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In this research work, the original 45S5 bioactive glass was modified by introducing zinc 
and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to 
stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, 
and anti-inflammatory effect. The glasses were produced by means of melting and 
quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not 
modify the glass structure and morphology while compositional analysis (EDS) demon-
strated the effective incorporation of these elements in the glass network. Bioactivity test 
in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for 
Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/
inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition 
(EPD). Two EPD processes were considered for coating development, namely direct cur-
rent EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension 
was analyzed and the deposition parameters were optimized. Tape and bending tests 
demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 
45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn 
glass. FTIR analyses demonstrated the composite nature of coatings and SEM obser-
vations indicated that glass particles were well integrated in the polymeric matrix, the 
coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique 
provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, 
and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the 
bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited 
no hydroxyapatite formation.
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inTrODUcTiOn

Metallic alloys (such as Ti alloys, stainless steel, or Co–Cr alloys) 
are the materials of choice for bone implants where good mechani-
cal properties and load-carrying ability are required (Niinomi, 
2002; Chen and Thouas, 2015). These materials generally are 
osteointegrated by morphological fixation, i.e., by bone ingrowth 
on their surface irregularities by press fitting into a bone defect 
or by cementing the implant with acrylic bone cement. Metallic 
alloys generally lack osteoinductive properties and, if the bone 
ingrowth is not effective, they could develop a fast formation of a 
non-adherent fibrous capsule at the interface which, in turn, can 
cause bone interfacial loosening and the failure of the implant. A 
better behavior can be achieved if a bioactive fixation is induced, 
i.e., a direct chemical bonding with the bone (Drnovšek et al., 
2012). For this purpose, the modification of the implant surface 
with a bioactive coating (i.e., a coating with the ability of forming 
a biologically active hydroxyapatite layer on its surface) can lead 
to a significant improvement of its osteointegration. Bioactive 
glasses (BGs) and glass-ceramics can be successfully used with 
this purpose (Rahaman et al., 2012; Jones, 2013; Hench, 2015) 
due to their peculiar ability of inducing bone ingrowth. BGs have 
been studied and developed during the last 40 years for a vast 
number of medical applications, including powders, granules, 
3D scaffolds, additive for injectable or putty-like bone substi-
tutes, second phases in bone cements, as well as dense coatings 
on metallic and ceramic substrates (Gerhardt and Boccaccini, 
2010; Jones, 2013). Moreover, BG compositions can be easily 
modified by introducing several elements with therapeutic effect 
(Mouriño et al., 2012); for example, Ag, Cu, and Ga have been 
added for their antimicrobial effect, Cu was used for its ability to 
stimulate angiogenesis and bone (Miola et al., 2014), and Mn for 
its role in the metabolism of muscle and bone (Rath et al., 2014). 
Among the investigated elements, also Zn and Sr have drawn the 
attention of the researchers for their role in bone metabolism and 
the Zn antibacterial effect (Balamurugan et al., 2007; Gentleman 
et al., 2010; Jaiswala et al., 2012; Balasubramanian et al., 2015).

Bioactive ceramic coatings can be applied on the bioinert 
implant surface by means of several methods, such as glaz-
ing, enameling, plasma praying, electrophoretic deposition 
(EPD),  RF-magnetron sputtering, and pulsed laser deposition 
(Verné, 2012).

Electrophoretic deposition (Besra and Liu, 2007) has been 
gaining interest in different sectors for its versatility and its 
cost-effectiveness and EPD of biomaterials is being increasingly 
investigated (Boccaccini et al., 2010). In particular, the advantages 
of EPD are its applicability to a wide range of materials (ceramics, 
polymers, metals, and composites), the use of simple equipment, 
and the possibility to deposit homogenous thin or thick coatings 
on substrates with different shapes and dimensions in a matter of 
minutes. Moreover, EPD can be carried out using aqueous and 
non-aqueous solvents (Besra and Liu, 2007). Even if water-based 
EPD implies some problems due to the electrolysis phenomenon, 
it has been shown that using relatively high voltages and alternat-
ing current EPD (AC-EPD), it is possible to obtain high-quality 
coatings and films (Neirinck et  al., 2009; Chávez-Valdez and 
Boccaccini, 2012).

Since the deposition of pure ceramics can lead to the forma-
tion of a brittle coating, they often are codeposited with polymers, 
especially natural polymers (Cordero-Arias et al., 2014). Among 
biopolymers, chitosan, a linear, semicrystalline polysaccharide, 
shows outstanding properties: biocompatibility, the ability to 
complexes various species such as metal ions, pH-dependant 
solubility, low cost, and antibacterial activity. Moreover, chitosan 
is a suitable film-forming polymer that does not require further 
heat treatment (Croisier and Jérôme, 2013). For these reasons, 
chitosan is often used in EPD process to realize coatings suitable 
for orthopedic applications and bone tissue engineering (Pishbin 
et al., 2011; Cordero-Arias et al., 2013).

In this article, 45S5-base BGs doped with Zn and Sr were 
combined with chitosan to produce organic/inorganic composite 
coatings on stainless steel AISI 316L by direct current (DC)-EPD 
and AC-EPD. The effects of the added ions on the glass and 
coatings bioactivity combined with the influence of the two EPD 
methods on coating properties were investigated.

MaTerials anD MeThODs

glasses synthesis and characterization
Zinc oxide (6 mol%), strontium oxide (6 mol%), and both Zn and 
Sr oxide (ZnO, 3 mol%; SrO, 3 mol%) were added to the original 
45S5 BG composition (Hench, 2006) by replacing calcium oxide; 
the doped glasses were named 45S5-Zn, 45S5-Sr, and 45S5-ZnSr 
and their compositions are presented in Table 1.

All the glasses were produced by means of melting and 
quenching process: the reactants were accurately mixed and sub-
sequently put in a Pt crucible maintained at 1500°C for 30 min. 
The melt was then poured in water obtaining a frit, which was 
dried at room temperature overnight and then milled and sieved 
to reach a grain size <20 μm.

The influence of Zn and Sr on the glass structure was evalu-
ated by X-ray diffraction (XRD – X’Pert Philips diffractometer), 
using the Bragg Brentano camera geometry and the Cu-Ka 
incident radiation; the obtained pattern was analyzed with 
X’Pert High Score software and the PCPDF data bank. All glasses 
were also analyzed from the morphological and compositional 
points of view by Field Emission Scanning Electron Microscopy 
(FESEM – SUPRATM 40, Zeiss) equipped with energy-dispersive 
spectroscopy (EDS).

In order to assess the effect of the introduced oxides on the 
mechanism of bioactivity, glass powders were immersed in SBF 
(Kokubo and Takadama, 2006) for different time periods (1, 3, 7, 
14, 21, and 28 days). The test was performed in an orbital shaker 
(KS 4000i control, IKA®) at 37°C using a glass powder (mg)/SBF 
(ml) ratio of 1 and an agitation rate of 120  rpm (Magallanes-
Perdomo et  al., 2012). At the end of the incubation time, the 
powders were washed with water and acetone, filtered, dried 
during 3 h at 60°C, and analyzed by means of XRD and FESEM-
EDS. For comparison, the bioactivity of the original 45S5 BG was 
evaluated for up to 3 days.

suspension Preparation and stability evaluation
Doped glass powders and chitosan were used to produce organic/
inorganic composite coatings on AISI 316L stainless steel 
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substrate (15 mm × 20 mm) by EPD, using both direct current 
(DC) and alternating current (AC). Suspensions containing 
0.5 g/L chitosan (80 kDa, 85% deacetylation, Sigma) and 1.5 g/L 
glass powders were prepared in a solvent mixture of 1  vol% 
acetic acid (Sigma-Aldrich), 20 vol% pure water (Purelab Option 
R7BP, ELGA), and 79 vol% ethanol (VWR). These experimental 
parameters were chosen according to previously reported results 
(Grandfield and Zhitomirsky, 2008; Cordero-Arias et al., 2013). 
Before the EPD process, the suspensions were sonicated with a 
VWR USC 300 sonicator for 1 h and stirred during 5 min to avoid 
particle sedimentation. Suspension stability was evaluated by 
measuring the ζ-potential, using a Zetasizer nano ZS equipment 
(Malverb Instrument, UK).

coatings Deposition and characterization
Different deposition parameters were investigated. For the 
DC-EPD process, the deposition time varied between 30 s and 
2 min and the electric potential in a range of 20–80 V. Regarding 
the AC-EPD, the voltage varied in the range of 8–20 V and the 
deposition time between 1 and 2  min; moreover, a frequency 
range of 4–10 KHz and a duty cycle of 70–80% were considered. 
For both, DC- and AC-EPD procedures, the distance between the 
deposition and counter electrodes was kept constant at 10 mm. 
The choice of the optimal parameters was carried out on the basis 
of morphological analysis of the samples by means of the coating 
homogeneity in preliminary experiments. Coating microstruc-
ture was evaluated by SEM (Hitachi S4800) while FTIR (Nicolet 
6700) analysis was carried out to determine the presence of 
chitosan and the different glass particles in the coating.

The mechanical characterization of the coatings was per-
formed through the tape test (four samples for each composition), 
in accordance with ASTM D3359-09 standard, and a qualitative 
flexural bend test by manually flexing the sample up to an angle 
of 180° according to previous studies (two samples for each com-
position) (Chen et al., 2013; Cordero-Arias et al., 2013, 2014). The 
deposited mass was calculated by weighing the samples before 
and after the deposition process, both using AC- and DC-EPD 
methods. Chitosan/45S5-Sr coatings were selected as an example, 
and 10 measures were performed for each deposition by means of 
a precision balance (0.0001 g).

The surface roughness (Ra) of all coatings, synthesized both 
using AC-EPD and DC-EPD, was measured by means of a laser 
profilometer (UBM, ISC-2); the analysis was performed in tripli-
cate. The coating wettability was estimated through static contact 
angle measurements using a DSA30 instrument (Kruess GmbH, 

TaBle 1 | compositions of the 45s5-based bioactive glasses 
investigated.

%wt 45s5 45s5-sr 45s5-Zn 45s5-sr-Zn

SiO2 45.00 43.01 43.92 43.46

Na2O 24.50 23.42 23.91 23.66

P2O5 6.00 5.73 5.86 5.79

CaO 24.50 18.19 18.58 18.38

SrO 0.00 9.65 0.00 4.87

ZnO 0.00 0.00 7.74 3.83

Germany). Five measurements for each sample were carried out 
using distilled water.

Bioactivity test in SBF was performed according to Kokubo’s 
protocol (Kokubo and Takadama, 2006) to evaluate the influ-
ence of the doping elements on the final bioactivity of the coat-
ing. Coated samples were immersed in 40 ml of SBF solution 
maintained at 37°C for 1, 3, 7, 14, 21, and 28 days. Every 7 days, 
the SBF solution was refreshed. After the immersion period, 
samples were analyzed by means of SEM, XRD, and Raman 
spectroscopy (LabRAM HR800, Horiba Jobin Yvon) to evaluate 
the formation of hydroxyapatite (HAp) or its precursor on the 
samples surfaces.

resUlTs

glasses synthesis and characterization
The structural analyses of Zn- and/or Sr-doped glasses (Figure 1) 
demonstrated that all glass powders were amorphous; therefore, 
the introduction of Zn and Sr oxides did not induce nucleation of 
crystalline phases. Also from the morphological point of view, no 
significant differences were evidenced by FESEM analyses while 
the presence of doping elements was verified by means of EDS 
analysis (data not shown here).

Immersion tests in SBF solution revealed the influence of Sr 
and Zn on bioactivity of the glasses. In particular, Zn-containing 
glasses showed a delay in the nucleation of HAp, even if the silica 
gel formation and its enrichment in Ca and P were observed after 
few days of SBF immersion.

Figure 1 reports the XRD patterns of all glasses before and 
after SBF treatment up to 1 month; as it can be noticed, no crystal-
lization peaks were observed for 45S5-Zn glasses (Figure 1A), but 
only the typical silica-gel halo at about 2 theta = 20°–25° after 
3 days of immersion in SBF was noticed. XRD analyses of 45S5-Sr 
glasses (Figure 1B) showed always the presence of the silica-gel 
halo after 1 day of treatment and the appearance of HAp peaks 
after 7 days of immersion in SBF; then in this case only a slight 
delay, in comparison to the pristine glass (45S5 BG, Figure 2), in 
the HAp crystallization was observed. Glasses containing both 
Zn and Sr showed an intermediate behavior: silica gel was present 
after 3 days of SBF immersion, but the HAp peaks appeared only 
after 1 month of treatment.

The results obtained by means of XRD analyses were con-
firmed by FESEM observation and EDS analyses, reported in 
Figures 3 and 4 respectively. Regarding 45S5-Zn glass powders, 
no formation of crystals with the typical globular shape of HAp 
was evidenced up to 1  month, even if a reaction layer can be 
noticed on SEM images (Figure  3A) and an increase of Ca 
and most of all P was evidenced by EDS analysis (Figure 4A). 
A noticeable increase of Ca and P concentration together 
with the decrease of Na were also evidenced for 45S5-Sr glass 
(Figure  4B). SEM analyses revealed the presence of globular 
agglomerates with the typical morphology of in vitro self-grown 
HAp (Kaur et al., 2014) after 7 days of SBF treatment. Also in 
this case, 45S5-ZnSr presents an intermediate performance: 
EDS analysis showed a significant increase of Ca and P and a 
reduction of Na concentrations, which are intermediate between 
those of 45S5-Sr and 45S5-Zn. Moreover, globular precipitates  
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FigUre  1 | XrD patterns of 45s5-Zn (a), 45s5-sr (B), and 45s5-Znsr (c) before and after sBF treatment up to 1 month. (•) Hydroxyapatite, (–) silica gel.
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FigUre 2 | XrD patterns of 45s5 (Bg) before and after sBF treatment up to 3 days. (•) Hydroxyapatite, (–) silica gel.

FigUre 3 | seM micrographs of 45s5-Zn (a), 45s5-sr (B), and 45s5-Znsr (c) after different times of immersion in sBF.
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FigUre 4 | atomic percentages variation (eDs analyses of 500× area) of 45s5-Zn (a), 45s5-sr (B), and 45s5-Znsr (c) after immersion in sBF.

October 2015 | Volume 3 | Article 1596

Miola et al. EPD of chitosan/Zn-Sr-doped 45S5

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

were confirmed to form after 28 days of immersion by means of 
SEM observation.

suspension stability
The ζ-potential results for BG suspension stability are presented 
in Table 2. For the Sr- and Zn-doped BGs/chitosan suspensions, 
the ζ-potential results show a similar value. All systems exhibit a 
relative high standard deviation (14 mV), and this result can be 
related to the large size of the glass particles decreasing the suspen-
sion stability. Nevertheless, a cathodic deposition is predicted for 
all the systems. It can be assumed that deposition is controlled by 
the chitosan molecules, which move the potential from a negative 

value for the BG to a positive value when chitosan is incorporated, 
this occurs by the esterification that the polymer chain has on 
the surface of the BG particles, as discussed in previous studies 
(Zhitomirsky et al., 2009; Pishbin et al., 2011; Chen et al., 2013; 
Cordero-Arias et al., 2013).

The fresh prepared suspensions exhibited a pH value in the 
range of 3–4.5 for all suspensions. Under those conditions, the 
suspensions were used for EPD.

coating synthesis and characterization
Using the DC-EPD technique, homogeneous and well-attached 
coatings were obtained for the 45S5-Sr- and 45S5-ZnSr-based 
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TaBle 2 | ζ-potential results for suspensions containing the different 
doped bioactive glasses in a mixture with chitosan.

suspension ζ-Potential (mV)

45S5-Sr/Ch +29 ± 14

45S5-Zn/Ch +31 ± 15

45S5-ZnSr/Ch +36 ± 14

FigUre 5 | images of the electrophoretic coatings using both Dc (a–c) and ac-ePD (D–F) for the different chitosan/Bg systems investigated.
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coatings using 75 V and 1 min of deposition potential and time, 
respectively (Figures 5B,C). In the case of the 45S5-Zn/Ch sys-
tem, the coatings presented a higher porosity and microcracks, 
which are likely due to a stronger hydrolysis during the deposition 
(Figure 5A). When AC-EPD was used, homogeneous and well-
attached coatings were obtained for the different glasses using 
20 V of deposition potential, 2 min of deposition time, 10 kHz of 
frequency, and a duty charge of 80% (Figures 5D–F). Comparing 
the 45S5-Zn/Ch produced by DC-EPD and AC-EPD, better coat-
ings were produced using the AC-EPD method since the voltage 
is periodically inverted, the supplied energy is not sufficient to 
cause water hydrolysis, and the coatings appeared more homoge-
neous. These results are in accordance with previously reported 
data (Neirinck et al., 2009; Chávez-Valdez and Boccaccini, 2012; 
Chen et al., 2013). The used voltage did not have influence on the 
deposition of 45S5-Sr powders, allowing a uniform deposition 
both in AC and DC processes. Finally, in 45S5-ZnSr-containing 
coating, a low amount of bubbles was detected, but there were no 
differences between AC and DC deposition.

The qualitative bending test demonstrated an optimal adhe-
sion of all coatings on the substrates, without the formation of 
cracks or detachments (Figure 6).

Concerning the measurement of deposited mass, AC-EPD led 
to a deposited mass of 1.3 ± 0.2 mg/cm2 while 0.8 ± 0.2 mg/cm2 
was calculated for DC-EPD coatings.

The tape test (Figure 7), performed in accordance with ASTM 
D3359-09, evidenced some differences among the various coat-
ings; the 45S5-Zn coatings showed a damage classified as 2B 

for AC-EPD (65% of the coating removed) and 3B for DC-EPD 
(25% of the coating removed). 45S5-Sr coatings revealed a dam-
age <5% for both deposition modes and were classified as 4B. 
Finally, 45S5-ZnSr coatings showed a significant damage both for 
AC-EPD (classified as 1B, more than 65% of the coating removed) 
and for DC-EPD (classified as 2B, 65% of the coating removed).

The morphological analysis of the coatings is reported in 
Figure 8. As it can be observed, the 45S5-Zn coatings exhibit poor 
homogeneity, and the glass particles formed clusters which are 
well embedded in the polymeric matrix. Regarding the deposition 
process, AC-EPD allowed depositing glass particles/clusters with 
greater dimensions than the DC-EPD process, covering more of 
the substrate surface. 45S5-Sr coatings appear relatively more 
homogenous and uniform with glass particles well integrated in 
the chitosan matrix. No substantial difference between DC- and 
AC-EPD is observed in terms of microstructure. Concerning 
the 45S5-ZnSr coatings, a more pronounced difference was 
noticed between DC and AC deposition; the coatings obtained 
with DC-EPD are clearly less consistent and homogenous in 
comparison to those synthesized with AC-EPD, similar results 
for DC- and AC-EPD for organic/inorganic coatings have been 
previously reported (Chen et al., 2013).

Figure  9 shows as example the FTIR spectrum of an 
Sr-containing coating. In order to verify the presence of chitosan, 
the FTIR spectrum of pure chitosan powder was obtained 
together with that of pure glass powder (45S5-Sr). Moreover, also 
the spectrum of a chitosan coating was obtained.

FTIR analysis evidenced the composite nature of all coatings. 
The chitosan characteristic peaks were present in all spectra, 
in particular the peaks around 891 cm−1 and 1150 cm−1, which 
correspond to the saccharide structure and are due to the vibra-
tions of the glycosidic bonding (–C–O–C–). The stretching of the 
C=O group in the glucosamine unit appears at about 1650 cm−1 
and corresponds to the amide ι band. The band at 1570  cm−1 
corresponds to the amide II band, indicating the NH-bending 
vibrations in the amide group (Gebhardt et al., 2012). Finally, the 
peak at 1350 cm−1 is ascribable to the vibration of the C–H/N–H 
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FigUre 7 | Tape test results for the different chitosan/45s5-doped Bg coatings on stainless steel aisi 316l substrate confirming different adhesion 
behavior of coatings depending on deposition mode (ac- or Dc-ePD).
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group. Instead, the characteristic bands of BG are located at 
about 916 cm−1 and 496 cm−1 and correspond to the vibration of 
Si–O–Si and P–O groups, respectively.

FigUre 6 | Digital camera images of the surface of coatings after bending tests. Coatings produced by means of DC-EPD (a–c) and AC-EPD (D–F). Scale 
bar: 1 mm.

The roughness of the coatings was evaluated and the obtained 
values are reported in Table 3. As it can be observed, the rough-
ness values are generally higher for coatings obtained by AC-EPD 
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process. This behavior is probably due to the grater amount of 
material deposited.

Table 3 reports also the results of wettability test; the values of 
the contact angle measurements varied between 35° and 80°. As 

reported in the literature (Chen et al., 2013), the presence of BG 
should lead to hydrophilic properties, and hydrophilic surfaces 
are promising for the in vitro/in vivo cells interaction.

Figure 10 shows the results obtained for 45S5-Zn-containing 
coating upon immersion in SBF. SEM images confirmed the 
results obtained on glass powders: the Zn presence causes a pro-
nounced inhibition of the precipitation of HAp. No differences 
were evidenced between AC- and DC-EPD modes at any time of 
immersion in SBF.

On the contrary, Sr-containing coatings were able to induce 
the precipitation of HAp after 1 day for AC-EPD and 3 days for 
DC-EPD coatings. Figure  11 shows SEM micrographs, XRD, 
and Raman analyses of the samples: globular agglomerates simi-
lar to in vitro grown HAp are visible after few days of treatment; 
the HAp presence is confirmed by XRD up to 7 days and Raman 
analyses from 7 to 28 days (Koutsopoulos, 2002; Li et al., 2004).

Finally, a reduced bioactivity was also evidenced for 
45S5-ZnSr-containing coatings, since up to 14  days no HAp 
precipitation was detected both with SEM and XRD analyses 
(Figure 12).

DiscUssiOn

This research has considered the synthesis of Zn- and Sr-doped 
glasses and their use to develop chitosan/glass composite coatings 

FigUre 8 | seM images of ac- and Dc-ePD-obtained coatings showing glass particles in chitosan matrix.

FigUre 9 | FTir spectra of chitosan/45s5-sr. The relevant peaks are 
explained in the text.
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FigUre 10 | seM micrographs of 45s5-Zn-containing coatings after different times of immersion in sBF.

TaBle 3 | roughness (ra) and contact angle values of the different produced coatings.

45s5-Zn ac 45s5-Zn Dc 45s5-sr ac 45s5-sr Dc 45s5-Znsr ac 45s5-Znsr Dc

Ra (μm) 1.8 ± 0.2 1.6 ± 0.08 2.2 ± 0.4 1.2 ± 0.1 1.6 ± 0.04 1.7 ± 0.2

Contact angle 47° ± 5° 54° ± 9° 41° ± 6° 62° ± 12° 73° ± 7° 59° ± 8°

FigUre 11 | seM, XrD, and raman analyses of 45s5-sr up to 1 month of sBF immersion.
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FigUre 12 | seM micrographs and XrD analyses of 45s5-Znsr after immersion in sBF solution.

by means of EPD. In particular, the influence of Zn, Sr, and their 
combination on the bioactivity process was investigated from 
both glass powders and coatings. Moreover, the effect of these 
ions in the EPD process was also evaluated.

Regarding the glass powders, both Zn and Sr introduction 
did not change the structure of the pristine glass (45S5), since 
no crystallization peaks were detected in XRD spectra. However, 
the incorporation of these elements, especially Zn, generated 
differences on the kinetics of bioactivity. In fact, Zn-doped glass 
(45S5-Zn) did not show the precipitation of crystalline HAp up to 
1 month of immersion in SBF solution (Figure 1A). The influence 
of Zn on the bioactivity process and its role in glass structure 
have been extensively debated in literature, as reviewed recently 
(Balasubramanian et  al., 2015). It has been reported that ZnO 
can act as a modifier (Anand et al., 2014; Balasubramanian et al., 
2015), leading to the decrease in surface area and pore size of glass. 
Moreover, when present in higher amount, ZnO can also act as an 
intermediate oxide, thus creating a more stable glass structure by 
forming covalent links between adjacent SiO4 tetrahedra (El-Kady 
and Ali, 2012; Balasubramanian et al., 2015). Regarding ZnO role 
in glass bioactivity and degradation, Kamitakahara et al. (2006) 
reported that the introduction of ZnO (replacing CaO) in a bioac-
tive apatite–wollastonite containing glass-ceramic decreases the 
glass-ceramic bioactivity. They reported that the glass-ceramic 
chemical durability was improved by adding ZnO because ZnO is 
an amphoteric oxide and shows very low solubility in SBF. Similar 
results were obtained by Goel et al. (2013). The silicon release of 
the glass-ceramic decreased with increasing ZnO content, and as 
a consequence, the formation of silanol groups was suppressed. 
It has been observed that the presence of zinc causes a general 
reduction in ion leaching in the 45S5 BG composition (Lusvardi 
et  al., 2009). This behavior was also confirmed by Aina et  al. 
(2009); in this study, it is proven that high level of ZnO (20 mol%) 
caused a drastic reduction of 45S5 glass leaching activity and so 
HAp formation. A 5 mol% of ZnO addition causes only a delay 
in the HAp precipitation; however, in this case, Zn substituted all 
glass elements. Oudadesse et al. (2011) reported that only 0.1 wt% 

of Zn (replacing Ca and Na) inhibited the glass dissolution, limit-
ing the formation of silica gel layer and generating a delay in the 
HAp formation.

The present study confirms that Zn introduction retards the 
glass degradation and the crystal nucleation of HAp, even if for 
glass powders the silica gel formation and its enrichment in Ca 
and P were observed after few days of SBF immersion.

Data regarding Sr introduction in glasses has shown that its 
addition does not result in any structural alteration of the glass 
network (Fredholm et al., 2010), since its role is similar to the 
calcium one. Moreover, in general, this element does not modify 
or even enhances the bioactivity of the pristine glass (Lao et al., 
2008, 2009). Only few studies reported a negative influence of Sr in 
HAp nucleation. Hoppe et al. (2014) reported that Sr-containing 
BG (type 1393) nanoparticles showed a delay in the bioactivity 
mechanism by increasing the Sr content, and Goel et al. (2011) 
showed that increasing the Sr2+/Ca2+ ratio in the glasses does 
not affect their structure significantly, but the apatite-forming 
ability is decreased considerably. In the present study, Sr intro-
duction entails a slight delay in the bioactivity kinetics, but XRD 
(Figure 1B) and FESEM-EDS analyses (Figures 3B and 4B) dem-
onstrated that after 3 days of SBF immersion, HAp crystals were 
present on the surface of the glass powders. It must be underlined 
that in the literature there are some controversies about the effect 
of Sr/Ca substitution on the dissolution mechanism of the glasses. 
These controversies seem to be due to the mixed use of weight 
instead of mole percent in glasses composition design (O’Donnell 
and Hill, 2010; Du and Xiang, 2012). In fact, if weight percentage 
is used, the higher molecular weight of SrO than CaO can lead to 
an actual increase of SiO2 content in mole percent, which involves 
an increase of network connectivity and a decrease of dissolution 
rate. Instead, if Sr is substituted in mole percent, the network 
structure of the glass does not significantly change and a higher 
dissolution rate is usually observed (Neel et al., 2009; O’Donnell 
and Hill, 2010)

Finally, the substitution of both Zn and Sr leads to an inter-
mediate behavior; the bioactivity process of 45S5-ZnSr glass is 
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obviously delayed; however, after 1 month in SBF solution, the 
performed XRD and FESEM-EDS analyses (Figures 1C and 4C) 
demonstrated the formation of a crystalline HAp layer on glass 
powders surface. Differently, Kapoor et al. evidenced HAp forma-
tion in few hours on Sr- and Zn-doped alkali-free glass, however 
with very different composition respect to the ones of the glasses 
investigated here (Kapoor et al., 2014).

The bioactivity test of composite coatings produced by EPD 
leads to the same observations: Zn introduction significantly 
modified the glass reactivity toward SBF solution while Sr 
introduction allows maintaining the bioactivity of the coatings.

By tuning the EPD parameters, it was possible to obtain 
composite coatings using all doped glasses with glass particles or 
clusters well embedded in the chitosan matrix; however, the glass 
composition seems to have an effect not only on the coating bio-
activity but also on their deposition and adhesion to the metallic 
substrate; in fact, Zn-containing coatings showed qualitative low 
adhesion with respect to Sr-containing ones (Figure 7).

Moreover, some differences were observed between AC and 
DC deposition; usually, the AC-EPD technique allowed deposi-
tion of composite coating without the formation of cracks and 
bubbles while some bubbles were observed using DC-EPD, spe-
cially for Zn-containing coatings. When water is used as solvent, 
the use of DC can originate water electrolysis, which leads to the 
formation of oxygen or hydrogen bubbles formation and their 
entrapment in the coating; in the AC-EPD technique, the voltage 
is periodically inverted, so the supplied energy is not sufficient 
to cause water hydrolysis, and consequent bubble formation, 
and the coatings appeared more homogeneous (Neirinck et al., 
2009; Chávez-Valdez and Boccaccini, 2012; Chen et  al., 2013). 
Moreover, AC-EPD allowed the deposition of a slightly greater 
amount of material than DC-EPD. As confirmed by Kollatha 
et al. (2013), AC-EPD is advantageous in depositing denser and 
less cracked coatings in comparison to DC-EPD. The bubble 
formation can also have some influence on the roughness of the 
coatings; nevertheless, the observed difference among roughness 
values can be due to the grater amount of material deposited on 
the substrates using AC-EPD.

cOnclUsiOn

The introduction of Zn and Sr in the 45S5 BG composition leads 
to a different behavior in terms of bioactivity, both for glass 
powders and composite coatings. The presence of ZnO allowed 
silica gel formation and its enrichment in Ca and P after few 
days of SBF immersion but inhibited the formation and precipi-
tation of HAp while SrO introduction allowed the formation of a 
crystalline HAp after 1–3 days of SBF treatment. All glasses were 
successfully used to synthesize composite coatings by means of 
EPD with chitosan as the biopolymer component by adjusting the 
process parameters; however, Zn-containing coatings showed 
low adhesion to the substrate in comparison with 45S5-Sr/chi-
tosan coatings. The deposition using AC revealed better coating 
quality than DC-EPD technique, since it allowed the realization 
of compact coatings, reducing bubbles and cracks formation. In 
conclusion, Zn concentration in 45S5 BG should be tailored to 
not completely inhibit the bioactivity process but at the same 
time to allow its antibacterial and anti-inflammatory effect and 
its role in bone metabolism while Sr-containing coatings, due to 
the bioactivity and biological effect of Sr, are promising materi-
als for orthopedic coatings. A deeper investigation should be 
carried out in future work to evaluate the Sr ability to stimulate 
bone formation through in vitro biological tests.
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