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Life on earth depends on dynamic chemical transformations that enable cellular functions, 
including electron transfer reactions, as well as synthesis and degradation of biomole-
cules. Biochemical reactions are coordinated in metabolic pathways that interact in a 
complex way to allow adequate regulation. Biotechnology, food, biofuel, agricultural, and 
pharmaceutical industries are highly interested in metabolic engineering as an enabling 
technology of synthetic biology to exploit cells for the controlled production of metabolites 
of interest. These approaches have only recently been extended to plants due to their 
greater metabolic complexity (such as primary and secondary metabolism) and highly 
compartmentalized cellular structures and functions (including plant-specific organelles) 
compared with bacteria and other microorganisms. Technological advances in analyt-
ical instrumentation in combination with advances in data analysis and modeling have 
opened up new approaches to engineer plant metabolic pathways and allow the impact 
of modifications to be predicted more accurately. In this article, we review challenges in 
the integration and analysis of large-scale metabolic data, present an overview of current 
bioinformatics methods for the modeling and visualization of metabolic networks, and 
discuss approaches for interfacing bioinformatics approaches with metabolic models 
of cellular processes and flux distributions in order to predict phenotypes derived from 
specific genetic modifications or subjected to different environmental conditions.

Keywords: metabolic engineering, synthetic biology, metabolic modeling, systems biology, metabolomics

iNTRODUCTiON

One of the greatest challenges for scientists is to understand the genetics, physiology, and 
biochemistry of plants and the interaction of genes with the environment in order to provide 
strategies to manipulate these processes to improve plant growth and performance and to 
prevent diseases. There have been immense advances in the past decades allowing scientists to 
sequence genomes of organisms addressing many questions, such as how the genome determines 
a plant’s response to any environmental stimuli. Simultaneously, the development of analytical 
technologies allows us to take a comprehensive and unbiased glance at the gene products, such 
as gene transcripts (mRNA), proteins, lipids, and metabolites. The post-genomics era was born 
with the establishment of transcriptomics, proteomics, lipidomics, and metabolomics, each 
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with their associated computational advances providing the 
path for data analysis, visualization, and integration to estab-
lish the relationships between the genome and gene products 
under certain conditions.

Metabolites are synthesized by enzyme-catalyzed reactions 
in any living cell. They are important for the maintenance 
and survival of cells, most importantly for energy storage and 
provision, and they also contribute to building and maintaining 
the cell’s structural components. Metabolites and their func-
tionalities are indispensable in the interaction of a cell with 
the environment, and it has been argued that the metabolome 
of any biological system represents the final “read-out” of the 
expression of many genes in that system in a particular situ-
ation, and reflecting gene × environment relationships (Hill 
et al., 2014).

In comparison to transcripts or proteins, metabolites have a 
vast range of different chemical structures with an astonishing 
array of different functional groups that lead to differences in 
their physical and chemical properties, such as solubility, reactiv-
ity, stability, and polarity (Trethewey, 2004). This sheer diversity 
presents challenges to assay these compounds in a multiparallel 
fashion. Firstly, a number of different solvent extraction proce-
dures need to be utilized to extract metabolites efficiently from 
any given plant tissue. In addition, no single analytical approach 
is capable of detecting and quantifying such chemical diversity; 
therefore, a range of different approaches (more detail below) has 
to be employed to analyze as many metabolites as possible. Today, 
metabolomics is considered as the science combining modern and 
sophisticated analytical instrumentation for metabolite detection 
and quantification with appropriate computational and statistical 
approaches to extract, mine, and interpret metabolomics data.

Metabolomics is now also becoming an important tool for 
biotechnological and metabolic engineering approaches, which 
aim to manipulate biochemical pathways to enhance the accumu-
lation of compounds of interest (Dromms and Styczynski, 2012). 
Since metabolomics can provide a more complete picture of the 
biological system studied, it has been argued that it can be applied 
to identify metabolite markers that indicate a particular pheno-
type [e.g., level of target compound(s)] to allow the assessment 
of the successes of engineering steps to provide further guidance 
for future engineering strategies (Beckles and Roessner, 2011). 
Historically, metabolic engineers have used the analysis of the lev-
els of the target compound(s) and potentially a few closely related 
metabolites to define metabolic engineering strategies. However, 
the potential metabolomics offers, which measures hundreds of 
metabolites rather than just a few, has only been rarely explored in 
metabolic engineering approaches, particularly in plants (Rios-
Estepa and Lange, 2007; Fernie and Morgan, 2013). The unbiased 
and broad approach of metabolomics helps to assess how plants 
maintain energy, carbon, and nutrient resources and provides 
information how these resources may potentially be redirected 
into the synthesis of the desired metabolites, therefore allowing 
smart engineering strategies to be developed.

In the following, we review current metabolomics technolo-
gies, information resources for metabolomics, as well as compu-
tational analysis and modeling approaches with a focus on plant 
related research.

TOOLS AND TeCHNOLOGieS TO STUDY 
PLANT MeTABOLiSM

Analytical Technologies
The plant metabolome, compared to the metabolome of other 
organisms, is represented by a particularly vast variety of chemical 
structures with an enormous diversity of chemical and physical 
properties (Villas-Boas et al., 2007). In the past decade, research-
ers have developed and validated a number of complementary 
analytical approaches to extract, separate, detect, and quantify 
this diversity. Different solvent extraction procedures may need 
to be employed to cover the range of polarity of metabolites 
(Dias et al., 2012). However, most routine metabolite extractions 
are based on a methanol/water/chloroform biphasic extraction, 
which captures a large complement of the plant metabolome.

Once metabolites are extracted, the complex mixtures need 
to be separated allowing individual detection and quantification 
of compounds. The polarity of metabolites also influences the 
choice of the separation approach. In liquid chromatography 
(LC)-based separations, researchers now commonly use two 
types of separation chemistries, such as C18 reverse phase, which 
separates the more hydrophobic complement of a metabolite 
extract, such as many secondary metabolites and lipids, and 
hydrophilic interaction chromatography, which is better suited 
for the polar metabolites (Callahan et al., 2009; Hill and Roessner, 
2015). In addition, many metabolites are either positively or nega-
tively charged molecules, therefore molecules need to be ionized 
using both positive and negative ionization mode (Beckles and 
Roessner, 2011; Hill et al., 2014). There are a number of different 
ionization techniques available, such as electrospray ionization 
or atmospheric pressure ionization, again each better suited for 
a particular subclass of metabolites. However, the most common 
technique used in LC-MS-based metabolomics is electrospray 
ionization, which allows reliable ionization of thousands of 
compounds (Hill et al., 2014).

An alternative separation technique is gas chromatography 
(GC), which is known for its superior separation power and 
reproducibility (Dias et al., 2015). The Metabolomics Standards 
Initiative (MSI; Fiehn et al., 2007) has developed minimal report-
ing standards for metabolomics data, and strategies to further 
enhance reproducibility, experimental and data standardization 
are continuously developed (Allwood et al., 2009). However, GC 
requires compounds to be volatile to be amenable for analysis. 
Most metabolites are not volatile and therefore require chemical 
derivatization to make them volatile. This limits the utility of 
GC-based separation in metabolomics applications; however, 
GC coupled to MS still remains the “work horse” in metabo-
lomics due to its reproducibility and its ease of use (Hill and 
Roessner, 2013).

Mass spectrometry (MS) is the most commonly used detec-
tor in metabolomics approaches. The power of MS is that it can 
distinguish the size of the ionized molecule (by determining the 
mass to charge ratio of each detected ion) and allows the deter-
mination of the number of individual ions detected. The mass to 
charge ratio determined by MS is used for compound identifica-
tion and the number of ions detected can be related back to initial 
concentration of the molecule in the metabolite extract. Another 
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TABLe 2 | Network visualization software tools that support metabolic 
data.

Name Reference URL

MetScape Plugin for 
Cytoscape

Karnovsky et al. 
(2012)

http://metscape.ncibi.org/

MetaMapp (MS data 
in context of metabolic 
networks using Cytoscape)

Barupal et al. (2012) http://metamapp.fiehnlab.
ucdavis.edu

MAVEN (LC-MS) Clasquin et al. (2012) http://maven.princeton.edu

VANTED Rohn et al. (2012) http://www.vanted.org

Pathomx Fitzpatrick et al. (2014) http://pathomx.org/
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advantage of MS is that it can fragment an ion once (MS/MS) or 
multiple times (MSn), a feature used for structural elucidation of 
unknown compounds. MS also has excellent capabilities to detect 
and distinguish isotopic patterns of each ion under analysis. This 
is particularly important for stable isotope labeling experiments 
used for metabolic flux analysis. MS analysis is able to deter-
mine enrichments in stable isotope labels in all the analyzed 
compounds and therefore allows determining metabolic fluxes 
through particular pathways. Most commonly 13C labeled meta-
bolic precursors are used, and the distribution and enrichment of 
the label across pathways of interest are quantified (O’Grady et al., 
2012; Chokkathukalam et al., 2014). 13C-labeling patterns can also 
be detected by nuclear magnetic resonance spectroscopy (NMR), 
which also represents an important platform for untargeted, non-
destructive metabolite profiling (Eisenreich and Bacher, 2007).

Metabolomics Data Analysis and 
visualization
Metabolic data give us a snapshot of the current state of an 
organism (Hill and Roessner, 2013). It represents the outcome of 
a preceding gene expression profile, which influences the activity 
of pathways, transport processes, as well as production and con-
sumption of metabolites. The resulting metabolic profile can be 
used to classify organisms, for example, by genotype or treatment. 
Furthermore, these profiles enable comparative analysis between 
selected treatments or genotypes (Hill et al., 2013a,b, 2015) and to 
obtain information about metabolites with most or least changes 
as a result of changes in the gene expression profile.

There are two general methods to analyze metabolic data, 
which can also be combined. The first, analytical method uses 
commonly known statistics and clustering algorithms, the 
second method implies the use of networks to visualize spatial 
and temporal properties of the data. Performing data statistics in 
the scope of networks for visualization purposes represents the 
combination of both methods.

Scientists can choose from a broad repository of statistical 
methods with respect to the objective at hand. Methods such as 
frequency distribution, analysis of variance (ANOVA), min–max, 
and Pearson’s and Spearman-rank correlation are examples for 
univariate data analysis. Principal component analysis (PCA), 
partial least squares regression (PLS), and multivariate analysis 
of variance (MANOVA) are commonly used for multivariate 
data analysis. Self-organizing maps (SOM), support vector 
machines (SVM), and k-means are popular methods for cluster 
analysis. Generated results can be visualized using different 
kinds of diagrams such as plots, histograms, cluster diagrams, 
and heat maps.

To perform the above-mentioned analytical methods, several 
software tools can be used. There is a distinction between low-
level tools to provide the actual set of algorithms, which are in 
turn used by high-level tools to provide user-friendly application 
of those algorithms. Table 1 shows a selection of frequently used 
software tools.

Graphical representations of metabolic pathways and networks 
have been used for long time to represent knowledge about meta-
bolic processes, and with the availability of pathways in databases, 

TABLe 1 | Software tools for metabolomics data analysis.

Name Reference URL

HiGH LeveL

MetaboAnalyst Xia et al. (2015) http://www.
metaboanalyst.ca/

XCMS Gowda et al. (2014) https://xcmsonline.
scripps.edu/

MetATT (Metabolomics 
tool for analyzing two-
factor and time-series 
data)

Xia et al. (2011) http://metatt.
metabolomics.ca/MetATT/

metaP-Server Kastenmüller et al. (2011) http://metap.helmholtz-
muenchen.de/metap2/

LOw LeveL

Matlab (PLS toolbox, 
msalign, etc.)

MathWorks (2012) http://ch.mathworks.com/
products/matlab/

R-packages 
(AmsRPM, apLCMS, 
metabolomics, muma, 
etc.)

R Development Core Team 
(2008), Kirchner et al. 
(2007), Yu et al. (2009), 
Gaude et al. (2013)

http://www.r-project.org/

several tools have been developed to visualize metabolic data in 
the context of networks. These tools mostly support tasks such 
as data mapping and network analysis but often also try to help 
with layout and exploration of data. The latter touches the field of 
visual analytics for metabolic information (Kerren and Schreiber, 
2012, 2014). Table 2 shows a selection of tools supporting visuali-
zation of metabolic data as diagrams or heat maps in the context 
of biological networks.

As a result of applying common procedures of extracting 
and measuring metabolic abundance and concentration, usually 
metabolomic data possesses no spatial information. With the 
advent of modern methods such as imaging MS (Kaspar et al., 
2011; Miura et  al., 2012), additional spatial information can 
be gathered and displayed using 2D (Rohn et  al., 2011) or 3D 
immersive techniques (Sommer et al., 2011).

Figure  1 shows an exemplary metabolic network in SBGN 
style (see section Standards for Systems and Synthetic Biology). 
Time series data for different genotypes and treatments have been 
mapped on the tricarboxylic acid (TCA) cycle pathway. The left 
figure not only shows the data using box plots but also a Pearson’s 
correlation analysis for starch production (yellow). Red- and 
blue-colored elements have a positive or negative correlation, 
respectively. For further investigation, single elements can be 
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enlarged to support additional exploration of data as shown on 
the right side.

Databases and Repositories for 
Metabolites and Metabolism
Given the tools introduced before, metabolite and pathway 
databases and repositories are valuable resources that can be 
used to manage, explore, and export knowledge about metabo-
lites and reactions in meaningful ways. They thereby deliver 
an encyclopedia on metabolic information as well as a base 
for integration of complex data into metabolic pathways in the 
context of graphical pathway representations (e.g., data about 
compound levels, reaction flow, enzyme activity, and gene expres-
sion, see Metabolomics Data Analysis and Visualization). Often 
these databases and repositories also provide or allow building 
metabolic models which can be analyzed and simulated using 
mathematical modeling techniques, see Section “Methods for 
Metabolic Modeling in Plants.” A typical example of information 
provided by databases is shown in Figure 2.

A range of pathway databases and repositories are currently 
available; an overview is available from the Pathguide resource 
(Bader et al., 2006). In Table 3, we provide a summary of impor-
tant databases and repositories especially for plant research. It 
should be noted that in addition to general metabolic pathway 
databases such as Reactome, KEGG (Kyoto Encyclopedia of 

FiGURe 1 | A metabolic network of the tricarboxylic acid (TCA) cycle in SBGN style with experimental data from Optimas-Dw (Colmsee et al., 2012) 
[produced using vanted (Junker et al., 2006)]. More details are given in the text.

Genes and Genomes), and PANTHER Pathway, there are also 
general plant metabolic pathway databases (see Table 3) and sev-
eral species-specific plant metabolic pathway databases available, 
for example, for Arabidopsis AraCyc (Mueller et  al., 2003) and 
MetNetDB (Yang et al., 2005).

Examples for multispecies plant metabolic databases are:

 - PlantCyc, which contains curated information on pathways, 
metabolites, reactions, genes, and enzymes,

 - Arabidopsis Reactome, which has been extended from the 
initial representation of Arabidopsis pathways to further 
plant species and contains curated information about 
pathways, experimental evidence, literature citations, and 
further pathways imported from KEGG and AraCyc, and

 - MetaCrop, which focuses on crop plant species with agro-
nomical importance and contains curated information 
about pathways, metabolites, reactions, enzymes (including 
kinetic information), location, and developmental stage.

CURReNT STATUS OF eNGiNeeRiNG 
SYNTHeTiC MeTABOLiC NeTwORKS

For a long time, the use of biological organisms for the produc-
tion of chemicals was limited by the repertoire of biosynthetic 
pathways naturally present in these organisms. Microbial 
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www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org


FiGURe 2 | example information from the plant metabolic pathway database MetaCrop (Grafahrend-Belau et al., 2008): (left) clickable image of 
Calvin cycle represented in SBGN (see section Standards for Systems and Synthetic Biology) and (right) detailed information for a specific reaction of the 
Calvin cycle.
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low-molecular-weight metabolic end products have long been 
used as commodity chemicals for medical applications: for 
example, antibiotics, such as penicillin, or immunosuppressive 
drugs, such as cyclosporine, have been discovered in 1929 and 
1972, respectively (Drews, 2000). Microbes have also been used 
to produce chemical compounds via biotransformation, a process 
in which the compound of interest is produced by the microor-
ganism through enzymatic conversion of an external substrate 
added to the microbial culture medium, used, for example, for the 
production of acrylamide by nitrile-assimilating bacteria (Asano 
et al., 1982).

With the advent of recombinant DNA technology in the early 
1990s, it was possible to engineer specific genes in biological 
organisms, which has significantly reduced the time required for 
mutagenesis and selection of desirable traits. Genetic engineering 
made it possible to use heterologous hosts for the production of 
chemical compounds that are not naturally present in the organ-
ism. The emergence of the clustered, regularly interspaced, short 
palindromic repeat (CRISPR) and related technologies that use 
targeted genome editing via engineered nucleases are the latest 
developments to introduce alterations of genome sequences and 
gene expression, which can be ultimately used to also introduce 
modifications to existing metabolic pathways and to transfer 

novel traits in agricultural crops (Shan et al., 2013; Sander and 
Joung, 2014).

The development of new sophisticated genomic sequencing 
and other enabling technologies for synthetic biology facilitated 
the production of naturally present chemicals at levels that made 
extraction economically feasible, and the field of metabolic 
engineering began to emerge. Metabolic engineering is defined 
as the targeted modification of metabolic pathways of biological 
organisms for metabolite overproduction or the improvement 
of cellular properties (Lessard, 1996). Since the last decade, sig-
nificant progress was made to engineer the metabolism of plants 
to produce specific lipids, secondary metabolites, derivatives of 
complex natural products, and even vaccines (Mortimer et  al., 
2012). Many recent studies show that it is often not sufficient to 
modify existing metabolic pathways, but rather it is required to 
design metabolic pathways de novo from other plants or bacteria. 
Editing or redesigning existing plant metabolic networks is 
a challenging task that will benefit from advances in targeted 
genome modification, tissue-, cell-, and organelle-specific gene 
expression, the controlled expression of multigene pathways, 
and improvements in analytical technologies (as described in 
Analytical Technologies) as well as computational analysis and 
modeling methods (as described in Metabolomics Data Analysis 

http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
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TABLe 3 | A summary of important databases and repositories for plant 
research.

Database exchange 
(download) 
formats

Reference URL

Metabolite databases 
(provide information about metabolites/compounds such as names, 
chemical structures, molecular weight, occurrence in pathways, eC 
number, and mass spectrum references)

ChEBI XML, SDF, 
Tab-delimited

De Matos 
et al. (2009)

http://www.ebi.ac.uk/chebi/

GMD MS formats Kopka et al. 
(2005)

http://gmd.mpimp-golm.
mpg.de/

KEGG compound Jmol, MDL/
MOL, KCF, 
KegDraw

Kanehisa 
et al. (2014)

http://www.genome.jp/
kegg/compound/

PubChem XML, SDF, 
SMILES

Bolton et al. 
(2008)

http://www.ncbi.nlm.nih.
gov/pccompound

Reaction databases 
(provide information about reactions and enzymes such as names, 
reaction diagrams, reaction mechanisms, enzymatic parameters, 
occurrence in pathways, and links to encoding genes)

BRENDA SBML, Fasta, 
CVS

Scheer et al. 
(2010)

http://www.brenda-
enzymes.org/

ExPASy-enzyme – Gasteiger 
et al. (2003)

http://enzyme.expasy.org/

KEGG enzyme/
KEGG reaction

– Kanehisa 
et al. (2014)

http://www.genome.jp/
kegg/reaction/

Rhea BioPAX, 
Tab-delimited

Morgat et al. 
(2015)

http://www.ebi.ac.uk/rhea/

Sabio-RK SBML Rojas et al. 
(2007)

http://sabio.villa-bosch.de/

Pathway databases 
(provide information about plant-specific metabolic pathways such 
as names, involved reactions, metabolites and enzymes, and pathway 
structure)

KEGG pathway KGML, BioPAX Kanehisa 
et al. (2014)

http://www.genome.jp/
kegg/pathway.html

MetaCrop SBML, 
SBGN-ML

Schreiber 
et al. (2012)

http://metacrop.ipk-
gatersleben.de/

MetaCyc SBML, BioPAX Krieger et al. 
(2004), Caspi 
et al. (2006)

http://metacyc.org/

PANTHER 
pathway

SBML, BioPAX, 
SBGN-ML

Mi et al. 
(2013)

http://www.pantherdb.org/
pathway/

PlantCyc SBML, BioPAX http://www.plantcyc.org/

Reactome SBML, BioPAX Croft et al. 
(2014)

http://www.reactome.org/
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and Visualization, Databases and Repositories for Metabolites 
and Metabolism, and Computational Approaches for Metabolic 
Engineering).

The ultimate goal of synthetic biology is the efficient design 
of biological systems (Heinemann and Panke, 2006). In this sec-
tion, we will discuss the current status of engineering synthetic 
metabolic networks using recent examples for synthetic biology 
endeavors in plants: engineering of synthetic metabolic networks 

of plant lipids to provide an alternative and sustainable source of 
nutrients (see Metabolic Engineering of Plant Lipids to Provide 
an Alternative and Sustainable Source of Nutrients) and for the 
production of fuels from renewable resources (see Metabolic 
Engineering of Plant Lipids for the Production of Fuels from 
Renewable Resources), and plant secondary metabolites includ-
ing alkaloids and lignins (see Metabolic Engineering of Plant 
Secondary Metabolites).

Metabolic engineering of Plant Lipids to 
Provide an Alternative and Sustainable 
Source of Nutrients
Plant oils are a major component of human diets, comprising 
as much as 25% of average caloric intake (Broun et al., 1999). 
However, certain fatty acids such as omega-3 long-chain 
polyunsaturated fatty acids (ω3 LC-PUFA) are present pre-
dominantly in fish and have important functions for human 
health, as deficiencies in these fatty acids can increase the 
risk or severity of cardiovascular and inflammatory diseases 
(Abeywardena and Patten, 2011). Until recently, the chemical 
composition of plant oils was constrained by the repertoire of 
naturally present lipid biosynthetic pathways. Novel opportu-
nities have emerged to tailor the composition of plant-derived 
lipids so that they are optimized with respect to food func-
tionality and human dietary needs. For example, Petrie et al. 
(2010, 2012) have recently described metabolic engineering of 
ω3 LC-PUFA in plants: after inserting seven biosynthesis genes 
of the docosahexaenoic acid (DHA) biosynthesis pathway 
from microalgae into the genome of Arabidopsis thaliana, they 
were able to obtain ω3 LC-PUFA levels in seeds similar to that 
observed in bulk fish oil. If applied to oilseed crops such as 
Brassica napus, this technology could potentially form the basis 
of a plant-based sustainable source to complement the existing 
marine fish oil supply.

Metabolic engineering of Plant Lipids for 
the Production of Fuels from Renewable 
Resources
Fossil fuels are the primary source of many industrial products, 
but reserves are decreasing rapidly and are non-renewable, and 
their widespread use has contributed to environmental problems 
arising from increased CO2 levels in the atmosphere (Le Quéré 
et al., 2009). Currently, biologically derived fuels from plant oils 
represent one of the main strategies to provide renewable and 
sustainable source material that can potentially substitute fossil 
fuels in some industrial applications. Among the many proposed 
solutions, algal biofuels are seen as one of the most promising: 
algal biomass is less resistant to conversion into simple sugars 
than plant biomass due to lack of lignin, and there is no issue 
arising from the food versus feed dilemma as no farmland has to 
be diverted for the production of biofuels (Daroch et al., 2013). 
Over the last few years, progress was made in bioethanol produc-
tion through fermentation from algal feedstock (Kim et al., 2012) 
as well as biodiesel production from algal oils (Singh and Dhar, 
2011). Increasingly, research efforts are focusing to metabolically 
engineer lipid pathways to increase lipid accumulation without 
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compromising growth (Trentacoste et  al., 2013). Although 
previously A. thaliana mutants of lipid catabolism were found 
to be linked with impaired growth (Graham, 2008), Trentacoste 
et  al. (2013) demonstrated that disrupting lipid catabolism via 
the knockdown of a multifunctional lipase/phospholipase/acyl-
transferase in the microalgae Thalassiosira pseudonana led to an 
increased lipid accumulation without compromised algal growth. 
Further elucidation of lipid metabolism has the potential to lead 
to new strategies to engineer improved algal strains for their fuel 
molecules.

Metabolic engineering of Plant Secondary 
Metabolites
Plant secondary metabolites, such as alkaloids, flavonoids, ter-
penes, and phenylpropanoids (Hill et al., 2014), are considered 
to be non-essential for normal growth and development but play 
important roles in plant defense against pathogens and other 
environmental stresses. Additionally, plant secondary metabo-
lites are of great interest to pharmaceutical industries, as they 
often have beneficial medicinal effects on humans. For example, 
many plant alkaloids are currently in medical use, such as atro-
pine derived from the nightshade Atropa belladonna, morphine 
from the opium poppy Papaver somniferum, and quinine from 
the Cinchona tree (Roberts and Wink, 1998). Recent progress 
has been made in the metabolic engineering of morphine, a 
medicinally important benzylisoquinoline alkaloid: Runguphan 
et al. (2012) reengineered a codeine O-demethylase mutant that 
selectively demethylates codeine instead of both codeine and 
thebaine, as is common in the wild-type morphinan biosynthesis 
pathway. The integration of this highly selective mutant enzyme 
into commercial poppy plants as part of a future metabolic engi-
neering effort has the potential to increase yields of morphine 
and codeine.

The phenylpropanoid pathway is conserved in all ter-
restrial plants and is responsible for the biosynthesis of many 
compounds that are involved in plant cell wall structure and 
integrity, water transport, and plant defense. They are required 
for the biosynthesis of lignins, aromatic natural polymers in 
secondary cell walls derived from the oxidative polymeriza-
tion of monolignols. Decreasing or altering lignin structure 
provides enhanced cell wall digestibility and can greatly 
increase the utilization of lignin itself or cell wall polysac-
charides. Due to the importance of lignin in agriculture and 
industry, the genes participating in lignin biosynthesis have 
been identified and modified in many plant species including 
switchgrass (Fu et  al., 2011), A. thaliana (Gallego-Giraldo 
et al., 2011), and sugarcane (Jung et al., 2012). In a recent study, 
Zhang et al. (2012) were able to manipulate lignification in A. 
thaliana without compromising plant growth by introduc-
ing an artificial enzyme that esterifies the para-hydroxyl of 
phenols. The modified 4-O-methyl lignin monomers deprive 
the products of participation in oxidative dehydrogenation, 
leading to a decreased level of available monolignols for lignin 
polymerization and thus to depressed lignin biosynthesis. 
Further metabolic engineering efforts are currently underway 
to integrate this artificial enzyme into poplar with the potential 
to manipulate lignin levels.

COMPUTATiONAL APPROACHeS FOR 
MeTABOLiC eNGiNeeRiNG

A variety of different methods and approaches to collect experi-
mental data can be used to quantify metabolites and other compo-
nents of regulatory networks in plants, such as metabolomics (see 
Analytical Technologies). Computational modeling is an impor-
tant tool for metabolic engineering as it facilitates the integration 
and analysis of experimental datasets to quantify metabolic fluxes 
and model metabolic networks. Section “Methods for Metabolic 
Modeling in Plants” presents a brief overview of modeling 
approaches. There are many tools and databases available for 
computational modeling and therefore a standardized exchange 
of models is highly relevant; Section “Standards for Systems and 
Synthetic Biology” provides an introduction to major standards 
in systems in synthetic biology.

Methods for Metabolic Modeling in Plants
Several approaches have been developed to qualitatively and 
quantitatively model and simulate metabolic systems in silico. This 
ranges from topological analysis of network models (which looks 
at the interconnections between metabolites) to stoichiometric 
models (where constraints can be applied to define the poten-
tial metabolic flux state space or which can be analyzed using 
Petri-nets) to detailed kinetic models (which model changes of 
metabolite concentration over time). A current review (Baghalian 
et al., 2014) discusses the different modeling approaches, mod-
eling software, and metabolic models of several plants in detail. A 
particular challenge in plants compared to prokaryotic cells is the 
number of different compartments, which needs to be considered 
in metabolic models. In addition, plants have a greater complexity 
of metabolic pathways and especially a large number of special 
pathways for secondary metabolites.

For an overview, Figure  3 summarizes the major modeling 
approaches and their advantages and disadvantages. The most 
detailed are kinetic models, which allow for a comprehensive quan-
titative description and prediction of metabolic fluxes. However, 
in plants, these models are common only in the size of 10–20 
reactions. As we move further to the right in Figure 3, the model 
size increases, but the level of detailed descriptions and predictions 
decreases. As the other extreme, topological models allow covering 
the complete metabolism in plants, but predictions are restricted to 
qualitative information such as reachability of metabolites.

As detailed in (Baghalian et al., 2014), plant-specific compu-
tational models of metabolism can be used for different purposes 
such as predicting the behavior of the metabolism under different 
conditions, analyzing the effect of mutations, and investigating 
the effect of changes due to manipulation of the metabolic system, 
for example, via the introduction of new metabolic pathways. 
Computational models usually allow investigating effects much 
faster and cheaper than by running wet laboratory experiments 
(Rohwer, 2012). In addition, using a computational model can 
often generate a set of alternative strategies (Copeland et al., 2012). 
Finally, computational models allow integrating additional data 
such as transcriptomics and proteomics data sets, which together 
with bioinformatics approaches can support a better understand-
ing of metabolic behavior in plants (Töpfer et al., 2012, 2013).
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SBML Hucka et al. (2003) http://sbml.org/
CellML Cuellar et al. (2003) http://www.cellml.org/
SBGN Le Novère et al. (2009) http://sbgn.org/
SBOL Galdzicki et al. (2014) http://sbolstandard.org/

FiGURe 3 | Overview of metabolic modeling approaches and their advantages and disadvantages, adapted from Hartmann and Schreiber (2014). More 
details are given in the text.
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Standards for Systems and Synthetic 
Biology
This section presents a short introduction to major standards in 
systems and synthetic biology related to software infrastructure 
(see also Table  4). Software infrastructure plays an important 
role in systems biology research (Kitano, 2002), in particular 
in supporting standardized exchange of information between 
different tools and databases. The major standards are Systems 
Biology Markup Language (SBML), CellML, Systems Biology 
Graphical Notation (SBGN), and Synthetic Biology Open 
Language (SBOL), Language (SBOL), see (Schreiber et al., 2015) 
for detailed specifications.

Systems Biology Markup Language
Systems Biology Markup Language is a machine-readable format 
for representation and exchange of computational models in 
systems biology. It can represent models of metabolism, signal 
transduction, and gene regulation. The main goals of SBML are 
(1) sharing and publication of models, (2) reusability of models, 
and (3) surviving of models beyond the lifetime of the software 
used to create them. The SBML web page currently lists more than 
270 software applications that support SBML, and thousands of 
SBML-encoded models are available from public repositories 
such as BioModels including Path2Models (Büchel et al., 2013; 
Chelliah et al., 2013).

An SBML model consists of hierarchical lists of conceptual ele-
ments: (1) species (biological entities taking part in reactions), (2) 
compartments (physical containers for species), and (3) reactions 
(transformation, transport, or binding processes occurring over 
time). For the analysis and simulation of a model, more proper-
ties need to be defined such as stoichiometries, rate laws, local 
and global parameters, as well as units on quantities. A formal 

description of SBML can be found in the detailed specification 
(Hucka et al., 2015).

CellML
CellML is a machine-readable format for representation, publica-
tion, and sharing of mathematical models of cellular function. In 
comparison to SBML, the focus of CellML is on the representa-
tion of a variety of models such as models of biological pathways, 
electrophysiological models, and mechanical models. The 
CellML web page lists a couple of software tools which support 
the CellML format and the development of models. The CellML 
Model Repository (Lloyd et al., 2008) contains several hundred 
models including a subrepository providing SVPs (Standard 
Virtual Biological Parts) for the composition of synthetic biology 
models (Cooling et al., 2010).

A CellML model description consists of components and lists 
of connections between the components. A component contains 
at least one variable and mathematical equations describing 
its behavior. Connections are mappings of variables between 
components enabling information exchange between them. 
Components and connections can be imported from an existing 
model, CellML allows reusing of parts of other models. A detailed 
description of CellML can be found in the specification (Cuellar 
et al., 2006).
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Systems Biology Graphical Notation
Systems Biology Graphical Notation is a standard for the graphi-
cal representation of processes and networks studied in systems 
biology. Three SBGN languages (Process Description, PD; Entity 
Relationship, ER; and Activity Flow, AF) allow for the representa-
tion of different aspects of biological systems at different levels of 
detail as SBGN maps, thus providing corresponding views on the 
underlying biological system. The PD language (Moodie et  al., 
2015) describes biological entities and processes between these 
entities, the ER language (Sorokin et al., 2015) focuses on interac-
tions between biological entities, and the AF language (Mi et al., 
2015) depicts information flow between biological activities. An 
example of an SBGN PD map is shown in Figure 1.

The standardization of graphical representations helps to 
exchange biological knowledge more efficiently and accurately 
between different research communities, industry, and other 
players in systems biology. Several databases already provide 
maps in SBGN, e.g., BioModels Database including Path2Models 
(Büchel et al., 2013; Chelliah et al., 2013), MetaCrop (Schreiber 
et  al., 2012), PANTHER Pathway (Mi et  al., 2013), Reactome 
(Croft et al., 2014), and RIMAS (Junker et al., 2010). The SBGN 
web page lists more than 20 software tools that support creating, 
editing, and viewing of SBGN maps, some of these tools allow to 
visualize SBML models in SBGN PD.

Synthetic Biology Open Language
Synthetic Biology Open Language is a data format for sharing 
and exchanging synthetic biology designs. It allows synthetic 
biologists to provide an unambiguous description of a design in 
a hierarchical and fully annotated form with the goal to improve 
designing, building, testing, and dissemination of synthetic biol-
ogy designs. For the visualization of synthetic biology designs in 
SBOL, SBOL Visual (Synthetic Biology Open Language Visual) 
has been developed. It is a graphical notation allowing depiction 
of the structure of a design using glyphs to specify genetic parts, 
devices, modules, and systems.

The SBOL web page currently lists more than 20 software 
applications supporting SBOL and SBOL Visual. Some of these 
applications allow the generation of SBML models from syn-
thetic biology designs in SBOL (Roehner et  al., 2015) as well 
as the creation of synthetic biology designs in SBOL by auto-
matically generating DNA sequences from annotated SBML and 
CellML models (Misirli et al., 2011). More detailed information 

about SBOL and SBOL Visual can be found in the specifications 
(Quinn et al., 2013; Bartley et al., 2015).

CONCLUSiON

The total number of metabolites in the plant kingdom is estimated 
to be between 100,000 and 200,000 and can be highly variable 
depending on the physiological and environmental conditions as 
well as the genetic background of the plant (Hill et al., 2013a,b). 
Such great metabolic diversity holds great promise for expanding 
our repertoire of known beneficial plant compounds, as many 
metabolic pathways and regulatory mechanisms are still awaiting 
discovery. Reaching significant benchmarks toward attaining 
these goals will be possible with better analytical tools. More 
accurate representations of metabolite identities and quantities 
will require analytical instruments and improved techniques for 
sample extraction and data analysis. The engineering of synthetic 
metabolic networks of plants will require further advances in 
targeted genome modification such as the application of the 
CRISPR/Cas system, as well as tissue-, cell-, and organelle-spe-
cific gene expression, and the controlled expression of multigene 
pathways. The development of methods for measuring metabolic 
flux directly, the quantification of metabolites in individual plant 
compartments, and the analysis of metabolites and activities 
between compartments in vivo will be very important next steps 
to further enhance the predictive capabilities of existing metabolic 
models. Continuous development of more user-friendly software, 
databases, languages, and computer models that incorporate 
and interpret complex information will be crucial to handle the 
acquired data and to aid interpretation in a biological context. 
We are just at the beginning of a new area of synthetic biology in 
plants based on metabolomics and metabolic modeling.
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