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Plant biomass is the major renewable feedstock resource for sustainable generation of 
alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell 
walls are the principal component of plant biomass. Hence, a detailed understanding of 
plant cell wall structure and biosynthesis is an important aspect of bioenergy research. 
Cell walls are dynamic in their composition and structure, varying considerably among 
different organs, cells, and developmental stages of plants. Hence, tools are needed that 
are highly efficient and broadly applicable at various levels of plant biomass-based bioen-
ergy research. The use of plant cell wall glycan-directed probes has seen increasing use 
over the past decade as an excellent approach for the detailed characterization of cell 
walls. Large collections of such probes directed against most major cell wall glycans are 
currently available worldwide. The largest and most diverse set of such probes consists 
of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used 
as immunological probes to comprehensively monitor the overall presence, extractability, 
and distribution patterns among cell types of most major cell wall glycan epitopes using 
two mutually complementary immunological approaches, glycome profiling (an in vitro 
platform) and immunolocalization (an in  situ platform). Significant progress has been 
made recently in the overall understanding of plant biomass structure, composition, 
and modifications with the application of these immunological approaches. This review 
focuses on such advances made in plant biomass analyses across diverse areas of 
bioenergy research.
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iNTRODUCTiON

Complexity and Dynamics of Plant Cell walls Constituting 
Biomass
Plant biomass, the prime feedstock for lignocellulosic biofuel production, constitutes the principal 
sustainable resource for renewable bioenergy. Identifying the optimal plant biomass types that are 
most suitable for biofuel production and optimizing their downstream processing and utilization are 
at the forefront of modern-day lignocellulosic feedstock research. The focus of much of this research 
is the examination of diverse classes of plants for their potential as cost-effective and sustainable raw 
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materials for biofuel production. For example, biomass materi-
als originating from classes of plants ranging from herbaceous 
dicots (e.g., alfalfa), woody dicots (e.g., poplar), perennial 
monocots (e.g., Agave spp.), herbaceous monocots (e.g., grasses 
such as Miscanthus, sugarcane, and switchgrass), and woody 
gymnosperms (e.g., pines) are regarded as potentially promising 
resources for biofuel production (Galbe and Zacchi, 2007; Gomez 
et al., 2008; Somerville et al., 2010).

Cell walls constitute the major part of plant biomass, and 
physicochemical features of these cell walls vary among biomass 
materials from diverse plant classes (Pauly and Keegstra, 2008; 
Popper, 2008; Fangel et al., 2012). For example, cell walls from 
grass biomass have distinct structural and compositional features 
[with a higher abundance of glucuronoarabinoxylans and the 
presence of mixed-linkage glucans (Vogel, 2008)] that are quite 
different from those of highly lignified woody biomass (Studer 
et  al., 2011) or herbaceous dicot biomass (Burton et  al., 2010; 
Liepman et al., 2010). Even within a plant, the structure and com-
position of cell walls can vary significantly depending on the cell 
types, organs, age, developmental stage, and growth environment 
(Freshour et al., 1996; Knox, 2008). These cell wall variations are 
the result of differences in the relative proportions and structural 
dynamics that occur among the major cell wall polymers, which 
include (but are not limited to) cellulose, hemicelluloses, pectic 
polysaccharides, and lignin (Pauly and Keegstra, 2008). Several 
structural models for plant cell walls have been proposed and 
published (McNeil et  al., 1984; McCann and Roberts, 1991; 
Carpita and Gibeaut, 1993; Carpita, 1996; Cosgrove, 1997; 
Somerville et  al., 2004; Loqué et  al., 2015); all of these models 
focus on the primary wall. To our knowledge, no model has been 
proposed for secondary plant cell walls, which constitute the bulk 
of the biomass used for bioenergy production. In vascular plants, 
non-glycan components such as lignin (especially in secondary 
cell wall-containing tissues such as sclerenchyma and xylem cells) 
are important for optimal growth and development of plants 
by playing important roles in maintaining cell wall integrity to 
optimally facilitate water transportation, rendering mechanical 
support and defense against pathogens (Weng and Chapple, 
2010; Voxeur et  al., 2015). A high abundance of lignin in cell 
walls is regarded as disadvantageous for biomass utilization for 
biofuel production as it contributes significantly to recalcitrance. 
Transgenic plants that are genetically modified for reduced lignin 
biosynthesis have been shown to exhibit reduced recalcitrance 
properties (Chen and Dixon, 2007; Pattathil et al., 2012b). The 
abundance of diverse potential plant biomass feedstocks that 
are available to be studied and the aforementioned variations 
among the cell walls constituting them pose a major challenge in 
lignocellulosic bioenergy research.

Research on the structure, function, and biosynthesis of plant 
cell walls has received new impetus with advances in genome 
sequencing that have made available, for the first time, whole 
genomes from diverse plant families. Thus, complete genomes 
have been sequenced for plants from diverse phylogenetic 
classes including both herbaceous [e.g., Arabidopsis (The 
Arabidopsis Genome Initiative, 2000); Medicago (Young et  al., 
2011)] and woody dicots [e.g., Populus (Tuskan et al., 2006)] and 

monocotyledonous grasses [e.g., maize (Schnable et  al., 2009), 
rice (Goff et al., 2002; Yu et al., 2002), and brachypodium (The 
International Brachypodium Initiative, 2010)]. The availability 
of these genome sequences has, in turn, dramatically expanded 
experimental access to genes and gene families involved in plant 
primary and secondary cell wall biosynthesis and modification. 
Functional characterization of cell wall-related genes and the 
proteins that they encode, combined with expanded research 
on cell wall deconstruction, have dramatically enhanced our 
understanding of wall features important for biomass utilization.

Genetic Approaches to Studies of Cell 
walls with impacts on Lignocellulosic 
Bioenergy Research
Cell walls are known for their innate resistance to degradation 
and specifically to the breakdown of their complex polysac-
charides into simpler fermentable sugars that can be utilized for 
microbial production of biofuels. This property of plant cell walls 
is referred to as “recalcitrance” (Himmel et  al., 2007; Fu et  al., 
2011). Cell wall recalcitrance has been identified as the most 
well-documented challenge that limits biomass conversion into 
sustainable and cost-effective biofuel production (Himmel et al., 
2007; Pauly and Keegstra, 2008; Scheller et  al., 2010). Hence, 
identifying cell wall components that affect recalcitrance has 
been an important target of lignocellulosic bioenergy research 
(Ferraz et al., 2014). A number of plant cell wall polymers, includ-
ing lignin, hemicelluloses, and pectic polysaccharides, have been 
shown to contribute to cell wall recalcitrance (Mohnen et  al., 
2008; Fu et al., 2011; Studer et al., 2011; Pattathil et al., 2012b).

Most of the studies directed toward overcoming recalcitrance 
focus on genetically modifying plants by specifically targeting 
genes involved in the biosynthesis or modification of wall poly-
mers (Chen and Dixon, 2007; Mohnen et al., 2008; Fu et al., 2011; 
Studer et al., 2011; Pattathil et al., 2012b) with the objective of 
generating a viable, sustainable biomass crop that synthesizes cell 
walls with reduced recalcitrance. Identification of target genes for 
reducing recalcitrance has relied largely on model plant systems, 
particularly Arabidopsis, and then to transfer that information to 
biofuel crops. This has been particularly successful for genes and 
pathways that participate directly or indirectly in secondary cell 
wall biosynthesis and development. Secondary walls constitute the 
bulk of most biofuel feedstocks and thus become a main target for 
genetic modification (Chundawat et al., 2011; Yang et al., 2013). 
Secondary wall synthetic genes that have been investigated in this 
way include, for example, several genes that are involved in cel-
lulose [such as various CesA genes (Joshi et al., 2004, 2011; Taylor 
et al., 2004; Brown et al., 2005; Ye et al., 2006)] and xylan biosyn-
thesis [IRX8 (Brown et al., 2005; Ye et al., 2006; Peña et al., 2007; 
Oikawa et al., 2010; Liang et al., 2013), IRX9 (Brown et al., 2005; 
Lee et al., 2007, 2011a; Peña et al., 2007; Oikawa et al., 2010; Liang 
et al., 2013), IRX9L (Oikawa et al., 2010; Wu et al., 2010), IRX14 
(Oikawa et al., 2010; Wu et al., 2010; Lee et al., 2011a), IRX14L 
(Wu et al., 2010; Lee et al., 2011a), IRX15 (Brown et al., 2011), 
and IRX15L (Brown et al., 2011)] in dicots. In addition, a number 
of transcription factors including plant-specific NAC-domain 
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transcription factors [SND1, NST1, VND6, and VND7 in 
Arabidopsis (Kubo et al., 2005; Zhong et al., 2006, 2007b)], WRKY 
transcription factors [in Medicago and Arabidopsis (Wang et al., 
2010; Wang and Dixon, 2012)], and MYB transcription factors 
[MYB83 (McCarthy et al., 2009) and MYB46 (Zhong et al., 2007a) 
in Arabidopsis] with potential involvement in secondary wall bio-
synthesis and development have been functionally characterized. 
Examples of the successful transfer of insights gained in model 
dicots to studies of orthologous genes in monocots include inves-
tigations of rice IRX orthologs involved in xylan biosynthesis and 
secondary wall formation (Oikawa et al., 2010) and experiments 
on transcription factors controlling secondary wall formation in 
several grasses (Handakumbura and Hazen, 2012; Shen et  al., 
2013; Valdivia et al., 2013). These molecular genetic approaches 
toward understanding and manipulating cell wall-related genes 
for biofuel feedstock improvement would be assisted by improved 
methods for rapidly identifying and characterizing the effects of 
genetic changes on cell wall components.

Need for efficient Tools for Plant Cell wall/
Biomass Analyses
The structural complexity of plant cell walls, regardless of their 
origin, is challenging to analyze, particularly in a high-throughput 
manner. To date, most of the plant cell wall analytical platforms 
have been based on the preparation of cell wall materials and/
or extracts that are selectively enriched for particular wall 
polysaccharides, followed by colorimetric assays (Selvendran 
and O’Neill, 1987), chemical derivatizations coupled with gas 
chromatography (Albersheim et  al., 1967; Sweet et  al., 1974, 
1975a,b), mass spectroscopy (Lerouxel et al., 2002), and nuclear 
magnetic resonance spectroscopy (NMR) (Peña et  al., 2008) 
to gain compositional and structural information about those 
polysaccharides. Some of these methods have been adapted for 
biomass analytics [see, for review, Sluiter et al. (2010)]. Overall, 
these tools have allowed extensive progress in delineating basic 
structural features of diverse classes of plant cell wall polysac-
charides. However, these experimental approaches for plant cell 
wall/biomass analysis are time-consuming, require specialized 
and, in some cases, expensive equipment, are low in throughput, 
and usually provide information only about a single polysac-
charide of specific interest. However, given the number of wall 
components that have already been shown to influence cell 
wall recalcitrance, and the complex and heterogeneous nature 
of cell wall components in diverse plants, it is desirable to have 
additional tools, particularly those with higher throughput and 
the capability to monitor a broad spectrum of wall polymers. 
Over the past 10 years, immunological approaches for plant cell 
wall and biomass analyses have emerged as tools that are broadly 
applicable to multiple aspects of interests to the biofuel research 
community, including characterization of genetically altered 
plant feedstocks, investigations of the effects of diverse biomass 
pretreatment processes, and the effects of enzymatic or microbial 
deconstruction of cell walls. In the following sections, we review 
applications of two immunological tools for studies on plant 
biomass that employ a comprehensive collection of plant cell wall 
glycan-directed probes.

PROBeS FOR BiOMASS ANALYSeS

Currently, well-characterized cell wall-directed probes range 
from small molecules (Wallace and Anderson, 2012) to larger 
proteinaceous probes such as carbohydrate-binding modules 
(CBMs) and monoclonal or polyclonal antibodies (Knox, 2008; 
Pattathil et al., 2010; Lee et al., 2011b). In this review, we will focus 
on the latter cell wall-directed probes.

Glycan-Directed Probes
Monoclonal Antibodies
Plant cell wall glycan-directed monoclonal antibodies (McAbs) 
are among the most commonly used probes for plant cell wall 
analyses. McAbs, commonly available as hybridoma culture 
supernatants, are monospecific probes that recognize specific 
glycan sub-structures (epitopes) present in plant polysaccharides 
(Knox, 2008; Pattathil et al., 2010). McAbs have several advantages 
that make them particularly suited for use as glycan-directed 
probes. First, since each antibody is the product of a single clonal 
cell line, each McAb is by definition monospecific with regard 
to the epitope that is recognized. This is important for studies 
of glycans, whose structures are frequently repetitive and whose 
substructures can be found in multiple macromolecular contexts 
(e.g., arabinogalactan epitopes present on glycoproteins and on 
rhamnogalacturonan I). The monospecific nature of McAbs also 
means that, in theory, the binding specificity of the antibody can 
be determined unambiguously, although this is still difficult for 
glycan-directed antibodies given the complexity of plant cell wall 
glycan structures. McAbs also typically bind to their epitopes 
with high affinity (Kd ~10−6 M), which makes them very sensi-
tive reagents for detecting and quantitating molecules to which 
they bind. Finally, another significant advantage with McAbs 
is that their supply is not limited, as cell lines producing them 
can be cryopreserved indefinitely (some hybridoma lines whose 
plant glycan-directed antibodies are frequently used today were 
generated more than 20  years ago) and can be regrown at any 
time to produce additional McAb, which retains the binding 
selectivity and affinity of the original McAb, as needed in any 
quantities required. Currently, a worldwide collection of over 
200 McAbs (Pattathil et al., 2010, 2012a) exists (Figure 1) that 
encompasses antibodies recognizing diverse structural features 
of most major non-cellulosic cell wall glycans, including arabi-
nogalactans, xyloglucans, xylans, mannans, homogalacturonans, 
and rhamnogalacturonan I. So far, McAbs that bind reliably and 
specifically to rhamnogalacturonan II have not been reported. 
The available plant glycan-directed McAbs can be obtained from 
several stock centers (see Table 1) or from the individual research 
laboratories that generated them. A listing of the McAbs currently 
available is not practical here. The reader is referred to a plant cell 
wall McAb database, WallMabDB,1 where detailed descriptions 
of most of the currently available plant glycan-directed McAbs, 
including immunogen, antibody isotype, and epitope structure 
(to the extent known), can be obtained.

1 http://www.wallmabdb.net.
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Early studies in our laboratory screened 130 of the plant 
glycan-directed McAbs available at the time for their binding 
specificity to 54 structurally characterized polysaccharide prepa-
rations from diverse plants (Pattathil et al., 2010). Hierarchical 
clustering analyses of the resultant binding response data resolved 
the McAbs into 19 antibody clades based on their binding spe-
cificities to the 54 plant glycans tested (Pattathil et  al., 2010). 
A more recent study that included almost all available plant 

FiGURe 1 | Current worldwide collection of plant cell wall glycan-directed McAbs: the entire collection of ~210 McAbs was eLiSA-screened against 
a panel of 54 structurally known plant cell wall carbohydrate preparations (Pattathil et al., 2010) and they were clustered to 31 groups (as depicted by 
the white blocks) based on their binding specificities. The binding strengths are depicted in a dark blue–red–bright yellow color scheme where maximum and 
no binding are denoted by bright yellow color and dark blue colors, respectively. The names of individual McAbs are denoted on the right hand panel in different 
colors denoting 31 groups.

glycan-directed McAbs further resolved the antibody collection 
into about 31 clades of McAbs (Pattathil et al., 2012a). Figure 1 
shows the data from most recent screening studies employing 
~210 plant glycan-directed McAbs. While these broad specific-
ity screens provide considerable information about the binding 
specificities of the McAbs in the collection, they do not provide 
complete detailed epitope information for the antibodies. Such 
detailed epitope characterization studies require the availability 
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TABLe 1 | List of major CBMs currently used for plant cell wall analyses.

Group Protein enzyme Organism Type Reference

A. Cellulose-binding 
group

CBM1 Cellulase Trichoderma reesei Crystalline cellulose Reinikainen et al. (1992)
CBM2a Xylanase 10A Cybister japonicus Crystalline cellulose Bolam et al. (1998)
CBM3a Scaffoldin Clostridium thermocellum Crystalline cellulose Tormo et al. (1996)
CBM10 Xylanase 10A Cybister japonicas Crystalline cellulose Gill et al. (1999)
CBM4-1 Cellulase 9B Cellulomonas fimi Amorphous cellulose Tomme et al. (1996)
CBM17 Cellulase 5A Clostridium cellulovorans Amorphous cellulose Boraston et al. (2000)
CBM28 Cellulase 5A Bacillus sp. no. 1139 Amorphous cellulose Boraston et al. (2002)
CBM9-2 Xylanase 10A Thermotoga maritima The ends of cellulose chain Boraston et al. (2001)

B. Xylan-binding 
group

CBM2b-1-2 Xylanase 11A Cellulomonas fimi Both decorated and 
unsubstituted xylan

Bolam et al. (2001)

CBM4-2 Xylanase 10A Rhodothermus marinus Both decorated and 
unsubstituted xylan

Abou Hachem et al. (2000)

CBM6 Xylanase 11A Clostridium thermocellum Both decorated and 
unsubstituted xylan

Czjzek et al. (2001)

CBM15 Xylanase 10C Cybister japonicus Both decorated and 
unsubstituted xylan

Szabó et al. (2001)

CBM22-2 Xylanse 10B Clostridium thermocellum both decorated and 
unsubstituted xylan

Charnock et al. (2000)

CBM35 Arabino-furano-sidase 
62A

Cybister japonicus Unsubstituted xylan Bolam et al. (2004)

C. Mannan-binding 
group

CBM27 
(TmMan5)

Mannanase 5C Thermotoga maritima Mannan Filonova et al. (2007) and Zhang 
et al. (2014)

CBM35 
(Cjman5C)

Mannanase 5C Cybister japonicus Mannan Filonova et al. (2007) and Zhang 
et al. (2014)

D. Xyloglucan-
binding group

CBMXG34 Modified xylanase 
10A

Rhodothermus marinus Non-fucosylated xyloglucan Gunnarsson et al. (2006)

CBMXG34/1-X Modified xylanase 
10A

Rhodothermus marinus Non-fucosylated xyloglucan von Schantz et al. (2009)

CBMXG34/2-VI Modified xylanase 
10A

Rhodothermus marinus Non-fucosylated xyloglucan von Schantz et al. (2009)

CBMXG35 Modified xylanase 
10A

Rhodothermus marinus Non-fucosylated xyloglucan Gunnarsson et al. (2006)

E. Pectic galactan-
binding group

TmCBM61 GH53 endo-β-1,4-
galac-tanase

Thermotoga maritima β-1,4-galactan Cid et al. (2010)
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of purified, structurally characterized oligosaccharide fragments 
and/or purified and characterized glycosylhydrolases capable 
of selectively attacking epitope structures. To date, a relatively 
small number of plant glycan-directed McAbs have had their 
epitopes characterized in detail using these resources (Meikle 
et  al., 1991, 1994; Puhlmann et  al., 1994; Steffan et  al., 1995; 
Willats et al., 2000a; Clausen et al., 2003, 2004; McCartney et al., 
2005; Verhertbruggen et  al., 2009; Marcus et  al., 2010; Ralet 
et al., 2010; Pedersen et al., 2012; Schmidt et al., 2015). Recent 
advances in methods for immobilization of oligosaccharides on 
solid surfaces (Fukui et al., 2002; Wang et al., 2002; Willats et al., 
2002; Blixt et al., 2004; Pedersen et al., 2012) is facilitating such 
epitope characterization studies, but the bottleneck remains the 
availability of comprehensive sets of purified, well-characterized 
plant glycan-related oligosaccharides.

Carbohydrate-Binding Modules
Carbohydrate-binding modules are another set of proteina-
ceous probes that have been used to study plant polysaccharide 
localization patterns in  vivo (Knox, 2008). CBMs are amino 
acid sequences that are contiguous with the catalytic domain in 
a carbohydrate-active enzyme and are capable of binding to a 

carbohydrate structural domain (McCartney et al., 2006; Knox, 
2008). CBMs have been shown to enhance the efficiency of 
cell wall hydrolytic enzymes by facilitating sustained and close 
contact between their associated catalytic modules and targeted 
substrates (Boraston et al., 2004; Zhang et al., 2014). Although 
CBMs have been known to occur in several plant enzymes, most 
CBMs that are used as probes for cell wall glycans are microbial 
in origin (Boraston et al., 2004; Shoseyov et al., 2006). CBMs, in 
contrast to the antibody probes described above, are relatively 
easy to prepare, given that their gene/protein sequences are 
known (McCann and Knox, 2011). CBMs have been classified 
into 71 sequence-based families.2 CBMs from approximately half 
of these families have been shown to bind to diverse plant cell wall 
polysaccharides, including cellulose (Blake et al., 2006), mannans 
(Filonova et al., 2007), xylans (McCartney et al., 2006), and most 
recently, the galactan side chains of rhamnogalacturonan I (Cid 
et al., 2010). Protein engineering of a xylan-binding CBM using 
random mutagenesis, phage-display technology, and affinity 
maturation has been employed to generate xyloglucan-specific 

2 http://www.cazy.org/Carbohydrate-Binding-Modules.html.
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CBMs (Gunnarsson et al., 2006; von Schantz et al., 2009, 2012), 
showing that it is possible to generate CBMs with new and here-
tofore unseen specificities.

Carbohydrate-binding modules that have been used to detect 
cellulose, xylan, mannan, xyloglucan, and pectic galactans in 
plant cells and tissues, together with information about their 
origins, are listed in Table 1. Binding of various CBMs is usually 
assessed by an indirect triple-labeling immunofluorescence pro-
cedure (His-tagged CBM, anti-His mouse-Ig, and anti-mouse Ig 
fluorescein isothiocyanate) in plant tissue sections (Knox, 2008; 
Hervé et al., 2010), which is slightly more complicated than the 
double-labeling procedure used with McAbs (Avci et al., 2012). 
The binding specificities exhibited by the CBMs enlarge the 
suite of probes available for biomass analyses, given that at least 
some of them bind to carbohydrate structures, such as cellulose 
substructures, for which no McAbs probes have been developed 
to date. Additional advantages of the CBMs are the availability 
of their gene and protein sequences and the wealth of structural 
information, including in many instances X-ray crystal struc-
tures, about their binding sites. Potential disadvantages of CBMs 
are their typically lower affinity for their ligands and the lower 
selectivity of their binding sites compared with McAb probes. 
Nonetheless, CBMs are useful probes for analyzing biomass.

immunological Probes Against Lignin
Lignins are phenylpropanoid polymers comprising 5–30% of 
biomass weight and have been considered as important sources 
of renewable aromatics (McKendry, 2002). Lignin composition 
and structure vary considerably depending on the plant species 
and on the cell type where lignins are deposited (Ruel et al., 1994; 
Donaldson, 2001). For example, in gymnosperms, lignins are 
mainly composed of guaiacyl units, whereas in angiosperms, 
lignins are formed by guaiacyl and syringyl units (Donaldson, 
2001). In angiosperms, the guaiacyl-containing lignins are located 
mainly in secondary cell walls of vessels while syringyl-containing 
lignins are found on fibers (Ruel et al., 1994; Joseleau et al., 2004; 
Patten et al., 2010). Lignin composition and localization are also 
affected by pretreatment strategies aimed at removing lignin 
from biomass. For example, potassium permanganate labeling 
and electron microscopy studies revealed morphological altera-
tions in Zea mays lignins subjected to different thermochemical 
pretreatments (Donohoe et al., 2008).

Lignin is most frequently visualized in plant tissue sections 
using selectively reactive histochemical stains such as phloro-
glucinol–HCl and Mäule reaction that can distinguish guaiacyl-
enriched from syringyl-enriched cell wall regions (Patten et al., 
2010). Although the various histochemical lignin stains provide 
general information about the localization of different lignin 
types, they cannot provide detailed information about specific 
lignin substructures; this would require more highly selective 
probes.

Given the structural complexity and variability of lignin, 
several laboratories have undertaken the development of 
immunological probes for lignins and/or lignin substructures. 
Much of the early work in this area focused on the produc-
tion of polyclonal antisera. Thus, polyclonal antisera were 
raised against synthetic dehydrogenative polymers (DHPs) 

prepared from the appropriate p-hydroxycinnamic alcohols 
[p-hydroxyphenylpropane (H), guaiacyl (G), or syringyl (S), 
or mixtures of these] (Ruel et  al., 1994; Joseleau et  al., 2004). 
These polyclonal sera showed specificity toward the DHPs used 
to generate them. Other laboratories have generated polyclonal 
sera against milled wood lignin (Kim and Koh, 1997) or model 
compounds based on lignin substructures (Kukkola et al., 2003, 
2004). The main difficulty with these polyclonal sera is that they 
are in limited supply, and many of these antisera are no longer 
available. Thus, new immunizations must be carried out, with 
uncertain outcomes with regard to the ability to reproduce the 
specificity of the original antisera; a fundamental problem with 
polyclonal antisera. In an effort to overcome this limited supply 
issue, two lignin-related model compounds, dehydrodiconiferyl 
alcohol and pinoresinol, were used to generate McAbs against 
these two lignin dimers (Kiyoto et  al., 2013); supplies of these 
antibodies should not be limited. The antibody directed to 
dehydrodiconiferyl alcohol (KM1) displayed specificity toward 
a dehydrodiconiferyl alcohol 8-5′ model compound, whereas 
the antibody directed against pinoresinol (KM2) responded to 
two 8-8′ model compounds, pinoresinol and syrangaresinol. This 
recent development suggests that it will be possible, in principle, 
to generate specific McAbs against diverse lignin substructures. 
The number and diversity of lignin-directed McAbs will need 
to be increased in order to fully exploit these probes for greater 
insights into lignin structural diversity, localization patterns, and 
integration into the plant cell wall.

TwO MAJOR APPROACHeS FOR McAb/
CBM-BASeD ANALYSeS OF PLANT 
BiOMASS

The use of McAb/CBM probes to define the localization of plant 
cell wall components has a long history. These probes have 
been used in basic plant cell wall research to study the effects of 
mutations in wall-related genes on plant cell wall structure and 
composition, to study changes in plant cell walls during growth, 
development, and differentiation, and to study changes in plant 
cell walls that result from environmental and pathogenic influ-
ences. A comprehensive review of this literature is beyond the 
scope of this minireview and the reader is referred to several 
recent reviews to gain an overview of this literature (Knox, 1997, 
2008; Willats et al., 2000b; Lee et al., 2011b; McCann and Knox, 
2011). The use of McAb probes, in particular, is rapidly expanding 
due to the recent dramatic increase in the number and diversity 
of plant cell wall-directed antibodies (Pattathil et al., 2010) and 
the availability of more detailed information about the epitopes 
recognized by these McAbs (Pedersen et al., 2012; Schmidt et al., 
2015).

We will concentrate here on an overview of recent studies that 
have taken advantage of the availability of the comprehensive 
collection of cell wall-directed McAb/CBM probes for studying 
plant biomass of interest as possible lignocellulosic feedstocks for 
biofuel production. These studies have focused on using these 
probes to understand the effects of genetic modification on bio-
mass recalcitrance, to study the effects of different pretreatment 
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regimes on biomass digestibility, and to study how microbes 
being considered for consolidated bioprocessing deconstruct 
plant biomass. Two complementary experimental approaches 
have been principally employed in these studies, namely, glycome 
profiling (Moller et  al., 2007, 2008; Pattathil et  al., 2012a) and 
immunolocalization (Avci et  al., 2012). The following sections 
provide an overview of the studies with bioenergy implications 
done to date using these approaches.

Studies Using Glycome Profiling
Glycome profiling involves the sequential extraction of insoluble 
cell wall/biomass samples with a series of reagents of increasing 
harshness and then screening the extracted cell wall materials 
with McAbs to determine which cell wall polymers are released 
in which extract. Thus, this experimental method provides two 
pieces of important information: (1) it provides detailed informa-
tion about the composition of the biomass/cell walls; and (2) it 
provides information on how tightly the various wall components 
that can be detected are linked into the wall structure. The method 
is limited by the number of probes (McAbs, CBMs, etc.) used 
in the screen and the extent to which they are able to recognize 
the full breadth of wall components released by the extractive 
reagents. The substantial increase in number and diversity of cell 
wall probes over the past 10 years has dramatically improved the 
power and versatility of glycome profiling as a technique for rapid 
screening of cell wall/biomass samples.

The versatility of glycome profiling is also limited by the ability 
to immobilize the extracted wall components to a solid support. 
Diverse solid supports have been used, including nitrocellulose 
(Moller et  al., 2007, 2008), glass slides (Pedersen et  al., 2012), 
and multiwell plastic plates (Pattathil et al., 2012a). All of these 
suffer the limitation that most low-molecular-weight cell wall 
components that might be released in the wall extracts, especially 
low-molecular-weight glycans, do not bind to the solid supports 
without modification and therefore cannot be assayed by glycome 
profiling. The lower limit of the glycan size that will adhere has 
not been definitively determined, but is greater than 10  kDa 
(Pattathil et al., 2010).

The choice of extractive reagents that have been used for gly-
come profiling analyses has varied, as has their order. However, 
typically, the extractive reagents are used in order of increasing 
severity. Thus, relatively mild reagents, such as CDTA (Moller 
et al., 2007) or oxalate (Pattathil et al., 2012a), are used first, typi-
cally extracting primarily arabinogalactans and pectins. Harsher 
base extractions then follow, in which primarily hemicelluloses 
(e.g., xylans and xyloglucans) are extracted (Moller et al., 2007; 
Pattathil et  al., 2012a). For samples that contain significant 
amounts of lignin, which is the case for most biomass samples 
of interest to the biofuel industry, an acidic chlorite extraction 
(Ahlgren and Goring, 1971; Selvendran et  al., 1975) is used to 
degrade the lignin and release lignin-associated wall glycans; this 
chlorite extraction has most frequently been used after the first 
base extractions (Pattathil et al., 2012a) but has also been used as 
the first extraction step (de Souza et al., 2013). None of the extrac-
tion sequences used to date yield exclusively one kind of polymer 
in any given extract, an indication that each wall glycan exists 
as different subclasses that vary in their extent of cross-linking/

interactions within the wall. Ultimately, the choice of extraction 
reagents and their order depends on the individual investigator 
and the specific research questions under investigation.

Two approaches for glycome profiling of plant biomass/cell 
wall samples have been described. The first, termed comprehen-
sive microarray polymer profiling (CoMPP), is a dot blot-based 
assay system utilizing nitrocellulose as the solid support (Moller 
et  al., 2007, 2008) and typically employs ~20 glycan-directed 
probes for screening of three sequential extracts [CDTA (50 mM), 
4M NaOH, and Cadoxen (33%; v/v)] prepared from plant cell 
walls. The number of glycan-directed probes that could be used 
in CoMPP can readily be expanded. An alternative, ELISA-based 
approach, termed glycome profiling, uses 384-well microtiter 
plates as the solid support, and uses a broadly diverse toolkit of 
155 plant glycan-directed McAbs (Pattathil et al., 2012a) to screen 
sets of sequentially prepared plant biomass/cell wall extracts 
[typically, oxalate (50 mM), carbonate (50 mM), 1M KOH, 4M 
KOH, acidified chlorite, and 4M KOH post-chlorite]. The use of 
a suite of 155 McAbs ensures a wide-ranging coverage of multiple 
structural features on most of the major non-cellulosic plant wall 
glycans (Zhu et al., 2010; Pattathil et al., 2012a). The ELISA-based 
approach used in glycome profiling lends itself to facile automa-
tion and quantitation of antibody binding, hence substantially 
increasing the throughput of the analyses.

Glycome profiling has seen broad application to diverse experi-
mental approaches in lignocellulosic bioenergy research, includ-
ing analyzing cell walls from native/genetically modified, variously 
pretreated, and microbially/enzymatically converted plant biomass 
(DeMartini et al., 2011; Duceppe et al., 2012; Lee et al., 2012; Tan 
et al., 2013; Biswal et al., 2015; de Souza et al., 2015; Pattathil et al., 
2015; Trajano et al., 2015). Both CoMPP and glycome profiling 
have been used to undertake comparative glycomics of plant cell 
wall samples originating from diverse plant phylogenies (Popper 
et al., 2011; Sørensen et al., 2011; Duceppe et al., 2012; Kulkarni 
et  al., 2012). Examples of such analyses applied to questions 
related to bioenergy research include a recent study assessing the 
genetic variability of cell wall degradability of a selected number 
of Medicago cultivars with superior saccharification properties 
(Duceppe et  al., 2012) and an examination of five grass species 
that revealed commonalities and variations in the overall wall 
composition and extractability of epitopes among these grasses 
(Kulkarni et al., 2012). Glycome profiling has also been employed 
as an effective tool for analyzing cell walls from biomass crops that 
are genetically modified with the aim of reducing recalcitrance. 
Examples include examination of the effects on recalcitrance of 
mutations in lignin biosynthesis in alfalfa [cad1 (cinnamyl alcohol 
dehydrogenase 1) (Zhao et al., 2013) and hct (hydroxycinnamoyl 
CoA:shikimate hydroxycinnamoyl transferase) (Pattathil et  al., 
2012b)] and overexpression of the secondary wall-related tran-
scription factor, PvMYB4 in switchgrass (Shen et al., 2013).

Analyses using cell wall-directed probes have allowed the 
rapid identification and monitoring of structural and compo-
sitional alterations that occur in plant biomass under various 
regimes of pretreatments (Alonso-Simón et al., 2010; DeMartini 
et al., 2011; Li et al., 2014; Socha et al., 2014; Pattathil et al., 2015; 
Trajano et al., 2015). Studies on hydrothermally pretreated wheat 
straw using CoMPP showed that severe pretreatment regimes 
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induce significant alterations in wheat straw biomass, including 
reduction in various hemicellulose and mixed-linkage glucan 
epitopes (Alonso-Simón et  al., 2010). In a more recent study, 
glycome profiling of poplar biomass subjected to low, medium, 
and severe hydrothermal pretreatment regimes demonstrated 
that a series of structural and compositional changes occur in 
poplar cell walls during this pretreatment, including the rapid 
disruption of lignin–polysaccharide interactions even under 
mild conditions, with a concomitant loss of pectins and ara-
binogalactans, followed by significant removal of hemicellulose 
(xylans and xyloglucans) (DeMartini et  al., 2011). The major 
inference from this study was that lignin content per  se does 
not affect recalcitrance; instead, it is the associations/cross-links 
between polymers, for example, between lignin and various pol-
ysaccharides, within cell walls that play a larger role (DeMartini 
et al., 2011). Glycome profiling has also been used to examine the 
effects of other types of pretreatment regimes such as Ammonia 
Fiber Expansion (AFEX™), alkaline hydrogen peroxide (AHP), 
and various types of ionic liquids (ILs) on the composition and 
extractability of wall glycan epitopes in biomass samples from 
diverse bioenergy crop plants (Li et al., 2014; Socha et al., 2014; 
Pattathil et  al., 2015). These studies demonstrate that, unlike 
hydrothermal pretreatment, these three types of pretreatment, 
in general, cause loosening of specific classes of non-cellulosic 
glycans from plant cell walls, thereby contributing to the reduced 
recalcitrance exhibited by the pretreated biomasses. Conclusions 
from these studies contribute significantly to a deeper under-
standing of pretreatment mechanisms and ultimately will enable 
optimization of biomass pretreatment regimes and perhaps 
further downstream utilization processes for biomass from dif-
ferent plant feedstocks.

Glycome profiling has also been used to identify cell wall 
components that affect biomass recalcitrance. A recent study 
examined poplar and switchgrass biomass subjected to different 
pretreatments and correlated pretreatment-induced changes in 
the biomass with recalcitrance properties of the treated biomass 
samples (DeMartini et al., 2013). A set of samples with varying 
composition and structure was generated from native poplar 
and switchgrass biomass via defined chemical and enzymatic 
extraction. Subsequently, glycome profiling of the extracts was 
employed to delineate which wall components were removed and 
residual solid pretreated biomass samples were analyzed for their 
recalcitrance features. Major conclusions from this study are that 
pretreatment regimes affect distinct biomass samples differently 
and that the most important contributors to recalcitrance vary 
depending on the biomass. Thus, lignin content appears to play 
an important role in biomass recalcitrance particularly in woody 
biomass such as poplar (as they contain higher levels of lignin). 
However, subclasses of hemicellulose were key recalcitrance-
causing factors in grasses such as switchgrass. These results may 
have important implications for the biofuel industry as they sug-
gest that biomass-processing conditions may have to be tailored 
to the biomass being used as the feedstock for biofuel generation 
(DeMartini et al., 2013).

Another bioenergy-related area that has benefited from the 
use of plant cell wall glycan-directed probes is research into 
how microbes, particularly those being selected for biomass 

deconstruction, degrade plant biomass during culture. Such 
knowledge will be useful for bioengineering microbes for bet-
ter biomass conversion. An analysis of biological conversion 
of unpretreated wild-type sorghum and various brown midrib 
(bmr) lines by Clostridium phytofermentans examined variations 
in extractable polysaccharide epitopes of the cell-wall fractions 
in detail using glycome profiling (Lee et al., 2012). The conclu-
sions were that the loosely integrated xylans and pectins are 
the primary polysaccharide targets of C. phytofermentans and 
that these are more accessible in the bmr mutants than in the 
wild-type plants (Lee et al., 2012). In another study, an anaerobic 
thermophilic bacterium, Caldicellulosiruptor bescii, was shown 
to solubilize both lignin and carbohydrates simultaneously in 
swichgrass biomass at high temperature (Kataeva et al., 2013). 
Further studies with C. bescii demonstrated that deletion of a 
cluster of genes encoding pectic-degrading enzymes in this 
organism compromised the ability of C. bescii to grow on 
diverse biomass samples (Chung et  al., 2014). A comparative 
analysis of hemicellulose utilization potentials of Clostridium 
clariflavum and Clostridium thermocellum strains demonstrated 
that C. clariflavum strains were better able to grow on untreated 
switchgrass biomass and degraded easily extractable xylans more 
readily than do C. thermocellum strains (Izquierdo et al., 2014). 
In all of these studies, glycome profiling proved to be a very effec-
tive tool for understanding what was happening to the biomass 
during culture with the microbes. Studies of this kind provide 
information about the mode of action of microbial strains on 
plant biomass, thus identifying wall components that are resist-
ant/recalcitrant to microbial actions.

Studies Using immunolocalization
Immunolocalization techniques use fixed and embedded (gener-
ally in plastic resins) biomass samples (Knox, 1997; Lee et  al., 
2011b). Primary probes (polyclonal antibodies, McAbs, and 
CBMs) are applied on semithin sections followed by probing with 
a fluorescently tagged secondary antibody that allows visualiza-
tion of glycan epitope localization/distribution under a fluores-
cent microscope (Avci et  al., 2012; Lee and Knox, 2014). This 
approach for biomass analyses provides information regarding 
the distribution of cell wall glycans at the cellular and subcellular 
levels.

A handful of studies thus far have employed this technique in 
the context of bioenergy research for analyses of cell walls in wall 
biosynthetic mutants and in pretreated biomass. Examination of 
Arabidopsis and Medicago mutants in which a WRKY transcrip-
tion factor was knocked out revealed secondary cell wall thicken-
ing in pith cells caused by ectopic deposition of lignin, xylan, and 
cellulose. In the Arabidopsis mutant, this ectopic secondary wall 
formation resulted in an approximately 50% increase in biomass 
density in stem tissue (Yu et al., 2014). The use of three xylan-
directed McAbs and a cellulose-directed CBM were instrumental 
in proving the ectopic deposition of these cell wall glycans in 
pith cells. In another recent study, the use of two xylan-directed 
CBMs (CBM2b-1-2 and CBM35 recognizing different degrees of 
methyl esterification on xylan) on the Arabidopsis gxmt-1 mutant 
demonstrated a reduction of 4-O-methyl esterification of xylans 
(up to 75% as detected by chemical analyses) with a concomitant 
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reduction in the recalcitrance of mutant walls (Urbanowicz 
et al., 2012). Additional studies also implicate the importance of 
secondary wall xylan for cell wall recalcitrance. Restoration of 
xylan synthesis in xylan-deficient mutants, as documented using 
xylan-directed McAbs, could, in some cases, yield plants with 
reduced xylan deposition compared with wild-type plants, but 
with normal growth habits and decreased recalcitrance (Petersen 
et al., 2012). Likewise, reduction of xylan in rice culm cell walls 
yielded plants with slightly lower stature, but with reduced recal-
citrance (Chen et al., 2013).

Plant glycan-directed probes (McAbs and CBMs) can also 
be used to study the distribution patterns of glycan epitopes in 
plant biomass after diverse pretreatments used to reduce cell wall 
recalcitrance. One example of such a study is the demonstration 
that increasingly harsh hydrothermal pretreatments lead to an 
increased loss of various hemicellulosic, pectic, and cellulosic 
epitopes in cell walls of the pretreated tissues (DeMartini et al., 
2011). The effects of other pretreatment methods (Alonso-
Simón et al., 2010; DeMartini et al., 2013; Li et al., 2014; Socha 
et al., 2014; Pattathil et al., 2015; Trajano et al., 2015) on glycan 
epitope distribution patterns have not yet been carried out. Such 
information could be potentially useful to chemical engineers for 
the optimization of pretreatment conditions to enable optimal 
biomass conversion.

Immunolocalization studies have documented lignin distribu-
tion patterns in plant cell walls that may be relevant to bioenergy 
research. For instance, cell wall ultrastructure studies using three 
polyclonal antisera against DHPs allowed visualization of where 
these types of lignin-related polymers were located in cells of Zea 
mays L. (Joseleau and Ruel, 1997), Arabidopsis thaliana, Nicotiana 
tabacum, and Populus tremula (Ruel et al., 2002). These studies 
showed that H-DHPs were present in cell corners and middle 
lamella, whereas G-DHPs and G/S-DHPs were mainly present in 
secondary cell walls. The syringylpropane DHP epitope was visu-
alized mainly in the S2 layer of secondary cell walls of A. thaliana, 
N. tabacum, and P. tremula (Joseleau et al., 2004). Recently, immu-
nogold labeling analyses using KM1 and KM2 demonstrated the 
presence of 8-5′ and 8-8′ linked structures, respectively, on either 
developed xylem or phloem fibers of Chamaecyparis obtusa 
(Kiyoto et al., 2013). It will likely be informative to use these and 
other lignin-directed probes to monitor lignin distribution pat-
terns in biomass that has been subjected to various pretreatment 
regimes and/or subjected to microbial degradation in the context 
of biomass conversion.

Concluding Remarks
The application of high affinity, highly selective molecular probes 
against plant cell wall polymers clearly has high potential to pro-
vide complementary and supplementary data to existing chemical 
and biochemical analyses for studies on plant biomass structure 
and conversion. The number and diversity of McAb and CBM 
probes directed against plant polymers is now sufficiently large 
that these probes can provide extensive information about cell 
wall composition and structure in native and pretreated or micro-
bially digested biomass. We have reviewed two main approaches 
using these probes for biomass characterization and conversion 
studies. Both glycome profiling/CoMPP and immunolocalization 

methods provide distinct but complementary information about 
the cell walls that constitute the bulk of plant biomass. Glycome 
profiling and CoMPP provide extensive information about the 
epitope composition and epitope extractability of polymers 
present in the biomass. Histochemical approaches using these 
probes provide valuable information about the spatial distribu-
tion of wall epitopes at all levels of organization, ranging from 
whole plants, to organs, to tissues, to cells, and even to individual 
cell walls and cell wall domains.

It is important to recognize several attributes of molecular 
probes directed against cell wall glycan epitopes, in particular, 
when interpreting the results of experiments. Both McAbs and 
CBMs are epitope-directed probes, that is, they specifically 
recognize particular structural motifs. Hence, glycan-directed 
McAbs and CBMs may not always be polymer-specific, in as 
much as glycan structures are frequently present in multiple 
molecular contexts within plant cell walls (e.g., arabinogalactan 
epitopes present on both polypeptide and polysaccharide back-
bones). Hence, positive binding of a McAb or CBM probe does 
not necessarily infer the presence of a particular cell wall glycan 
polymer. Likewise, the absence of binding of a given McAb or 
CBM does not unambiguously infer the absence of the glycan 
detected by this probe; the epitope may be absent or chemically 
modified (e.g., acetylated or methylated) such that the probe 
does not bind, but the polymer may still be present (Avci et al., 
2012). Furthermore, plant glycans exist as families of polymers, 
whose epitope composition may not be uniform among all family 
members. Thus, a single McAb or CBM probe may not bind to 
all members of a polymer family, and it is therefore advisable 
to use multiple probes against diverse epitopes on a particular 
glycan to obtain a comprehensive picture of its abundance either 
in cell wall extracts or in histochemical localization studies. The 
size and diversity of the McAb/CBM collections now make such 
comprehensive studies possible.

Glycome profiling and CoMPP are dependent on the suc-
cessful immobilization of cell wall-derived molecules to solid 
supports (e.g., plastic ELISA plates or nitrocellulose). Cell wall 
glycans with lower molecular masses (less than 20  kDa) have 
been found not to adhere reliably to the plates (Pattathil et al., 
2010, 2012a). Hence, using glycome profiling as a tool to gather 
information regarding low-molecular-weight cell wall glycans is 
not advisable unless alternative strategies are employed to ensure 
adherence of these molecules to a solid support [e.g., covalent 
attachment directly to the solid support (Schmidt et al., 2015) or 
to a protein carrier that adheres to the solid support (Pedersen 
et  al., 2012)]. Both glycome profiling and CoMPP also rely on 
chemical/enzymatic extractions of biomass/cell wall samples. 
Such extractions are rarely complete or quantitative and thus 
absolute quantitation of epitope composition in biomass/cell 
wall samples using these approaches is problematic. Thus, these 
approaches are best used as initial broad glycome characteriza-
tion screens, particularly in comparative studies (e.g., mutant 
vs. wild-type and pretreated vs. untreated) where they provide 
valuable information regarding changes in the cell wall/biomass 
samples as a result of a particular experimental manipulation. In 
histochemical studies, the embedding medium used may influ-
ence the results of labeling experiments; in our laboratory, we 
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have found LR White to give the most consistent results with both 
McAb and CBM probes (Avci et al., 2012).

FUTURe PeRSPeCTiveS

The molecular probe toolkits (McAb and CBM) currently avail-
able provide an invaluable resource for plant biomass analyses of 
relevance to bioenergy research and biomass conversion process 
development. In spite of the number and diversity of the probes 
currently available, there is still a need for additional probes 
against structural features not encompassed by the binding 
specificities of the probes currently available. Thus, additional 
probes against lignin substructures, rhamnogalacturonan II, and 
cellulose would further enhance the utility of the probe toolkit. In 
addition, coverage by the current probe collection of the epitope 
diversity for some cell wall glycans (e.g., mannans, glucoman-
nans, and galactomannans) is limited. Finally, there remains a 
need to obtain more detailed information regarding the binding 

specificities of many of the molecular probes in the toolkit; about 
one third of the glycan-directed McAbs have had their epitope 
specificities characterized in detail. Efforts are underway in 
multiple laboratories to address these needs. Thus, we can look 
forward to an enhanced toolkit of probes against plant cell wall 
polymers in the future.
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