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Chemical gradient surfaces are described as surfaces with a gradually varying composi-
tion along their length. Continuous chemical gradients have recently been proposed as
an alternative to discrete microarrays for the high-throughput screening of the effects of
ligand concentration in cells. Here, we review some of the most recent examples in which
gradients have been used to evaluate the effect of a varying ligand concentration in cell
adhesion, morphology, growth, and differentiation of cells, including some of our recent
findings. They show the importance of the organization of ligands at the nanoscale, which
is highlighted by abrupt changes in cell behavior at critical concentration thresholds.
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Introduction

During embryo development, cell patterning is governed by underlying morphogen gradients. The
idea of a morphogen gradient is intimately associated with the concept of positional information:
a cell can read its position in the gradient and respond accordingly (Gurdon and Bourillot, 2001).
This idea is not only applicable to cell differentiation but also to many other cell processes. Cells
can recognize different threshold concentrations of signaling molecules through receptors in their
surface and transduce this information to the nucleus for the appropriate cell response. Therefore,
control of ligand dosage is critical in the evaluation of ligand effects on cells.

Since many signaling molecules, such as growth factors, can function under restricted diffusion
conditions, surface confinement does not compromise the biological relevance of surface-bound
ligand dosage assays. For the systematic in vitro study of ligand concentration on cell signaling, the
microarray format is commonly used. Cell microarrays allow for the high-throughput screening
of the effects of signaling molecules printed alone or in combination, and significantly reduce the
amount of reagents needed and the inter-experimental variability of conventional microwell plate
tests (Miller et al., 2006; Rodriguez-Segui et al., 2011; Papp et al., 2012; Warmflash et al., 2014).
However, even if a large number of ligand concentrations can be included in a microarray, these are
inherently discrete.

Since in vivo cells respond to small changes in tiny amounts of signaling molecules, a more
accurate screening could be provided by continuous chemical gradients. Chemical gradients may
be affected by some physical cues, such as changes in stiffness or topography along the gradi-
ent distance, that can influence cell behavior and cause a biasing of the inferred results. Picart
and co-workers show how an increase of stiffness from 200 to 600kPa (slope 9.90 kPa/mm) in
polyelectrolyte multilayer (PEM)-based gradients caused an increase of adhesion and spread-
ing (cell area varied between 500 and 2500 um? with increasing stiffness) of the MC3T3-E1
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pre-osteoblastic cells (Almoddvar et al., 2013). Moreover, some
recent works examined the interplay between substrates stiffness
and cell-adhesive coatings in the mechanical feedback received
by the exposed cells, affecting stem cell fate (Trappmann et al.,
2012; Wen et al., 2014). Gadegaard and co-workers observed that
hTERT fibroblast cell line aligns and polarizes in the direction
of polycarbonate microgrooves in a topographical gradient in
which groove pitch and depth are orthogonal and continuously
varied (Reynolds et al., 2012). In that sense, it is mandatory to
keep relevant parameters, such as stiffness and topography, which
influence cell response, invariable along chemical gradient dis-
tance to unequivocally attribute cell responses to the introduced
variations in ligand concentration. In this review, we present
several examples of continuous chemical gradients, produced by
different methodologies that allow for the screening of the effects
of ligand concentration and the evaluation of different aspects
of cell behavior, such as adhesion, morphology, and fate, are
considered.

Changes in Cell Adhesion and Morphology
Introduced by Gradients

One of the most common techniques to create chemical gradients
is plasma polymerization (Wittle et al., 2003). Plasma polymers
provide smooth coatings that can be deposited onto any surface
without changing its topography and therefore, their effects on
cell response can be attributed solely to the changes produced
in the surface chemistry. Alexander and co-workers produced
wettability gradients by varying the surface chemical composition
using a diffusion-controlled plasma polymerization technique.
Gradients from the chemistry of plasma polymerized allylamine
(pAAm) to that of plasma polymerized hexane (ppHex) were
formed on a glass slide using diffusion under a fixed mask.
A variation of the water contact angle from 94°(on the ppHex
side) to 67°(on the pAA side) caused an increase of NIH 3T3
fibroblast cell density from nearly 0 to 40 cells/mm? after 24 h
of culture (Figure 1A; Zelzer et al., 2008). Plasma polymer gra-
dients of acrylic acid and diethlylene glycol have been used to
screen stem cell-surface interactions, showing striking differences
in the size and the morphology of colonies formed by mouse
embryonic stem cells along the gradient (Harding et al., 2012).
In a different approach, continuous chemical gradients can be
created by using surface coatings, such as self-assembled mono-
layers (SAMs). Mrksich and co-workers reported a method that
combines gradients of soluble Arg-Gly-Asp (RGD) cell-adhesive
peptide ligands in microfluidic networks with immobilization
chemistries of maleimide groups on SAMs. This strategy was used
to present defined gradients to individual cells and showed that
the gradient of the ligand leads to a non-uniform distribution
of the cytoskeleton in adhered cells (Petty et al., 2007). Yeo and
co-workers (Lee et al., 2013) described the generation of multi-
component gradient surfaces based on SAMs terminated with a
quinone derivative. The quinone group was progressively reduced
by a linear-dipping exposure to a reducing agent, leading to a con-
tinuous gradient of amino groups that can be further reacted with
extracellular matrix (ECM) ligands. They prepared RGD/Pro-His-
Ser-Arg-Asn (PHSRN) gradient surfaces with various total ligand

densities and observed that PHSRN enhances cell adhesion at
positions where the two ligands are presented in equal amounts,
while these peptide ligands competed in cell adhesion at other
positions.

In our group, we developed a universal platform to create
chemical gradients based on the biotin-streptavidin interaction.
Gradients were generated in this case by the progressive alkaline
hydrolysis of poly(methyl methacrylate) (PMMA) spin-coated
onto a microscope glass slide. The carboxylate groups were then
modified with biotin and finally with streptavidin. This pro-
cedure allowed obtaining low-slope gradients (0.9 pmol/cm® of
streptavidin) in which the surface physical properties remained
almost invariable all over the gradient length (roughness RMS
values were below 0.4nm along the slide distance). In a proof
of concept application, we modified the streptavidin gradients
with the biotinylated bradykinin (BK) peptide. BK caused mem-
brane ruffling and filopodia formation in NIH 3T3 fibroblasts
cultured on the gradient surfaces in a concentration-dependent
manner (Figure 1B; Lagunas et al., 2010). Low-slope gradients
result in minute variations of concentration at distances compa-
rable to cell size, making them very useful for the screening of
cell-surface interactions. Constantino and co-workers used laser-
assisted protein adsorption by photobleaching (LAPAP) for the
fabrication of large-scale substrate-bound gradients of the ECM
protein laminin-1 to study the reshaping process of neurite exten-
sion. They observed that low-slope gradients (with a 4.6% absolute
laminin-1 concentration change along the cell diameter) were
enough to produce a statistically significant guidance in neurite
extension 3 h after differentiation (Bélisle et al., 2012).

With the aim of creating ECM protein gradients for cell adhe-
sion studies, we modified our biotin-streptavidin-based platform
with biotinylated RGD. We obtained linear gradients with a vari-
ation in RGD surface density that goes from 2.8 to 4.4 pmol/cm?.
Such a low-slope gradient allowed for the identification of a
threshold value of 4.0 pmol/cm? for successful cell attachment and
spreading of NIH 3T3 fibroblasts. We attributed this non-linear
cellular response to the linear variation of RGD concentration in
the gradient, to the non-homogeneous RGD surface distribution
at the nanometer scale (Lagunas et al., 2012). In fact, cell adhesion
process is governed mainly by the physiological arrangement of
ECM at the nanoscale being more affected by local than by global
ligand concentrations (Malmstrom et al., 2010; Deeg et al., 2011):
Spatz and co-workers first developed gold nanoparticle density
gradients based on block copolymer micelle nanolithography to
present a molecularly controlled spacing of RGD at the nanometer
scale along the gradient length. With this method, they particu-
larly address cell response to surface presentation of individual
adhesion molecules showing that cells respond to the weak slope
of A15 nm/mm sensing spatial variations of <1 nm across the cell
diameter (Arnold et al., 2008).

Changes in Cell Differentiation and Growth
Introduced by Gradients

The density of chemical functional groups plays a crucial role
in affecting cellular behavior, such as growth and differentiation
(Gurdon and Bourillot, 2001; Schwab et al., 2015). Continuous
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FIGURE 1 | Cell adhesion and morphology changes on continuous
chemical gradients. (A) Average number of cells in 0.2 mm increments along
the wettability gradient (left: ppHex; right: ppAAm) after 1 (red), 2 (black), and 3
(green) days of incubation. Error bars represent SEM; n = 9. Sample/mask
interface was set at the origin of the x-axis. The columns to the right are the
average cell numbers on the uniform ppAAmM samples after 1 and 2 days
(n=35). The top images show the typical cell response after 2 days on the
gradient (the vertical line marks the start of the gradient) and the uniform

Bradykinin surface density (ng/cm®)

4,0 45 50 55 6,0
28000 . .

240001
EZOOOO-
8 16000
3 120001

m ' 1 1 1 ' 1 1
0 10 20 40 50 60 70

30
Distance (mm)

sample. (B) Representative fluorescence microscopy images show the effect of
BK concentration gradient on cell morphology in NIH/3T3 fibroblasts [stained for
cell nuclei (blue) and actin filaments (red)] after 90 min from cell seeding. Scale
bar =50 um. Cell membrane constrictions and filopodia formation are more
evident with increasing BK concentration. Graphs below show cell solidity (left)
and cell area variation (right) as a function of distance showing a progressive
decrease with increasing BK concentration [(A): Zelzer et al., 2008;

(B): Lagunas et al., 2010].

gradients of surface-bound molecular ligands provide an
unmatched set-up for the high-throughput screening of cell
responses to matrix-bound proteins and mimic cell-cell

interactions. Therefore, gradients are used as a tool to establish
dose-response curves of different cell types to specific
extracellular matrix proteins, growth factors, and cytokines.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

August 2015 | Volume 3 | Article 132


http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive

Lagunas et al.

Surface gradients for cell screening

They allow for determining in an efficient way the optimal
concentration of matrix-bound biomolecules and for studying the
presentation of growth factors in a spatially controlled manner.

In a pioneering work, Miller and co-workers used inkjet print-
ing to create a non-continuous gradient of biomolecules com-
posed by spots of increasing concentrations (Miller et al., 2009).
They used this approach to print bone morphogenetic protein-
2 (BMP-2) and insulin-like growth factor-II (IGF-II) on fibrin-
coated substrates. They created almost linear gradients with a
slope of 0.25ug/cm’ (9.6 pmol/cm’) over 1.5mm, which were
used to determine the effect of IGF-II and BMP-2 surface con-
centrations on guiding C2C12 cells toward an osteogenic lineage.
This proved the potential of surface gradients as high-throughput
screening technique.

In a recent study, surface chemistry gradients have proved to
influence the growth and differentiation of rat mesenchymal stem
cells (rMSCs). Results showed that, even if the effects of the surface
chemistry on cell adhesion were pronounced at an early culture
stage, they can be diminished during long-term culture (Wang
etal,, 2015). Cell differentiation toward osteogenic or adipogenic
fates was influenced by the surface chemistry gradient mainly
through its influence in the cell density, which is an effect much
more pronounced on the osteogenic commitment.

In our group, we took advantage of a biotin-streptavidin
gradient platform to study the concentration effects of BMP-
2 on C2C12 cell differentiation (Figure 2A; Lagunas et al,
2013). We fabricated gradients of biotinylated BMP-2 bound to
PMMA substrates with low slope (0.9 pmol/cm®) and an overall
surface density ranging 1.4-2.3 pmol/cm?®. We observed a non-
linear dependence of the osterix (OSX) nuclear translocation (an
osteoblast-specific transcription factor) with an abrupt increase
above a threshold density of 1.7 pmol/cm®. A similar behav-
ior was seen for the expression of alkaline phosphatase (ALP)
enzyme, also related to osteogenic cell commitment. We attributed
such non-linear behavior to the non-even distribution of the
ligand (BMP-2) on the surface at the nanometer scale: BMP-
2 clustered distribution synergistically enhances the probability
of rebinding events by providing a large number of adjacent
binding sites in the vicinity of the receptor, thereby increasing
signaling activation (Lagunas et al, 2012). Such a non-linear
C2C12 cell behavior in the presence of BMP-2 has been also
reported in a recent work performed by Picart and co-workers
(Figure 2B; Almodovar et al., 2014). They used microfluidics to
create gradients of BMP-2 and BMP-7 growth factors on layer-
by-layer films composed of poly(L-lysine) and hyaluronan. The
gradients have slopes of 0.58 ug/cm® (22.3 pmol/cm®) for BMP-
2 and 1.24pg/cm’® (25 pmol/cm?) for BMP-7, and are linear
over a distance of 20 mm. The effects of the gradients on the
trans-differentiation capacity of the C2C12 cells to the osteogenic
lineage were assessed. This platform was used then to produce
gradients of both factors in a parallel or opposite fashion and
the data found suggest an additive or synergistic effect between
BMP-2 and BMP-7.

Also recently, surface density gradients of immobilized nerve
growth factor (NGF) on plasma polymer films have been used
to assess the critical growth factor density required to support
neural lineage generation from mouse embryonic stem cells
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FIGURE 2 | Evolution of differentiation markers in cells cultured onto
BMP-2 gradients. (A) Plot of the percentage of cells in the osteogenic
commitment showing ALP positive staining versus BMP-2 surface density.
Non-linear effects are found below 2.1 pmol/cm? and the percentage of cells
in the osteogenic commitment reaches saturation from this value onward.
Control experiments performed on streptavidin-modified gradients show
differentiation values below 10%, independent of the BMP-2 dose. Dashed
lines are an eye guide. (B) Differentiation of C2C12 myoblasts on BMP-2
gradients. Immuno-fluorescent imaging reveals a decrease of troponin T
positive cells (undergoing myogenic differentiation) with increasing BMP-2
concentration and an increase in the ALP expression [(A): Lagunas et al.,
2013; (B): Almododvar et al., 2014].

(Delalat et al., 2015). The authors prepared first a chemical surface
gradient varying from high hydroxyl to high aldehyde group den-
sities and then immobilized the NGF by reductive amination with
the aldehyde groups. They found a critical surface density value
of 52.9 ng/cm? (corresponding to 1.9 pmol/cm?), above which cell
attachment and differentiation does not increase further.

The role of molecular gradients in axonal development has
been recurrently studied by means of surface-bound biomolecule
gradients. Laminin gradients fabricated by microfluidic devices
have been proposed to study the axon growth rate and growth
direction in response to the gradient slope (Dertinger et al., 2002;
Xiao et al., 2013). The axon polarization and growth response has
also been addressed by gradients of covalently bound netrin-1
and brain-derived neurotrophic factor (BDNF) proteins through
diffusive printing technique (Mai et al., 2009). The authors found
that bound BDNF gradients caused an attractive/repulsive bidi-
rectional response on regions of BDNF low and high densities,
depending on the basal level of cyclic Adenosine MonoPhosphate
in the neurons. Lang and co-workers studied the cell response to
the concentration of repulsive axon guidance molecule ephrinA5
through gradients produced by microfluidic networks (Lang et al.,
2008). They found that temporal, but not nasal, axons stopped at
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characteristic zones in the gradient, and that such stop zones
were dependent on the slope of the gradient. These findings
indicated that the growth cone can adjust its sensitivity dur-
ing the detection of a concentration gradient of ephrinA5 and
demonstrated the potential of gradients to screen cell dose
response.

Conclusion

Continuous chemical gradients covering a biologically relevant
range of concentrations allow determining in an efficient way
the optimal concentration of matrix-bound biomolecules for a
specific cell response. Moreover, continuous chemical gradients
in the examples presented showed that threshold concentrations
exist for cell responses that can be related to specific ligand
distributions on the surface at nanometer scale. Also synergistic
effects when combining different signaling molecules in a gradient
can be observed. Altogether, this review shows the potential of
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