Boolean networks, asynchronous dynamics, attractors, CTL model checking, ASP, signaling, gene
regulation

1. Introduction

Boolean and multi-valued networks are frequently used to model the dynamics of biological
processes that involve gene regulation and signal transduction. The dynamics of such models is
captured by the state transition graph, a directed graph that relates states to potential successor
states. Different transition relations have been suggested, among them the synchronous update of
Kauffman (1993) and the asynchronous update of Thomas (1991). An important type of prediction
that can be obtained from suchmodels concerns the long-termbehavior of the represented processes.
Formally, the long-term behaviors correspond to the minimal trap sets of the state transition graph
which are also called its attractors.

Recently, we have suggested to compute the minimal trap spaces of a network to obtain an
approximation for its cyclic attractors (Klarner et al., 2014) and proposed an efficient, Answer Set
Programing (ASP)-based method for their computation. This paper presents an iterative algorithm
that combinesComputation Tree Logic (CTL)model checking with the computation of minimal trap
spaces to determine the quality of the approximation.
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The paper is organized as follows. Section 2 recapitulates the
background including directed graphs, the dynamics of Boolean
networks, trap spaces, and model checking. It is only meant
to introduce the notation required for the subsequent sections.
Section 3 briefly discusses the attractor detection problem. In
Section 4, we describe three conditions under which there is a
one-to-one correspondence between the minimal trap spaces and
the attractors of a network, and how CTL queries may be used to
decide whether they hold. The computationally most challenging
one is treated in Section 5. In Section 6, we present a full analysis
of a MAPK signaling network as well as the results for 18 Boolean
models that are currently in the  repository. Section 7 is an
outlook and conclusion. There is a Supplementary Material that
contains proofs for the formal statements in the main text.

2. Background

2.1. Directed Graphs
Since several aspects of Boolean networks involve directed graphs
(digraphs) we introduce the general terminology. Let (V, A) be a
digraph with vertices V and arcs A⊆V×V.

An infinite path in (V, A) is an infinite sequence of vertices
π= (v0, v1, . . .) such that (vi, vi+1)∈A for all i∈N0. Finite paths
are defined analogously for finite sequences. In particular,π= (v0)
is an admissible finite path. We denote the set of all infinite paths
that start in v∈V by InfPaths(v) and finite paths by FinPaths(v).
The ith vertex of π is denoted by π[i] := vi. For finite paths we
denote by FinPaths(u, v) all finite paths that start with u and end
with v. The number of vertices in a finite path π= (v0, v1, . . . , vk)
is denoted by len(π) := k+ 1.

A vertex v∈V is reachable from u∈V iff FinPaths(u, v) ̸=∅.
We denote by Above(v) the vertices that can reach v. A subset
U ⊆V is strongly connected if every u∈U is reachable from
every other v∈U. A strongly connected component (SCC) is an
inclusion-wise maximal subset U⊆V that is strongly connected.
We denote the set of SCCs of a digraph by SCCs (V, A). Note that
since π= (v0) is an admissible finite path, every vertex is trivially
reachable from itself. Hence, each node belongs to some SCC and
SCCs (V, A) is a partition of V.

2.2. Boolean Networks
We consider variables from the Boolean domain B= {0,1}, where
1 and 0 represent the truth values true and false. A Boolean
expression f over the variables V= {v1, . . . ,vn} is defined by a
formula over the grammar

f ::= 0 | 1 | v | f̄ | f1 · f2 | f1 + f2

where v∈V signifies a variable, f̄ the negation, f 1 · f 2 the con-
junction and f 1 + f 2 the (inclusive) disjunction of the expressions
f, f 1, and f 2. Given an assignment x : V→B, an expression f
can be evaluated to a value f (x)∈B by substituting the values
x(v) for the variables v∈V. If f (x)= f (y) for all assignments
x, y : V→B, we say f is constant and write f= c, with c∈B being
the constant value. A Boolean network (V, F) consists of n vari-
ables V = {v1, . . . ,vn} and n corresponding Boolean expressions
F= { f 1, . . . , fn} over V. In this context, an assignment x : V→B

is also called a state of the network and the state space S= SV
consists of all possible 2n states. We specify states by a sequence of
n values that correspond to the variables in the order given in V,
i.e., x= 110 should be read as x(v1)= 1, x(v2)= 1, and x(v3)= 0.
The expressions F can be thought of as a function F : S→ S
governing the network behavior. The image F(x) of a state x under
F is defined to be the state y that satisfies y(vi)= fi(x).

The interaction graph of a network (V, F) captures the depen-
dencies between the variables and their expressions. It is a digraph
(V, →) where →⊆ V×V and (u, v)∈→ iff there are x, y∈ S such
that x(w)= y(w) for all w∈V \ {u} and fv(x) ̸= fv(y). As for state
transitions we write u→ v iff (u,v)∈→.

The state transition graph (STG) of a Boolean network (V,
F) is the digraph (S, →) where the transitions →⊆ S× S are
obtained from F via a given update rule. We usually write x→ y iff
(x, y)∈→. We mention two update rules here, the synchronous
rule and its transition relation �⊆ S× S, and the asynchronous
rule and its transition relation ↩→⊆ S× S. The former is defined
by x� y iff F(x)= y. To define ↩→ we need the Hamming dis-
tance ∆ : S× S→ {1, . . . , n} between states which is given by
∆(x, y) := |{v∈V | x(v) ̸= y(v)}|. We define x ↩→ y iff either x= y
and F(x)= x or ∆(x,y)= 1 and ∆ (y, F(x))<∆ (x, F(x)). In the
context of the STG, the expressions f ∈ F are also called update
functions.

A non-empty set T⊆ S is a trap set of (S, →) iff for every x∈T
and y∈ Swith x→ y it holds that y∈T. An inclusion-wiseminimal
trap set is also called an attractor of (S,→). Every trap set contains
at least one minimal trap set and therefore at least one attractor.
A variable v∈V is steady in an attractor A⊆ S iff x(v)= y(v) for
all x, y∈A and oscillating otherwise. We distinguish two types
of attractors depending on their size. If A⊆ S is an attractor and
|A|= 1, then A is called a steady state and if |A|> 1, we call it
a cyclic attractor. The cyclic attractors of (S, �) are, in general,
different from the cyclic attractors of (S, ↩→). The steady states,
however, are identical in both transition graphs because x∈ S is
steady iff x→ x which is characterized, for both update rules, by
the equation F(x)= x. Hence, we may omit the update rule and
denote the set of steady states by SF.

A subspace of S is characterized by its fixed and free vari-
ables. It may be specified by an assignment p : D→B where
D⊆V is the subset of fixed variables, p(u) the value of u∈D
and the remaining variables, V \D, are said to be free. Subspaces
are sometimes referred to as “symbolic states” (Siebert, 2011) or
“partial states” (Irons, 2006). We specify subspaces like states but
allow in addition the symbol * to indicate that a variable is free,
i.e., p= **10 means D= {v3, v4} and p(v3)= 1, p(v4)= 0. The set
S*= S⋆V denotes all possible 3n subspaces. States are therefore a
special kind of subspace and S⊂ S* holds. We denote the fixed
variables D of a specific p∈ S* by Dp. A subspace p references the
states S[p] := {x∈ S | ∀v∈Dp : x(v)= p(v)}. We denote the unique
subspace that does not fix any variables by ϵ∈ S*, i.e., Dϵ =∅.
Two subspaces p, q∈ S* are said to be consistent iff p(v)= q(v)
for all v∈Dp ∩Dq. We define the intersection z := q ⊓ p of
two consistent p, q∈ S* to be the unique z∈ S* that satisfies
S[z]= S[p]∩ S[q].

A trap space is a subspace that is also a trap set. Trap spaces
are therefore trap sets with a particularly simple geometry. They
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generalize the notion of steadiness from states to subspaces. In
Klarner et al. (2014), we proved that trap spaces are independent
of the update strategy. It is therefore meaningful to denote the
trap spaces of (S, ↩→) by S⋆F independent of →. If a network (V,
F) satisfies S⋆F = {ϵ}, then we say it is trap-space-free. We also
showed that the dynamics inside a trap space p is fully specified
by the reduced network (Vp, Fp) with

Vp := {v ∈ V | v ̸∈ Dp}, Fp := {fi[p] | fi ∈ F : vi ̸∈ Dp}

where f [p] denotes the Boolean expression that is obtained by
substituting the values p(v) for v∈Dp into f ∈ F, as introduced in
Section 2.1 of Klarner et al. (2014).

Since every trap set contains at least one attractor, inclusion-
wise minimal trap spaces can be used to predict the location
of a particular attractor. Hence, we define a partial order on S*
based on whether the referenced subspaces are nested: p≤ q iff
S[p]⊆ S[q]. The minimal trap spaces are defined by min(S⋆F ) :=

{p ∈ S⋆F |∄ q ∈ S⋆F : q < p}.

2.3. CTL Model Checking
Model checking is a formal method from computer science to
determine whether a transition system satisfies a temporal speci-
fication. See Carrillo et al. (2012) for a review of its application to
computational biology.

A transition system is a 5-tuple TS= (S, →, AP, L, I) where
(S, →) is a state transition graph, AP a set of atomic propositions,
L : S→ 2AP a labeling function and I⊆ S a set of initial states.
We use the atomic propositions AP := {v= c, δv = d | v∈V, c∈B,
d∈ {−1, 0, 1}} and define the labeling function L by

v = c ∈ L(x) :⇔ x(v) = c
δv = d ∈ L(x) :⇔ fv(x)− x(v) = d

for all c∈B, d∈ {−1, 0, 1} and x∈ S. The label δv = d therefore
indicates whether a variable v is decreasing, steady or increasing in
a state. In addition to “=” we need the inequality operator “̸=”, e.g.,
v ̸= c∈ L(x) iff x(v) ̸= c, and the special atom true which satisfies
true∈ L(x) for all x∈ S.

Next, we define a fragment of the temporal specification lan-
guageCTL that is sufficient for the subsequent sections. A formula
φ of this fragment is defined by

φ ::= a
∣∣∣∣φ1 ∧ φ2

∣∣∣∣φ1 ∨ φ2

∣∣∣∣EF(φ) ∣∣∣∣AG(φ)

where α∈AP, EF is the “exists finally” operator and AG the
“always globally” operator. The semantics of the operators and the
satisfaction relation |= for transitions systems and CTL formulas
is defined in Table 1. Since the atomic propositions and labeling
function are fixed for the remainder of this article, we will specify
transition systems by 3-tuples TS= (S, →, I). In practice, we use
the model checking tool  (Cimatti et al., 2000) to decide
whether a given transition system satisfies a CTL query.

3. The Attractor Detection Problem

The naive approach to find all attractors of a given network, i.e.,
a full exploration of its STG, is limited by the state explosion

TABLE 1 | The satisfaction relation |=|=|= for CTL formulasφφφ, states x∈∈∈S, and
transition systems TS=== (S,→→→ , AP, L, I ).

x |= a :⇔ a∈ L(x)
x |=φ1∧φ2 :⇔ x |=φ1 and x |=φ2

x |=φ1∨φ2 :⇔ x |=φ1 or x |=φ2

x |=EF(φ) :⇔ ∃π∈ InfPaths(x) : ∃i∈N0 : π[i ] |=φ

x |=AG(φ) :⇔ ∀π∈ InfPaths(x) : ∀i∈N0 : π[i ] |=φ

TS |=φ :⇔ ∀x∈ I: x |=φ

problem. Several groups have developed tools and algorithms
that address this problem. They may be grouped into those for
deterministic updates (Irons, 2006; Dubrova and Teslenko, 2011;
Akutsu et al., 2012; Veliz-Cuba et al., 2014) and non-deterministic
updates (Garg et al., 2008; Skodawessely and Klemm, 2011; Bern-
tenis and Ebeling, 2013). The average running times are usually
given in terms of randomly generated networks and a connectivity
parameter k that describes the distribution of in-degrees in the
interaction graph. It seems that finding deterministic attractors
is easier than non-deterministic attractors. Intuitively, computing
the terminal SCCs of digraphs with all out-degrees equal to one
is easier than for digraphs with higher out-degrees. The average
running times for synchronous STGs with hundreds of variables
is, for example, on the order of secondswith the tool  (Dubrova
and Teslenko, 2011), which is based on a variant of bounded linear
time logic (LTL) model checking and uses a satisfiability (SAT)
solver to detect attractors.

Algorithms for non-deterministic STGs, on the other hand,
are likely to run for hours or days for networks with less than
even 100 variables (see Section 2). Garg et al. (2008) and the tool
 is based on the symbolic manipulation of reachable states
using binary decision diagrams (BDDs), while Skodawessely and
Klemm (2011) and Berntenis and Ebeling (2013) rely on a guided
exploration and enumeration of the state space.

3.1. Attractor Detection Pre-Process
If v∈V is a constant with fv = c and A an attractor, then x (v)= c
for every x∈A. Hence, before we start an attractor detection
algorithm, we may safely remove all constants. The result is a
reduced network whose attractors are in a one-to-one relationship
with the attractors of the original network. During the removal
of constants, update functions that depend on them may in turn
become constant. The pre-process is therefore improved by an
iterative substitution until there are no more constants.

The percolation operator •⃗ : S⋆F → S⋆F is defined on the set
of trap spaces by the following recursion. Let p be the initial trap
space, for example, defined by the constants C⊆V of a network
(Dp :=C and p(v) := fv). The initial percolation is p⃗0 := p and for
each k∈N0 we define p⃗k+1 by

Dp⃗k+1
:= {v ∈ V | fv [⃗pk] is constant}

p⃗k+1(v) := fv [⃗pk], for all v ∈ Dp⃗k+1
.

Note that f [p] denotes the Boolean expression obtained by
substituting the values p(v) into f, as introduced in Section 2.1 of
Klarner et al. (2014). Because p⃗0 = p it follows that p⃗k+1 ≤ p⃗k
and p⃗k ∈ S⋆F , for all k∈N0. Since V is finite, there is some K ∈N0
such that p⃗K = p⃗K+1 and p⃗ := p⃗K is well-defined. Percolations
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are cheap to compute and have the following implication for the
location of attractors (see Siebert (2011)):

Proposition 1. If p is a trap space and A⊆ S[p] an attractor of
(S, ↩→), then A ⊆ S[⃗p ].

In the following sections, wewill assume that the initial network
is constant-free.

3.2. Attractor Detection by Random Walks
Given a trap space p, for example, the whole space p= ϵ, we can
find an attractor A⊆ S[p] by a sufficiently long random walk
(x0, x1, . . . , xk) where x0 ∈ S[p]. In practice, we use k= 10|V| and
found that so far, without exception, random paths of this length
have reached an attractor. To decide whether xk does really belong
to an attractor we use the CTL query of 2. It uses the CTL formula
φp defined by φp :=

∧
v∈Dp

(v = p(v)) if p ̸= ϵ, and φp = ture
otherwise.

Proposition 2 (Attractor State). Let p be a trap space and
x∈ S[p]. The state x belongs to an attractor A⊆ S[p] of (S, ↩→) iff

TS = (SVp , ↩→, {y}) |= AG(EF(φy))

where y ∈ SVp is the projection of x∈ SV onto Vp, i.e., y(v) := x(v)
for all v∈Vp.

Starting from x∈A, we can then enumerate A by listing all
states reachable from x. Note that model checking is performed
on the reduced system (SVp , ↩→) rather than the full system (S, ↩→)
and that there is no equivalent LTL query to decide whether
x belongs to an attractor (G(F(φy)) does not work). Also, the
observation that finding a single attractor is easy using a random
walk does not contradict the fact that finding all attractors is hard.

4. Approximating Attractors by Subspaces

The result of attractor detection algorithms are usually sets of
states thatmake up each attractor. The notion of an approximation
of an attractor is instead based on information regarding steady
and oscillating variables. An approximation of the attractors of a
STG is a set P⊆ S* such that each S[p] contains an attractor. The
trivial approximation for any network is P := {ϵ}. Approximations
differ in what can be learned from them about the number of
attractors and their locations. The best approximation for a single
attractor is the smallest subspace it is contained in. The smallest
subspace that containsA⊆ S is p∈ S* defined byDp := {v∈V | ∀x,
y∈A : x(v)= y(v)} and p(v) := x(v) for x∈A arbitrary. We denote
it by Sub(A). Note that in general, A ̸= Sub(A) and that there may
be two attractors A, B∈ S with A ̸=B such that Sub(A)= Sub(B).
The quality of an approximation is defined in terms of the follow-
ing criteria.

Definition 1. A subspace p is faithful in (S, ↩→) iff Sub(A)= p
for every attractor A⊆ S[p] of (S, ↩→). An approximation P is
faithful iff each p∈ P is faithful.

Definition 2. A subspace p is univocal in (S, ↩→) iff there is a
unique attractorA of (S, ↩→) such thatA⊆ S[p]. An approximation
P is univocal iff each p∈ P is univocal.

Definition 3. An approximation P is complete in (S, ↩→) iff for
every attractor A⊆ S of (S, ↩→) there is p∈ P such that A⊆ S[p].

Note that the three properties are independent of each other.
If P is faithful, univocal, and complete, then we call it a perfect

A B C

FIGURE 1 | The asynchronous STGs of three different Boolean
networks. The minimal trap spaces are indicated by boxes. (A) Two
attractors in the same box. (B) An attractor outside of the boxes. (C) An
attractor that does not oscillate in all dimensions of the box. Equations for the
networks are given in the Supplementary Material.

approximation. If P is perfect, then all attractors can be found by
the random walk method above.

In Klarner et al. (2014), we observed that min(S⋆F ) is a good
candidate for a perfect approximation. We showed that steady
states are minimal trap spaces (SF ⊆ min(S⋆F )) and that every
p ∈ min(S⋆F ) \ SF contains only cyclic attractors. Given that
min(S⋆F ) can be computed efficiently using ASP, we would like
to have an efficient method for determining its quality as an
approximation. Figure 1 demonstrates thatmin(S⋆F ) is, in general,
neither univocal, complete nor faithful.

4.1. Univocality
Proposition 3 (Univocality). Let p be a trap space and x∈A such
that A⊆ S[p] is an attractor of (S, ↩→). p is univocal in (S, ↩→) iff

TS = (SVp , ↩→, SVp) |= EF(φy)

where y ∈ SVp is the projection of x∈ Sv onto Vp.
The intuition behind this proposition is that if A is the only

attractor inside the trap space p then x must be reachable from
all states SVp .

4.2. Faithfulness
Proposition 4 (Faithfulness). A trap space p is faithful in (S, ↩→)
iff

TS = (SVp , ↩→, SVp) |=
∧
v∈Vp

EF(δv ̸= 0).

This proposition is true because a variable v oscillates in an
attractor A iff there is a state x∈A such that x |= (δv ̸= 0).

4.3. Completeness
Proposition 5 (Completeness). A set of trap spaces p is complete
in (S, ↩→) iff

TS = (S, ↩→, S) |=
∨
p∈P

EF(φp).

Although we may restrict the initial states to S \∪p∈ P S[p], the
completeness query is still essentially dealing with the whole tran-
sition system and is therefore much less efficient than the queries
of Proposition 2–4 (which are decided on reduced systems). In
Klarner (2015b), we benchmarked  and found that Boolean
networks with n≈ 39–55 variables may be considered infeasible
for queries of this type. The next section develops a refinement-
based approach to decide completeness that can deal with much
larger networks.
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5. Deciding Completeness by Iterative
Refinement

The central idea for the refinement-based approach is to exploit
hierarchies in the interaction graph and to use model checking on
subnetworks that are in the upper layers of the hierarchy rather
than the whole network. Given a complete set of trap spaces p,
we keep replacing each p∈ P by smaller trap spaces until either
P = min(S⋆F ) and we declare victory, or we find some p∈ P that
satisfies the failure criterion belowwhich implies thatmin(S⋆F ) can
not be complete.

Proposition 6 (Refinement). Let P ⊆ S⋆F be complete in (S, ↩→)
and p∈ P some trap space. IfQ ⊆ S⋆Fp is complete in (SVp , ↩→) then
P′ := (P \ {p}) ∪ {p ⊓ q | q ∈ Q} is complete in (S, ↩→).

Note that the intersection p⊓ q is necessary to position the trap
space q of (SVp , ↩→) correctly in the full transition system (SV, ↩→)

and that (p⊓q) ≤ p. An example of a refinement is the percolation
operator. By Proposition 1, if P is complete, then P⃗ := {⃗p | p ∈ P}
is also complete. The failure criterion is based on the observation
that if min(S⋆F ) is complete in (SVp , ↩→), then min(S⋆Fp) must be
complete in (SVp , ↩→) for every p ∈ S⋆F .

Proposition 7 (Failure Criterion). If there is a trap space p such
that min(S⋆Fp) is not complete in (SVp , ↩→), then min(S⋆F ) is not
complete in (S, ↩→).

Example 1. Consider the network defined by V= {v1, v2, v3}
and F with f1 = v1 v2 + v1v2 + v2v3, f2 = v1 v2v3 + v1v2v3
and f 3 = v2 + v3. The minimal trap spaces are {111,*00}. The trap
space p := **1 satisfies the failure criterion because min(S⋆Fp) =

{11} is not complete in (SVp , ↩→) as there is, for example, no path
from 01 to 11 in (SVp , ↩→). It follows thatmin(S⋆F ) is not complete.

5.1. Autonomous Sets
To find the initial P ⊆ S⋆F and then Q ⊆ min(S⋆Fp) for a
given p∈ P we use Proposition 8 below. It is based on so-called
autonomous sets, a generalization of inputs. The variables U ⊆V
are autonomous iff Above(U)=U in the interaction graph. An
autonomous U induces a restricted network (U, F|U) where
F|U := { f u ∈ F | u∈U}. Note that ifU is autonomous, then (U, F|U)
is a well-defined network.

Proposition 8. Let U be autonomous and Q := min(S⋆F|U) the
minimal trap spaces of the restriction (U, F|U).

(a) IfQ is complete in (SU, ↩→), thenQ is also complete in (S, ↩→).
(b) IfQ is not complete in (SU, ↩→), thenmin(S⋆F ) is not complete

in (S, ↩→).

Note that the inputs I⊆V of a network are autonomous and
that P defined by P := {p ∈ S⋆F |Dp = I} (the |P|= 2|I| input
combinations) is complete in (I, F|I). Proposition 8(a) implies that
P is also complete in (V, F). P⃗ is a refinement of P and if any p⃗ ∈ P⃗
satisfies the failure criterion then min(S⋆F ) is not complete.

Example 2. Consider the network with V= {v1, . . . , v4} and
F with f 1 = v1, f2 = v2, f3 = v1v4, f 4 = v2v3. The minimal trap
spaces are {0000, 0100, 1000, 11**}. To decide whether they are
complete we observe that the network has two inputs {v1, v2} and
four input combinations whoseminimal trap spaces are P= {00**,
01**, 10**; 11**}. Since P⃗ = min(S⋆F ) = {0000, 0100, 1000, 11⋆⋆},
we deduce that min(S⋆F ) is complete.

5.2. Minimal Autonomous Sets
A refinement-based algorithm requires choosing an autonomous
set U and deciding whether Q is complete in (SU, ↩→) using the
query of Proposition 5. The best performance in terms of model
checking is expected if the minimal sets are as small as possible.
Minimal autonomous sets (set-inclusion-wise) are located in the
top layer of the interaction graph (V, →) and can be found using
any SCC algorithm.

Proposition 9. Let U⊆V. The following statements are equiva-
lent:

(a) U is a minimal autonomous set of (V, →).
(b) U is autonomous and U∈ SCCs(V, →).

Once it is confirmed that the minimal trap spaces of each
restriction are complete, we may consider their intersection.

Proposition 10. If P,Q ⊆ S⋆F are complete in (S, ↩→) then
P ⊓ Q := {p ⊓ q | p ∈ P, q ∈ Q : p and q are consistent} is also
complete in (S, ↩→).

Note that if P and Q are complete, then for each p∈ P, there
is necessarily a q∈Q such that p and q are consistent. Similarly,
for each attractor A⊆ S[p], there is some consistent q∈Q such
that A⊆ p⊓ q. Hence P⊓Q is non-empty and complete. Also,
unless there is p∈ P with p∈Q we get |P⊓Q|= |P| · |Q|. Finally,
inputs areminimal autonomous sets and if a network has no other
minimal autonomous sets, then the intersection is equal to the
input combinations. Taking the intersection therefore generalizes
the approach of inputs and input combinations.

Example 3. Consider the network with V= {v1, . . . ,v6}
and F with f 1 = v2, f 2 = v1, f 3 = v4, f 4 = v3, f5 = v2v6
and f 6 = v3v5. The minimal trap spaces are min(S⋆F ) =

{000000, 001100, 110010, 1111⋆⋆}. The network has two
minimal autonomous sets U1 = {v1, v2} and U2 = {v3, v4}. The
corresponding restrictions are (U1, F|U1) and (U2, F|U2) with
the minimal trap spaces Q1 := min(S⋆F|U1

) = {11, 00} and
Q2 := min(S⋆F|U2

) = {11, 00}. Model checking (or inspection of
the STGs) confirms that they are complete in their respective
restricted systems. The intersection P := Q1 ⊓ Q2 and the
percolation P⃗ are P = {0000⋆⋆, 0011⋆⋆, 1100⋆⋆, 1111⋆⋆} and
P⃗ = {000000, 001100, 110000, 1111⋆⋆}. As before in Example 2,
P⃗ = min(S⋆F ) and we deduce that min(S⋆F ) must be complete in
(S, ↩→).

5.3. Extending Minimal Autonomous Sets
Although minimal autonomous sets are favorable for efficient
model checking, there is no guarantee that the respective restricted
systems do actually contain non-trivial trap spaces. A refinement
based on the trivial trap space ϵ, i.e., Q= {ϵ}, is useless because
it means replacing p with p⊓ ϵ= p, that is, with itself. A possible
solution is to increase the size of checked autonomous sets until
we find non-trivial trap spaces. The question is: by how many
variables should we extend an autonomous set U? On the one
hand, we want to be generous because new variables increase the
chances for finding new trap spaces. On the other hand, we want
to add as few variables as possible because the failure criterion
requires CTL model checking.

What is the best extension for a givenU whose restricted system
is trap-space-free? Adding only outputs or cascades to U is not
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enough as the emergence of trap spaces requires “self-freezing”,
positive feedback circuits, see Section 4.7 in Klarner (2015b).
Intuitively, we want to extend down to the next SCC.

For a clean definition, we introduce the following notions. The
set of cascade components consists of all single element SCCs in
the interaction graph, whose nodes do not have self-loops. The
remaining components are the non-cascade components.

Casc(V,→) := {U ∈ SCCs(V,→) | ∃v ∈ V : U= {v}, v ̸→ v}
NonCasc(V,→) := SCCs(V,→) \ Casc(V,→)

The condensation graph (Z,◃) of the interaction graph is then
the digraph with vertices Z :=NonCasc(V, →) such that an arc
U◃W indicates whether there is a cascade from U to W. More
precisely, U◃W iff U ̸=W and there is u∈U, w∈W such that

∃π ∈ FinPaths(u,w) : ∀1 ≤ i ≤ len(π)−2 : {π[i]} ∈ Casc(V,→).

Note that (Z, ◃) is acyclic and so we can partition its vertex set
into classes, which we call layers, depending on the longest path
that reaches them.

Lay(W) := max{len(π) |π ∈ FinPaths(U,W),U ∈ Z}

Note that Lay(W)≥ 1 because π= (W) is an admissible path
from W to W and len(W)= 1 and that all minimal autonomous
sets can then be found in the first layer of the condensation graph,
i.e., U⊆V is minimal and autonomous iff U ∈Z and Lay(U)= 1.

To illustrate how the condensation graph is used for extending
autonomous sets, consider the network given in Figure 2. First,
we compute its minimal autonomous sets, i.e., the top layer of (Z,
◃). In this example, there is a unique W ∈Z with Lay(W)= 1.
The restriction (W, F|W) consists of an isolated negative feedback
circuit and is trap-space-free. To determine the smallest extension
that contains new feedback circuits, we first compute the graph
(Z′,◃), which is obtained from the condensation graph (Z,◃) by
removing all U ∈Z that satisfy U ∩W ̸=∅. For each Y ∈Z′ that
satisfies Lay(Y)= 1, we get an extended autonomous set W′ by
considering the variables above Y in the interaction graph (V,→).
In the example, there is again a unique Y and the restriction to

W′ :=Above(Y) contains a non-trivial trap space p. The failure
criterion is not satisfied by p and so we have found an initial
complete set, namely P := {p}. Note that in general, there will be
several minimal autonomous sets and several possible extensions.
We are now ready to design an efficient algorithm for deciding
completeness.

5.4. The Algorithm
The first step of the algorithm in Figure 3 is to compute the min-
imal trap spaces of a given network using the ASP-based method
proposed in Klarner et al. (2014). If the network is trap-space-
free, then min(S⋆F ) = {ϵ} is, by definition, complete and we stop
and return true. Otherwise the variable CurrentSet is initialized.
It consists of tuples (p, W), where p is a trap space and W⊆V
are the variables of the network (Vp, Fp) that have previously
been subjected tomodel checking. The tuples correspond to those
trap spaces of a complete set that need further refinement (i.e.,
are not minimal). Initially CurrentSet := {(ϵ, ∅)} because {ϵ} is
trivially complete andwe have not startedmodel checkingW=∅.
The lines 5–24 execute the iterative refinement of CurrentSet until
we either find a p that satisfies the failure criterion in line 17 or
CurrentSet=∅ in which case every p is equal to some minimal
trap space (only non-minimal trap spaces are put back onto
CurrentSet, see lines 23, 24).

The next steps are to select an arbitrary (p, W) for refinement
(line 6), compute the reduced network (Vp, Fp), its condensa-
tion graph (Z, ◃) and the graph (Z′, ◃) described in the pre-
vious section. The top layer elements U of (Z′, ◃) are minimal
autonomous sets if Z=Z′ or extended autonomous sets if Z ̸=Z′.
In the latter case, the restricted networks that correspond to
minimal autonomous sets of (Vp, Fp) must have previously been
found to be trap-space-free. For each U, the variables above U
are autonomous (in (Vp, Fp)). If the minimal trap spaces of the
restricted networks are complete in (SU′ , ↩→) then, by Proposi-
tion 8(a), they are also complete in (SVp , ↩→). Otherwise it follows,
by Proposition 8(b), thatmin(S⋆Fp) is not complete in (SVp , ↩→) and
hence that p satisfies the failure criterion and we stop and return
false in line 18.

The variableRefinement stores all complete sets that were found
in the upper layers of (Vp,Fp), whileW′ keeps track of the variables

A B C D E

FIGURE 2 | (A) The interaction graph of an example network where each
fi is the disjunction of its inputs (e.g., f6 = v5 + v4) except for v1 which is
inhibited by v2 ( f1 := v2). (B) The condensation graph (Z, ◃) with the
unique top layer node {v1 v2}. (C) The corresponding minimal
autonomous set W. The restriction (W, F|W) is trap-space-free.

(D) To extend W, we compute the graph (Z′, ◃), which is obtained from
(Z, ◃) by removing the node that intersects W. The new top layer node is
Y := {v5, v6}. (E) The extended autonomous set W′ is obtained by
considering Above(Y ) in the interaction graph. It has a minimal trap space
p that is defined by fixing v5 and v6 to 1.
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FIGURE 3 | The iterative, refinement-based algorithm for deciding the
question of completeness. See main text for a detailed description.

that were subjected to model checking. Line 21 is an application
of Proposition 10, i.e., the intersection of all complete sets is taken
(generalization of input combinations). For each trap space q in
the intersection, we check whether the percolation q⃗ needs further
refinement (not a minimal trap space of (V, F)) and if so add it
back onto CurrentSet.

Note that (Vp, Fp) must have non-trivial trap spaces for each
(p, W)∈CompleteSets (see lines 23, 24). Hence, although it may
happen that (p, W) is replaced by (p, W′) (if Q= {ϵ} in line 15)
eventually it will be replaced by smaller trap spaces. The algorithm
is implemented and available as part of our  toolbox for
Boolean networks (Klarner, 2015a).

5.5. Counterexamples for Attractor Detection
If min(S⋆F ) is not a perfect approximation, we would like to know
why. Model checking tools like  are capable of producing
a counterexample in case a formula does not hold. Intuitively, a
counterexample is a finite path froman initial state that proves that
the query is false. If min(S⋆F ) is not complete, then the algorithm
of the previous section can be used to return some p ∈ S⋆F that
satisfies the failure criterion together with a counterexample to the
respective completeness query for (Vp, Fp) and min(S∗Fp ). Every
attractor that is reachable from its last state, say x, must then be
outside of min(S∗Fp ). We then use the random walk approach to
find state a z that belongs to an attractor A⊆ SVp outside of min

(S∗Fp). If the modified completeness query

TS = (SVp , ↩→, SVp) |= φz ∨
∨

q∈min(S⋆Fp )

EF(φq)

holds then A is the only outside attractor, otherwise we use the
next counterexample to find the next outside attractor until they
are all found. Note that p is an extension of aminimal autonomous
set. A similar approach is possible for trap spaces that are not
faithful or not univocal.We end upwith a set of states that captures
the attractors outside of P, the number of attractors inside S[p] for
each p∈ P and whether they are faithful or not.

6. Results

All computations in this section were done on a 32-bit Linux
laptop with 4× 2.60GHz and 8GB memory.

6.1. MAPK Case Study
In this case study, we consider the network published in Grieco
et al. (2013), which models the influence of the MAPK pathway
on cancer cell fate decisions and consists of 53 variables. Using
Klarner (2015a), we compute min(S⋆F ) in under one second. It
consists of 12 steady states and six trap spaces that contain only
cyclic attractors. The single query approach to deciding complete-
ness runs 35min, while the refinement-based algorithm confirms
completeness in only 28 s. For the six trap spaces in min(S⋆F ) \ SF
we confirmed univocality in 261 s (44 s on average per trap space)
and faithfulness in 74 s (12 s on average per trap space) using the
CTL queries of Section 4. Hence, min(S⋆F ) is a perfect approxima-
tion of the attractors of (S, ↩→) and for each attractor we can find
an internal state by the random walk approach of Section 4. We
stopped  after seven hours without a result.

Figure 4 is an illustration of the steps performed during the
iterative refinement for the MAPK network. The information is
represented as a decision tree. The root represents the initial
and trivially complete set P := {ϵ}. Boxes are split into a left side,
representing the size |U| of a minimal autonomous set (or an
extension), and a right hand side that is split vertically into cells
that contain the numbers |Dq| of fixed variables for each minimal
trap space q of (U, F|U). Boxes are colored according to whether
(U, F|U) is trap-space-free (white) or not in which case model
checking is required to find out whether the minimal trap spaces
of (U, F|U) are complete (failure criterion). Boxes with more than
one minimal trap space are outlined in red to emphasize that
a decision process between competing trap spaces exists. The
intersection of several autonomous sets is indicated by ⊗ but
occurs for this network only for the inputs. Arcs are labeled by
the number of variables that are fixed during percolations, i.e.,∣∣Dq \Dq⃗

∣∣ (see line 22 in Figure 3). If a restricted network is trap-
space-free, the extension is indicated by a dashed arc. Along each
branch of the decision tree, the number of fixed and oscillating
variables must add up to 53. The bottom branch, for example,
starts with four fixed variables, percolates seven more, extends
an autonomous set whose restriction consists of four variables
and is trap-space-free, finds a single trap space with three fixed
variables and finishes as the remaining trap space is minimal (and
4+ 7+ 3+ 0+ 39= 53).
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FIGURE 4 | An illustration of the how the iterative refinement algorithm confirms that min(S⋆
F ) of the MAPK network is complete. Altogether 12

restricted systems are model checked instead of the single full system. A more detailed description is given in the main text.

TABLE 2 | The minimal trap spaces of all Boolean models in the GINSIM repository are perfect approximations of the attractors of (S, ↩→↩→↩→).

Network file (.zginml) |V | Steady Cyclic Faithful Univocal Complete

buddingYeastOrlando2008 9 1 – 0.08s 0.03s 0.23s
fissionYeastDavidich2008 10 12 – 0.01s 0.02s 0.08s
boolean_cell_cycle 10 1 1 0.03s 0.19s 0.12s
Toll_Pathway_12Jun2013 11 4 – 0.01s 0.01s 0.09s
drosophilaCellCycleVariants 14 1 – 0.01s 0.05s 0.11s
MAPK_red3_19062013 16 12 6 0.15s 1.11s 0.93s
MAPK_red1_19062013 17 12 6 0.18s 1.25s 0.87s
VEGF_Pathway_12Jun2013_0 18 256 – 0.04s 0.05s 0.28s
MAPK_red2_19062013 18 12 6 0.14s 1.26s 0.67s
buddingYeastIrons2009 18 – 1 0.16s 0.48s 0.02s
ErbB2_model 20 1 – 0.08s 0.00s 0.02s
FGF_Pathway_12Jun2013 23 512 – 0.09s 0.09s 0.51s
Hh---Pathway_11Jun2013_0 24 8192 – 1.29s 1.43s 6.34s
Spz---Processing_12Jun2013 24 64 – 0.04s 0.03s 0.22s
Wg_Pathway_11Jun2013 26 16384 – 2.38s 2.38s 17.16s
TCRsig40 40 7 1 1.07s 3.34s 0.12s
MAPK_large_19june2013 53 12 6 40.15s 565.84s 20.72s
T_LGL 60 86 70 1.07s 6.57s 5669.57s

The number of variables, steady states, and cyclic attractors are recorded in the first three columns. The remaining three columns record the time needed to confirm faithfulness,
univocality, and completeness.

Note that the algorithm encounters roughly four types of refine-
ments. The first type (branches 1–8) leads directly to a steady
state. The second type (branches 9–12) discovers a single minimal
autonomous set consisting of 37 variables, whose restriction has a
singleminimal trap spaces in which between nine and 41 variables
oscillate. The third type (branches 13–14) discovers a single mini-
mal autonomous set that has twominimal trap spaces that commit
the network to different steady states. The fourth type (branches
15–16) discovers a single minimal autonomous set consisting

of four variables that is trap-space-free. An extension leads an
autonomous set of 34 variables with a single minimal trap space.

6.2. GINsim Repository Benchmark
To test whether the MAPK network is unusual in that its minimal
trap spaces are perfect approximations, we ran the same analysis
for every Booleanmodel currently in the model repository
(see Naldi et al. (2009)). In every case, the minimal trap spaces
are perfect approximations of the attractors of (S, ↩→). The time
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needed to confirm faithfulness, univocality and completeness is
given in Table 2. We confirmed the number of steady states and
cyclic attractors with  and . The execution of -
 is, like the computation ofminimal trap spaces, instantaneous.
The running times of  are comparable to that of our
algorithm for networks with |V|< 40 and on the order of 24–72 h
for the three networks with |V|≥ 40. The networks and attractors
are available for benchmarking at Klarner (2015a).

7. Conclusion and Outlook

In this paper, we developed the notion of an approximation of
attractors of a Boolean network. Minimal trap spaces are approxi-
mations that can be computed for networks with hundreds of vari-
ables using ASP solvers. Since available attractor detection tools
for asynchronous systems are only feasible for about 50 variables,
approximations via minimal trap spaces might yield attractor
information otherwise inaccessible. We defined three criteria to
assess the quality of an approximation and showed that they can
be decided using model checking. The main contribution in this
paper is an algorithm that improves the efficiency of deciding
completeness by dividing the problem into smaller subproblems
according to autonomous sets in the interaction graph.

We ran the algorithm on the 18 Boolean networks that are cur-
rently in the  repository and found that each time, themin-
imal trap spaces are a perfect approximation of the asynchronous
attractors, i.e., that we can find all asynchronous attractors using
random walks and min(S⋆F ).

Section 5.3 explains that autonomous sets must be extended if
the corresponding restricted systems are trap-space-free. Strate-
gies by which extensions are constructed must compromise
between adding variables to increase the likelihood of discovering
non-trivial trap spaces and the efficiency of model checking the
respective transition systems. The strategy in Section 5.3 can be
considered optimal in the sense that it adds as few variables at a
time as necessary for the emergence of new trap spaces.

There are several directions in which the algorithm may be
improved further, for example, by removing so-called “mediator
variables” (see, e.g., Saadatpour et al. (2013)) from the interaction
graph of the subnetworks. The relationship to other reduction
methods, e.g., Naldi et al. (2011) or Veliz-Cuba (2011), may also
yield improvements by reducing the size of the transition systems
passed to the model checking software further.

The decision tree in Figure 4 might be an interesting tool for
questions regarding network control, an idea that was recently
developed in Zañudo and Albert (2015). It also suggests that the
dynamics of Boolean networks is governed by two very different
regimes: the percolation regime in which the long-term activities
are pre-determined, and the decision-making regime in which the
long-term activities are determined by which of the competing
trap spaces is reached first.

Supplementary Material

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/fbioe.2015.00130
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