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Parameter inference in mathematical models of biological pathways, expressed as
coupled ordinary differential equations (ODEs), is a challenging problem in contemporary
systems biology. Conventional methods involve repeatedly solving the ODEs by numerical
integration, which is computationally onerous and does not scale up to complex systems.
Aimed at reducing the computational costs, new concepts based on gradient matching
have recently been proposed in the computational statistics and machine learning
literature. In a preliminary smoothing step, the time series data are interpolated; then,
in a second step, the parameters of the ODEs are optimized, so as to minimize some
metric measuring the difference between the slopes of the tangents to the interpolants,
and the time derivatives from the ODEs. In this way, the ODEs never have to be solved
explicitly. This review provides a concise methodological overview of the current state-
of-the-art methods for gradient matching in ODEs, followed by an empirical comparative
evaluation based on a set of widely used and representative benchmark data.

Keywords: ordinary differential equations, gradient matching, Gaussian processes, reproducing kernel Hilbert
space, parallel tempering, B-splines

1. INTRODUCTION

The elucidation of the structure and dynamics of biopathways is a central objective of systems
biology. A standard approach is to view a biopathway as a network of biochemical reactions, which
is modeled as a system of ordinary differential equations (ODEs). Following Barenco et al. (2006),
this system can typically be expressed as1:

dxi(t)
dt = gi(x(t),ρi, t)− δixi(t), (1)

where i∈ {1, . . . , n} denotes one of n components (henceforth referred to as “species”) in the
biopathway, xi(t) denotes the concentration of species i at time t, δi is a decay rate and x(t) is a
vector of concentrations of all system components that influence or regulate the concentration of
species i at time t. If, for instance, species i is an mRNA, then x(t) may contain the concentrations
of transcription factors (proteins) that bind to the promoter of the gene from which i is transcribed.

1We do not make the baseline transcription rate explicit in our notation, but include it in the function gi(.).
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The regulation is modeled by the regulation function g. Depend-
ing on the species involved, g may define different types of regu-
latory interactions, e.g., mass action kinetics, Michaelis–Menten
kinetics, allosteric Hill kinetics, etc. All of these interactions
depend on a vector of kinetic parameters,ρi. For complex biopath-
ways, only a small fraction of ρi can typically bemeasured. Hence,
the explication of the biopathway dynamics requires the majority
of kinetic parameters to be inferred fromobserved (typically noisy
and sparse) time course concentration profiles. In principle, this
can be accomplished with standard techniques from machine
learning and statistical inference. These techniques are based on
first quantifying the difference between predicted and measured
time course profiles by some appropriate metric to obtain the
likelihood of the data. The parameters are then either optimized
to maximize the likelihood (or a regularized version thereof), or
sampled from a distribution based on the likelihood (the posterior
distribution).

However, the nature of the ODE-based model in equation (1)
renders the inference problem computationally challenging in two
respects. First, the ODE system often does not permit closed-form
solutions. One therefore has to resort to numerical simulations
every time the kinetic parameters ρi are adapted, which is compu-
tationally onerous. Second, the likelihood function in the space of
parameters ρi is typically not unimodal, but suffers frommultiple
local optima. Hence, even if a closed-form solution of the ODEs
existed, inference by maximum likelihood would face an NP-hard
optimization problem, and Bayesian inference would suffer from
poor mixing and convergence of the Markov chain Monte Carlo
(MCMC) simulations.

Conventional inference methods involve numerically integrat-
ing the system of ODEs to produce a signal, which is compared
to the data by some appropriate metric defined by the chosen
noise model, allowing for the calculation of a likelihood. This
process is repeated as part of an iterative optimization or sampling
procedure to produce estimates of the parameters. Figure 1A is
a graphical representation of the model for these conventional
inference methods. For a given set of initial concentrations of
the entire system X(0) and set of ODE parameters θ [where
θ= (θ1, . . . , θn) and θi = (ρi, δi)], a signal can be produced by
integration of the ODEs. As mentioned previously, for many
ODE systems a closed-form solution does not exist, so in prac-
tice, numerical integration is implemented instead. Assuming an
appropriate noise model (for example, a Gaussian additive noise
model) with standard deviation (SD) of the observational error
σ, the differences between the resultant signal and the data Y
can be used to calculate the likelihood of the parameters θ. The
process is repeated for different parameters θ until the maximum
likelihood of the parameters is found (in the classical approach) or
until convergence to the posterior distribution is reached (in the
Bayesian approach). However, the computational costs involved
with repeatedly numerically solving the ODEs are large.

To reduce the computational complexity, several authors have
adopted an approach based on gradient matching [e.g., Calder-
head et al. (2008) and Liang and Wu (2008)]. The idea is based
on the following two-step procedure. In a preliminary smoothing
step, the time series data are interpolated; then, in a second step,
the parameters θ of the ODEs are optimized so as to minimize
some metric measuring the difference between the slopes of the

A B

FIGURE 1 | Graphical representations of (left) the explicit solution of the ODE system, as shown in Calderhead et al. (2008), and (right) gradient
matching with Gaussian processes, as proposed in Calderhead et al. (2008) and Dondelinger et al. (2013). (A) Explicit solution of the ODE system, as
shown in Calderhead et al. (2008). The noisy data signals Y are described by some initial concentration X(0), ODE parameters θ and observational errors with SD σ.
For a given set of initial concentrations X(0) and set of ODE parameters θ, the ODEs can be integrated to produce a signal, which is then compared to the data signal
by some metric defined by the chosen noise model. (B) Gradient matching with Gaussian processes, as proposed in Calderhead et al. (2008) and Dondelinger et al.
(2013). The gradients Ẋ are compared from two modeling approaches; the Gaussian process model and the ODEs themselves. The distribution of Y is given in
equation (4), the Gaussian process on X defined in equation (5), the derivatives of the Gaussian process Ẋ in equation (10), the ODE model in equation (2), and the
gradient matching in equation (17). All symbols are detailed in Section 2.1.
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tangents to the interpolants, and the θ-dependent time derivatives
from the ODEs. In this way, the ODEs never have to be solved
explicitly, and the typically unknown initial conditions are effec-
tively profiled over. A disadvantage of this two-step scheme is that
the results of parameter inference critically hinge on the quality
of the initial interpolant. A better approach, first suggested in
Ramsay et al. (2007), is to regularize the interpolants by the ODEs
themselves. Dondelinger et al. (2013) applied this idea to the non-
parametric Bayesian approach of Calderhead et al. (2008), using
Gaussian processes (GPs), and demonstrated that it substantially
improves the accuracy of parameter inference and robustness with
respect to noise. As opposed to Ramsay et al. (2007), all smooth-
ness hyperparameters are consistently inferred in the framework
of non-parametric Bayesian statistics, dispensing with the need to
adopt heuristics and approximations.

This review compares the current state-of-the-art in gradient
matching, specifically in the context of parameter inference in
ODEs. This comparison aids in understanding the difference
between key components of methods without confounding influ-
ence from other modeling choices. For instance, we compare the
inference paradigm of the parameter that governs the degree of
mismatch between the gradients of the interpolants and ODEs
[using the method in Dondelinger et al. (2013)] with a temper-
ing approach [from the method in Macdonald and Husmeier
(2015)], using the same interpolation scheme (namely, Gaussian
processes). This way, we are able to gain an understanding as
to what approach may be more suitable, without concern that
differences may be due to interpolation choice. If the ODEs pro-
vide the correct mathematical description of the system, ideally
there should be no difference between the interpolant gradients
and those predicted from the ODEs. In practice, however, forcing
the gradients to be equal is likely to cause parameter inference
techniques to converge to a local optimum of the likelihood. A
parallel tempering scheme is the natural way to deal with such
local optima, as opposed to inferring the degree of mismatch,
since different tempering levels correspond to different strengths
of penalizing the mismatch between the gradients. A parallel
tempering scheme (which uses smoothed versions of the posterior
distribution as well as the usual posterior distribution, see Section
2.2 for more details) was explored by Campbell and Steele (2012).

When comparing one method to another, in order to assess
the strengths and weaknesses of an approach, often results are
not directly comparable, since different approaches use differ-
ent methodological paradigms. For example, if the method by
Campbell and Steele (2012) (which uses B-splines interpolation)
was compared to Dondelinger et al. (2013) (which uses a GP
approach) in order to examine the difference between parallel
tempering and inference of the parameter controlling the degree
of mismatch between the gradients, then the results would be
confounded by the choice of interpolation scheme. In this review,
we present a comparative evaluation of parallel tempering versus
inference in the context of gradient matching for the samemodel-
ing framework, i.e., without any confounding influence from the
model choice. We also compare the method of Bayesian inference
with Gaussian processes with other methodological paradigms,
within the specific context of adaptive gradientmatching, which is
highly relevant to current computational systems biology.We look

at the methods of: Campbell and Steele (2012), who carry out
parameter inference using adaptive gradient matching and B-
splines interpolation; González et al. (2013), who implement a
reproducing kernel Hilbert space (RKHS) and penalized max-
imum likelihood approach in a non-Bayesian fashion; Ramsay
et al. (2007), who optimize the gradient mismatch, interpolant,
and ODE parameters using a hierarchical regularization method
and penalize the difference between the gradients using B-splines
in a non-Bayesian approach; Dondelinger et al. (2013), who use
adaptive gradient matching with Gaussian processes, inferring
the degree of mismatch between the gradients; and Macdonald
and Husmeier (2015), who use adaptive gradient matching with
Gaussian processes and temper the parameter that controls the
degree of mismatch between the gradients.

2. METHODOLOGY

2.1. Adaptive Gradient Matching with
Gaussian Processes
The following covers the background of methodology for Don-
delinger et al. (2013), andMacdonald andHusmeier (2015), which
combines the former method with a parallel tempering scheme
for the gradient mismatch parameter (the details on parallel
tempering will be given in Section 2.2).

Consider a set of T arbitrary timepoints t1< . . . < tT,
and a set of noisy observations Y= (y(t1), . . . , y(tT)), where
y(t)= x(t)+ ϵ(t), n= dim(x(t)), X= (x(t1), . . . , x(tT)), y(t) is the
data vector of the observations of all species concentrations at
time t, x(t) is the vector of the concentrations of all species at time
t, yi is the data vector of the observations of species concentrations
i at all timepoints, xi is the vector of concentrations of species i at
all timepoints, yi(t) is the observed datapoint of the concentration
of species i at time t, xi(t) is the concentration of species i at time
t and ϵ is multivariate Gaussian noise, ϵ ∼ N(0, σ2i I). The signals
of the system are described by ordinary differential equations

ẋi =
dxi
dt = fi(X,θi, t), (2)

or alternatively, represented in scalar form

ẋi(t) =
dxi(t)
dt = fi(x(t),θi, t), (3)

where ẋi is the vector containing the ODE gradients for species
i at all timepoints, fi (t)= (fi(t1),. . . ,fi(tT))T, θi = (ρi, δi), ρi is
a vector of kinetic parameters, δi is a decay rate parameter and
fi (x(t), θi, t)= gi (x(t), ρi, t)−δi xi. Then,

p(Y|X,σ2) =
∏
i

∏
t

N(yi(t)|xi(t), σ
2
i ), (4)

and the matrices X and Y are of dimension n by T. Following
Calderhead et al. (2008), we place a Gaussian process (GP) prior
on xi,

p(xi|µi,ϕi) = N(xi|µi,Cϕi), (5)
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where µi is a mean vector, for simplicity set as the sample mean,
and Cϕi is a positive definite matrix of covariance functions with
hyperparameters ϕi. Since differentiation is a linear operation,
a Gaussian process is closed under differentiation, and the joint
distribution of the state variables xi and their time derivatives ẋi is
multivariate Gaussian with mean vector (µi, 0)T and covariance
functions

cov[xi(t), xi(t′)] = Cϕi(t, t
′), (6)

cov[ẋi(t), xi(t′)] =
∂Cϕi(t, t

′)

∂t := C′
ϕi(t, t

′), (7)

cov[xi(t), ẋi(t′)] =
∂Cϕi(t, t

′)

∂t′ := ′Cϕi(t, t
′), (8)

cov[ẋi(t), ẋi(t′)] =
∂2Cϕi(t, t

′)

∂t∂t′ := C′′
ϕi(t, t

′), (9)

where Cϕi(t, t
′) are the elements of the covariance matrix Cϕi .

Using elementary transformations of Gaussian distributions [for
example, see page 87 of Bishop (2006)], the conditional distribu-
tion for the state derivatives is then

p(ẋi|xi,µi,ϕi) = N(mi,Ki), (10)

where

mi =
′CϕiCϕi

−1(xi − µi) and Ki = C′′
ϕi −

′CϕiCϕi
−1C′

ϕi . (11)

Assuming additive Gaussian noise with a state-specific error
variance γi, from equation (2) we get

p(ẋi|X,θi, γi) = N(fi(X,θi, t), γiI). (12)

Calderhead et al. (2008), and Dondelinger et al. (2013) link the
interpolant in equation (10) with the ODEmodel in equation (12)
using a product of experts approach, as illustrated in Figure 1B,
obtaining the following distribution

p(ẋi|X,θi,µi,ϕi, γi) ∝ p(ẋi|xi,µi,ϕi)p(ẋi|X,θi, γi)
= N(mi,Ki)N(fi(X,θi, t), γiI). (13)

The joint distribution is therefore

p(Ẋ,X,θ,µ,ϕ,γ)

= p(θ)p(ϕ)p(γ)
∏
i
p(ẋi|X,θi,µi,ϕi, γi)p(xi|ϕi), (14)

where γ is the vector containing all the gradientmismatch param-
eters and p(θ), p(ϕ), p(γ) are the priors over the respective param-
eters. Dondelinger et al. (2013) show that you canmarginalize over
the derivatives to get a closed-form solution to

p(X,θ,µ,ϕ,γ) =
∫

p(Ẋ,X,θ,µ,ϕ,γ)dẊ. (15)

Using equations (4) and (15), our full joint distribution
becomes

p(Y,X,θ,µ,ϕ,γ,σ2)

= p(Y|X,σ2)p(X|θ,µ,ϕ,γ)p(θ)p(ϕ)p(γ)p(σ2), (16)

where the likelihood p(Y|X, σ) is defined in equation (4) and
p(σ2) is the prior over the variances of the observational error.
Dondelinger et al. (2013) show

p(X|θ,µ,ϕ,γ)

∝ 1
Z exp

[
−1
2
∑
i

(
xTi Cϕixi +(fi −mi)

T(Ki + γiI)−1(fi −mi)
)]
,

(17)

where Z =
∏

i |2π(Ki + γiI)|
1
2 and f i is the vector containing the

gradients from the ODEs for species i. The sampling is conducted
using MCMC, where the whitening approach of Murray and
Adams (2010) is used to efficiently sample in the joint space of GP
hyperparametersϕ and latent variablesX. The concept of gradient
matching with Gaussian processes can be seen graphically in
Figure 1B. The data Y are explained by the latent variables X,
which are modeled by a Gaussian process with hyperparameters
ϕ, and SD of the observational errors σ. The gradients from the
ODE model are compared to those from the Gaussian process,
subject to some degree of mismatch controlled by parameter γ,
dispensing with the need to explicitly solve the ODEs.

2.2. Parallel Tempering
A challenging problem, which sampling methods face, is that of
local optima. The aim of sampling is to represent fully the config-
uration space weighted by the volume of the corresponding pos-
terior density peaks. In order to do this, the sampling algorithm
implementedmust be able to adequately explore the posterior dis-
tribution. If this landscape is rugged, with many local optima and
low-probability barriers separating areas of high posterior proba-
bility, mixing and convergence of the Markov chain Monte Carlo
simulations can be poor. For example, consider the Metropo-
lis–Hastings algorithm, which proposes a move and computes the
acceptance probability pmove by taking the ratio of the posterior
densities of the proposed state to the current state. If pmove> 1, the
algorithm accepts the proposed move. If pmove< 1, the proposed
state is accepted with probability pmove. If then, the parameter
location of the algorithm is currently situated at a local optimum,
then the proposed move could result in a small pmove. Theoreti-
cally, the algorithm will eventually be able to move the parameter
location out of this region; however, in practice, this could take
a considerable amount of time. If the total number of MCMC
iterations has been specified in advance, the simulation could
finish before the parameter position of the algorithm has escaped
the local optimum and explored the remainder of the region.
Entrapment in local optima can mislead established convergence
tests and erroneously indicate a sufficient degree of convergence.

Parallel tempering is a method that tackles the problem of
local optima. It involves running multiple MCMC simulations at
different levels or “temperatures”2 of the likelihood in parallel.
Low “temperatures” flatten the posterior landscape, making it
easier to explore the region, since the peaks have been smoothed.
This can be seen graphically in Figure 2. As the “temperature”

2By “temperature”, we mean a tempering parameter that defines the degree of
flattening of the likelihood. Formally, our “temperature” is equivalent to an inverse
temperature in Statistical Physics.
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FIGURE 2 | Continued
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FIGURE 2 | Continued
A one-dimensional illustration of equation (18) showing different power posterior distributions for different levels or “temperatures” of the likelihood.
The posterior landscape is smoother at lower “temperatures” (corresponding to chains closer to the prior) and becomes increasingly rugged until the true posterior
landscape is recovered for “temperature”= 1. The arrow on the far left depicts the increase in “temperature” and the horizontal ticks mark the specific “temperature”
of that chain. Two chains (“temperature”= 0.1 and “temperature”= 0.9) have been chosen to swap parameter locations (locations indicated by vertical line). The left
column shows the parameter locations of the tempering algorithm before the swap and the right column shows the parameter locations of the tempering algorithm
after the swap. The swapping of locations is indicated by the arrows in the center of the figure.

is increased to the highest value, the landscape becomes more
rugged and eventually the original posterior landscape is recov-
ered (see bottom of Figure 2).

At everyMCMC iteration, two “temperature” chains are chosen
and the parameter locations where the sampling algorithm is cur-
rently situated are swapped, see middle of Figure 2. This way, the
algorithm canmove the parameter position from a local optimum
to somewhere else on the posterior landscape, dispensing with the
need to gradually navigate away from the region and the problems
associated with doing so.

Consider a series of “temperatures”, 0= β(1) < . . . < β(M) = 1
and a power posterior distribution of our ODE parameters [Friel
and Pettitt (2008)]

pβ(j)(θ
(j)|y) ∝ p(θ(j))p(y|θ(j))

β(j)

. (18)

Equation (18) reduces to the prior for β(j) = 0 (see top of
Figure 2), and becomes the posterior when β(j) = 1 (see bottom
of Figure 2), with 0<β(j)< 1 creating a distribution between
our prior and posterior (see Figure 2). The M β(j) annealed
likelihoods in equation (18) are used as the target densities of
M parallel MCMC chains [Campbell and Steele (2012)]. At each
MCMC step, each “temperature” chain independently performs
a Metropolis–Hastings step to update θ(j), the parameter vector
associated with temperature β(j)

pmove = min


1,

p
(
y|θproposed(j)

)β(j)

p
(
θproposed(j)

)
×q
(
θcurrent(j)|θproposed(j)

)
p
(
y|θcurrent(j)

)β(j)

p
(
θcurrent(j)

)
×q
(
θproposed(j)|θcurrent(j)

)


, (19)

where q( ) is the proposal distribution and the superscripts “pro-
posed” and “current” indicate whether the algorithm is being
evaluated at the proposed or current state. Also, at each MCMC
step, two chains are randomly selected, and a proposal to exchange
parameters is made, with acceptance probability

pswap = min

(
1,

pβ(k)(θ
(j)|y)pβ(j)(θ

(k)|y)
pβ(j)(θ(j)|y)pβ(k)(θ(k)|y)

)
. (20)

A graphical representation of the swap moves between chains
can be seen in Figure 2.

The method by Macdonald and Husmeier (2015) focuses on
the intrinsic slack parameter γi [see equation (12)], which theo-
retically should be γi = 0, since this corresponds to no mismatch
between the gradients. In practice, it is allowed to take on larger

values, γi> 0, to prevent the inference scheme from getting stuck
in sub-optimal states. However, rather than inferring γi like a
model parameter, as carried out in Dondelinger et al. (2013),
other authors [e.g., Campbell and Steele (2012)] propose that γi
should be gradually set to zero, since values closer to zero force the
gradients to be more similar and tie the interpolants closer to the
ODEs. It is possible to abruptly set the values to zero, rather than
gradually; however, this is likely to cause the parameter inference
techniques to converge to a local optimum of the likelihood. To
this end, Macdonald and Husmeier (2015) combine the gradi-
ent matching with Gaussian processes approach in Dondelinger
et al. (2013) with the tempering approach in Campbell and Steele
(2012) and temper this parameter to zero.

We choose values of γi and assign them to the variance param-
eter in equation (12) for each “temperature” β(j), such that chains
closer to the prior (β(j) closer to 0) allow the gradients from the
interpolant to have more freedom to deviate from those predicted
by the ODEs (which corresponds to a larger γi), chains closer to
the posterior (β(j) closer to 1) more closely match the gradients
(corresponding to a smaller γi), and for the chain correspond-
ing to β(M) = 1, we wish that the mismatch is approximately
zero (γi ≈ 0). Since γi corresponds to the variance of our state-
specific error [see equation (12)], as γi → 0, we have lessmismatch
between the gradients, and as γi gets larger, the gradients have
more freedom to deviate from one another. Hence, we temper
γi toward zero. Now, each β(j) chain in equation (18) has a
γ
(j)
i [where the superscript (j) indicates the gradient mismatch

parameter associated with “temperature” β(j)] fixed in place for
the strength of the gradient mismatch.

Continuing the notation, anything with a superscript (j) is the
associated variable or fixed parameter for “temperature” chain
β(j). The ODE model in equation (12) now becomes

p(ẋ(j)i |X(j),θ
(j)
i , γ

(j)
i ) = N(f (j)i (X(j),θ

(j)
i , t), γ(j)i I), (21)

where this distribution is evaluated at each of the j chains. Follow-
ing equations (13)–(16), we obtain for the joint distribution

p(Y,X(j),θ(j),µ,ϕ(j),γ(j),σ2(j)) = p(Y|X(j),σ2(j))
β(j)

× p(X(j)|θ(j),µ,ϕ(j),γ(j))p(θ(j))p(ϕ(j))p(σ2(j)).

(22)

Equation (22) is calculated for each of the j chains. The par-
ticular schedules used for γi in this review are given in Table 1.
For more details on tempering, see Calderhead and Girolami
(2009) and Mohamed et al. (2012). The computational times for
the methods from Dondelinger et al. (2013) and Macdonald and
Husmeier (2015), in comparison to numerically integrating the
ODEs, can be found in Table 2.
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TABLE 1 | Ranges of the penalty parameter γ i for LB2 and LB10.

Method Chains Range of
penalty γ

Method Chains Range of
penalty γ

LB2 4 [1, 0.125] LB10 4 [1, 0.001]
LB2 10 [1, 0.00195] LB10 10 [1, 1×10−9]

In this review, γ i =γ∀i.

TABLE 2 | Computational times for INF and a method that numerically
integrates the ODEs for the protein signaling transduction pathway in
equations (63)–(67).

INF Numerical integration

Exectution time of 1× 105

MCMC steps (seconds)
Execution time of 1×105

MCMC steps (seconds)

Median Interquartile
range

Median Interquartile
range

2500 [2400, 2600] 12,500 [12,000, 13,000]

Number of steps
until convergence

Number of steps
until convergence

Median Interquartile
range

Median Interquartile
range

3.5×104 [3.25×104, 4.5×104] 7.9×104 [7.5×104, 8.25×104]

Table constructed from the boxplots in Dondelinger et al. (2013). The LB2 and LB10
methods were equivalent to INF in terms of computational time.

2.3. B-Splines
Splines are used for function interpolation, where the function
of interest is approximated by a weighted linear combination of
basis functions. These basis functions, called “splines”, are “local”
polynomials, where the exact functional form depends on the
particular type of spline that is used (for example, a truncated
power basis). See Hastie et al. (2009) for an overview of different
types of splines.

The advantage of spline interpolation over global polynomial
interpolation is that the interpolation error can be made small
even when using low degree polynomials for the splines. This, in
particular, avoids the problem of Runge’s phenomenon, in which
oscillations can occur between data points when interpolating
using high degree polynomials.

B-splines interpolation takes the form

x(t) =
m∑
i=0

αiϕi,d(t), (23)

where m+ 1 is the number of basis functions, d is the degree of
polynomial, αi is a coefficient and ϕi,d (t) is the ith basis function
of polynomial degree d evaluated at time t. For some vector of
fixed points called knots [denoted τ , where x(t) is continuous at
each knot], the basis functions are calculated with the following
recursive formulae

ϕi,0(t) =
{
1 if τi ≤ t < τi+1

0 otherwise
(24)

ϕi,d(t) =
t− τi

τi+d − τi
ϕi,d−1(t) +

τi+d+1 − t
τi+d+1 − τi+1

ϕi+1,d−1(t). (25)

The coefficients αi are then estimated by

α̂ =
(
ΦTΦ

)−1
ΦTy, (26)

where α̂ is the vector containing all the coefficients (and αi would
correspond to the (i+ 1)th position in the vector) and Φ is the
matrix containing all the basis functions

Φ =

ϕ0,d(t1) . . . ϕm,d(t1)
...

. . .
...

ϕ0,d(tT) . . . ϕm,d(tT)

 . (27)

One can aim to avoid over-fitting by penalizing the 2nd deriva-
tive of the function x(t) (known as penalized splines), making our
objective function

J(x) =
N∑

s=1
(y(ts)− x(ts))2 + λ

∫ (
d2x
dt2

)2

dt, (28)

where λ controls the amount of trade-off between the data fit and
penalty term. In this case, the coefficients αi are estimated by

α̂ =
(
ΦTΦ+ λD

)−1
ΦTy, (29)

whereD is the solution to the penalty in equation (28) (the integral
of the square of the second derivative of x). It is possible to change
the penalty term in equation (28) to some other penalty form (this
is known as P-splines), where the D in equation (29) would be
updated accordingly.

2.4. Smooth Functional Tempering
Here, we detail themethod for parameter inference used inCamp-
bell and Steele (2012). In their paper, the authors discuss two types
of smooth functional tempering, one that needs to infer the initial
conditions of the species concentrations and one that does not.
This review uses the method that does not need to infer the initial
conditions. If the initial conditions are unknown, then they must
be inferred as an extra parameter in the inference procedure; how-
ever, the method described in this section effectively profiles over
the initial conditions, dispensing with the need to infer them. This
reduces the complexity of the procedure, which is more appealing.
The reader can refer to the original publication should they wish
to implement the former procedure. The choice of interpolation
scheme for the concentrations xi is B-splines. For an introduction
to parallel tempering, see Section 2.2.

The posterior distribution of the parameters is

pβ(j)(θ
(j),σ2(j)|Y,X(j))

∝ p(θ(j),σ2(j))p(X(j)|θ(j),λ(j))p(Y|X(j),σ2(j))
β(j)

, (30)

where the superscript j denotes those variables associated with
“temperature” β(j), the likelihood, p(Y|X(j),σ2(j))=N(X(j),σ2(j)),
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is tempered in the same way as in equation (18), λ= (λ1, . . . ,λn)
and p(X(j)| θ(j), λ(j)) is

p(X(j)|θ(j),λ(j)) = exp

[
−

n∑
i=1

λ
(j)
i ||ẋ(j)i − f(j)i (X(j),θ

(j)
i , t)||2

]
,

(31)
which is analogous to

p(X(j)|θ(j),λ(j))

= exp

[
−

n∑
i=1

λ
(j)
i

T∑
t=1

(
ẋ(j)i (t)− f(j)i (x(j)(t),θ(j)i , t)

)2]
.

(32)

For details on tempering, see Section 2.2. In equation (31), λi(j)
is the gradient mismatch parameter for species i corresponding
to “temperature” β(j) (similar to the mismatch parameter γi(j)
in Section 2.1). The λi(j) is chosen in advance and fixed to each
“temperature” β(j) such that 0 < λi

(1) ≤ · · · ≤ λi
(M) ≤ ∞, where

values closer to 0 allow the gradients to be more different to one
another and values closer to∞ restrict them from being different.

Sampling from equation (30) is performed using MCMC.

2.5. Penalized Likelihood with
Hierarchical Regularization
Ramsay et al. (2007) aim to conduct parameter inference in ODEs
using a penalized likelihood approach and a hierarchical regu-
larization in order to tune the gradient mismatch parameter and
parameters of their interpolation scheme (splines). They perform
parameter inference in a hierarchical three level approach. At
level 1, they optimize the gradient mismatch parameter, in order
to ensure the estimates of the coefficients of their interpolant
are properly regularized by the mismatch to the ODEs. In their
paper, they adjust the gradient mismatch parameter manually
using numerical and visual heuristics, but suggest a way it could
be achieved through generalized cross-validation, which we will

detail. At level 2, the coefficients of the interpolant are opti-
mized. While optimizing for the parameters in the final step, each
time the ODE parameters and observational noise parameters are
changed, they re-optimize the coefficients of the interpolant, by
penalizing the differences between the gradients, which allows the
ODEs to regulate the interpolant. At level 3, the ODE and obser-
vational noise parameters are estimated using a sum of squares
criterion. This criterion is optimized directly for the ODE and
observational noise parameters, but it is also optimized implicitly,
since the sum of squares incorporates xi, which itself was opti-
mized with respect to these parameters at level 2. A flow chart of
these three levels can be found in Figure 3.

At level 1 of the three hierarchical levels, the gradient mismatch
parameter is configured. To avoid the need for heuristics, Ramsay
et al. (2007) suggest the use of generalized cross-validation, since
the estimation of the state variables for some gradient mismatch
parameter λ is usually a non-linear problem and so standard
cross-validation methods are not applicable. Generalized cross-
validation takes the form

F(λ) =
∑n

i=1 ||yi − xi||2[∑n
i=1

{
T−

∑T
t=1

dxi(t)
dyi(t)

}]2 , (33)

where yi is the data for species i, xi is the interpolant corre-
sponding to species i, n is the number of species and T is the
number of timepoints. The derivatives in the denominator can be
expressed as

dxi(t)
dyi(t)

=
∂xi(t)
∂α

dα
dyi(t)

, (34)

where α are the estimated coefficients of the splines interpolant
[see equation (29)]. Calculating these derivatives takes the depen-
dency of the data y and the ODE parameters θ into account, since
dα
dy = ∂α

∂θ
dθ
dy + ∂α

∂y . The estimates of λ will be calculated by
minimizing equation (33) over values of λ.

FIGURE 3 | Flow chart of the three level approach employed by Ramsay et al. (2007). At level 1, the gradient mismatch parameter is optimized either by visual
or numerical heuristics or through generalized cross-validation. At level 2, the coefficients of the interpolant are estimated (splines in this method). At level 3, the ODE
parameters are estimated. Levels 2 and 3 are iterated using a pseudo-delta method (see Section 2.5 for details).
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The second level involves estimating the coefficients of the
splines interpolant using the following criterion

J(α|θ,σ,λ) =
n∑

i=1
wi||yi − xi||2

+

n∑
i=1

λi

∫ [
dxi(t)
dt − fi(x(t),θi, t)

]2
dt, (35)

where dxi
dt is the gradient of the interpolant for species i and wi

are weights to normalize the sum of squares of different species
(so that species on varying scales of measurement do not distort
the sum of squares with very large or very small residuals that are
simply a consequence of theirmagnitude or unit ofmeasurement).
Large values of λi mean that the gradients have to more closely
match one another (since the difference between them will need
to tend to 0, to compensate for the large penalty a large λi would
produce), whereas small values would allow the gradients to differ
more. The penalty term in equation (35) allows the mismatch
between the gradients to regularize the estimates of the interpolant
coefficients.

At the third level, the ODE parameters are optimized using the
sum of squares criterion

S(θ|λ) =
n∑

i=1
wi||yi − xi||2. (36)

To optimize equation (36) with respect to θ, Ramsay et al.
(2007) find the solution of the gradient

dS(θ|λ)
dθ =

∂S(θ|λ)
∂θ

+
∂S(θ|λ)
∂α

dα
dθ = 0. (37)

Since the function α(θ) is not explicitly available, dα
dθ is calcu-

lated by application of the implicit function theoremof differential
calculus. This gives

dα
dθ = −

(
∂2J(α|θ,σ,λ)

∂α2

)−1
∂2J(α|θ,σ,λ)

∂α∂θ
. (38)

2.6. Reproducing Kernel Hilbert Space
Here, we provide background for reproducing kernel Hilbert
spaces (RKHS) that are used in González et al. (2013), and how
they compare to Gaussian processes. RKHS interpolation is a
useful tool in statistical learning, since a property of reproducing
kernel Hilbert spaces, known as the representer theorem (details
to follow), means that every function in an RKHS can be written
as a linear combination of the kernel function evaluated at the
training points. This provides a computationally fast process for
interpolation, which is particularly useful in gradient matching,
since the original purpose of gradient matching is to obtain
a computational speed-up over methods involving calculating
numerical solutions to the ODEs.

ByMercer’s theorem [Mercer (1909)], we are able to represent a
kernel that produces a positive definite covariancematrix in terms
of eigenvalues λs and eigenfunctions vs

k(ti, tj) =
∞∑
s=1

λsνs(ti)νs(tj). (39)

These vs form an orthonormal basis for a function space

H = {f : f(t) =
∞∑
s=1

fsνs(t),
∞∑
s=1

f 2s
λs
<∞}. (40)

The inner product between two functions f (t) =
∑∞

s=1 fsνs(t)
and g (t) =

∑∞
s=1 gsνs(t) in the space in equation (40) is defined as

⟨ f, g⟩H ,
∞∑
s=1

fs gs
λs

, (41)

which Murphy (2012) shows implies that

⟨k(t1, ·), k(t2, ·)⟩H = k(t1, t2). (42)

This is known as the reproducing property and the space of
functions H is called a reproducing kernel Hilbert space. Now
consider the minimization problem

J(f) = 1
2σ2

N∑
s=1

(ys − f(ts))2 +
1
2 ||f ||

2
H, (43)

where J(f ) is the objective function and ||f ||H is the norm in
Hilbert space

||f ||H = ⟨f, f ⟩H =

∞∑
s=1

f 2s
λs
. (44)

The desired function used for interpolation should be simple
and provide a good fit to the data. Complex functions with respect
to the kernel in equation (39) will produce large norms, since they
will needmany eigenfunctions to represent them, and therefore be
more heavily penalized in equation (43). Schöelkopf and Smola
(2002) show that the desired function must have the following
form

f(t) =
N∑

s=1
csk(t, ts). (45)

This is known as the representer theorem. To solve for c, we
combine equation (45) with equation (43), giving us

J(c) = 1
2σ2 |y− Kc|2 + 1

2c
TKc, (46)

where K is a matrix of kernel elements for all combinations of
observed timepoints. Minimizing with respect to c gives us

ĉ = (K+ σ2I)−1y. (47)

Hence,

f̂(t∗) =
N∑

s=1
ĉsk(t∗, ts) = kT∗(K+ σ2I)−1y, (48)

where t∗ is the timepoint at which one wants to make predictions
and k∗ is the vector of kernel elements for all combinations of t∗
and ts. This form is the same as a posterior mean of a Gaussian
process predictive distribution.
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2.7. Penalized Likelihood with RKHS
The goal of González et al. (2013) is to create a penalized like-
lihood function that incorporates the information of the ODEs,
then using the properties of reproducing kernel Hilbert spaces to
perform parameter estimation in a computationally fast manner.
They consider ODEs of the form

ẋi = gi(Z,ρi, t)− δixi, (49)

or alternatively, represented in scalar form

ẋi(t) = gi(z(t),ρi, t)− δixi(t), (50)

where xi is the vector of mRNA concentrations for species i, δi
is the degradation rate of the mRNA concentrations for species
i, Z is the matrix containing the concentrations of all proteins
[transcription factors (TFs)] at all timepoints, z(t) is the vector
containing the concentrations of all proteins at timepoint t, ρi
is a parameter vector that governs the amount of regulation that
the TFs have on the ith gene and gi(t)= (gi(t1), . . . , gi(tT))T. Note
the difference between equations (50) and (1). In equation (1),
the regulatees can themselves act as regulators, corresponding to
genes coding for transcription factors acting on other genes. In
equation (50), regulators (Z) and regulatees (ẋ) are separated in
what is effectively a bi-partite regulatory network structure. The
ODE in equation (49) depends on the state variables xi only by a
linear decay term δi. Consider a differencing matrix D, where

D = Υ



−1 1 0 . . . . . . 0
−1 0 1 0 . . . 0

0 −1
. . . 1

. . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

0 . . . . . . . . . −1 1


, (51)

and Υ = diag
(

1
t2−t1 ,

1
t3−t1 ,

1
t4−t2 , . . . ,

1
tT−tT−2

, 1
tT−tT−1

)
. We can

then approximate equation (49) as

Dxi = gi(Z,ρi, t)− δxi. (52)

To demonstrate how Dxi is computed, as an example let us
consider xi = (x(t1), . . . , x(t5))T and t= (1, 2, . . . , 5)T. Then,

Dxi =


1

2−1
1

3−1
1

4−2
1

5−3
1

5−4



×


−1 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 1



x(1)
x(2)
x(3)
x(4)
x(5)


=

[
−x(1) + x(2)

1 ,
−x(1) + x(3)

2 ,
−x(2) + x(4)

2 ,

−x(3) + x(5)
2 ,

−x(4) + x(5)
1

]T
.

(53)

Writing P=D+ δi I (I here is the identity matrix) gives us the
following penalty to be incorporated into the likelihood term

Ω(xi) = ||Pxi − gi(Z,ρi, t)||2. (54)

Equation (52) implies that Pxi − gi(Z, ρi, t)= 0. Rather than
solving this equation explicitly, it is used as a penalty term within
a regression context, i.e., the ||f ||2H term in equation (43) will
be replaced by equation (54). However, equation (54) cannot be
expressed as a norm of xi within the RKHS framework, since
xi = 0 does not necessarily imply that Ω(xi)= 0. The authors
therefore transform the state variables xi (and subsequently yi) in
order to make them compatible. Consider instead

x̃i = xi − P−1gi(Z,ρi, t). (55)

It is straightforward to see that multiplying both sides of equa-
tion (55) by P and taking squared norms gives us the exact form
of equation (54)

(
∥Px̃i∥2 =

∥∥Pxi − gi(Z,ρi, t)
∥∥2). Likewise, the

data are transformed by

ỹi = yi − P−1gi(Z,ρi, t), (56)

to correspond with x̃i. The penalty term in equation (54) now
becomes

Ω(x̃i) = ||Px̃i||2 = ⟨Px̃i,Px̃i⟩ = x̃Ti PTPx̃i. (57)

Equation (57) is now a proper norm, since when x̃i = 0, this
implies Ω(x̃i) = 0. Denote K= (PTP)−1. K is a matrix of kernel
elements that define a unique RKHS. Hence,

Ω(x̃i) = ||x̃i||2H = cTKc, (58)

[where c is given in equation (47), and equation 58 is used as the
term in the far right of equation 46, see Section 2.6 for details]. By
using equations (47) and (48), we obtain closed-form expressions
for the transformed state variables [and the original expressions
can be recovered using equation (55)]

x̃i = K(K+ 2λiΣ)−1yi, (59)

where λ is a penalty parameter, andΣ is the covariance matrix of
the data [which generalizes equation (47) since the observational
error of our data may not be independent between species]. In
practice, not all ODEs are of the form in equation (50), which
only depends on the state variables by a linear decay term. Hence,
the authors need to transform any ODE that is not of this form
into 2 parts. Terms in part (1) will have a dependency on the state
variables only by a linear decay term and can be modeled using
the RKHS method and estimated by equation (59). Terms in part
(2) cannot fit this framework and are modeled using splines. For
example, consider [V̇] in the FitzHugh–Nagumo ODEs (for more
details, see Section 4)

[V̇] = ψ

(
[V]− [V]3

3 + [R]
)
, (60)
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where the square brackets denote the time-dependent concen-
tration for that species, the dot over the V is shorthand for the
temporal derivative d

dt of V and ψ is a parameter. Since the state
variables do not only depend on a linear decay term, equation (60)
needs to be transformed. Part (1) will be expressed by [V̇]− ψ[V],
where now the dependency on the state variables is only by a linear
decay term and hence can be fitted using the RKHS method. Part
(2) will be ψ

(
− [V̂]3

3 + [R̂]
)
, which is fitted using splines, where

[V̂] and [R̂] are spline estimates for [V] and [R], respectively.
The penalized log-likelihood function can now be expressed by

l(ρi, δi,Σ,αi, c|ỹi) =
n∑

i=1

[
−1
2 (ỹi − x̃i)TΣ−1(ỹi − x̃i)−

1
2 ln|Σ|

]

−
n∑

i=1
λiΩ(x̃i), (61)

where αi is the vector containing the coefficients from the spline
interpolant for species i, see equation (26). Given that the gradient
matching is dependent on the differencing operator, it is impor-
tant to note that points further apart in time will produce contin-
ually poorer estimates of the gradient and thus poorer gradient
matching. González et al. (2013) attempt to circumvent this issue
by data augmentation. They infer the latent variables at additional
unobserved timepoints with the expectation maximization (EM)
algorithm, which emulates more datapoints, in order to obtain
more accurate gradient estimates. Parameter estimation in an
approximate penalized maximum likelihood sense can be carried
out with standard non-linear optimization algorithms, such as
quasi-Newton or conjugate gradients.

3. SUMMARY OF METHODS

This section provides a brief summary of themethods throughout
the review, as described in Section 2. Since many methods and
settings are used in this review for comparison purposes, for ease
of reading, abbreviations are used. Table 3 is a reference for those
methods and an overview of the methods follows.

INF (Section 2.1): this method conducts parameter inference
using adaptive gradient matching and Gaussian processes. The
penalty mismatch parameter γ (where γ is the vector of mis-
match penalty parameter values at different “temperatures”) is
inferred rather than tempered.
LB2 (Sections 2.1 and 2.2): this method conducts parameter
inference using adaptive gradient matching and Gaussian pro-
cesses. The penalty mismatch parameter γ is tempered in log
base 2 increments, see Table 1 for details.
LB10 (Sections 2.1 and 2.2): as with LB2, parameter inference is
conducted using adaptive gradient matching and Gaussian pro-
cesses; however, the penalty mismatch parameter γ is tempered
in log base 10 increments, see Table 1 for details.
C&S (Section 2.4): parameter inference is carried out using
adaptive gradient matching and tempering of the mismatch
parameter. The choice of interpolation scheme is B-splines.
RAM(Section 2.5): this technique uses a non-Bayesian optimiza-
tion process for parameter inference. The method penalizes the

TABLE 3 | Abbreviations of the methods used throughout this review.

Abbreviation Method Reference

GON Reproducing kernel Hilbert space and
penalized likelihood

González et al.
(2013)

RAM Splines and hierarchical regularization Ramsay et al.
(2007)

INF Inference of the gradient mismatch parameter
using GPs

Dondelinger
et al. (2013)

LB2 Tempered mismatch parameter using GPs in
log base 2 increments

Macdonald and
Husmeier (2015)

LB10 Tempered mismatch parameter using GPs in
log base 10 increments

Macdonald and
Husmeier (2015)

C&S Tempered mismatch parameter using splines-
based smooth functional tempering (SFT)

Campbell and
Steele (2012)

TABLE 4 | Particular settings of Campbell and Steele (2012)’s method.

Abbreviation Definition Details

10C 10 Chains When comparing methods, it was of interest
to see how the performance depended on the
number of parallel MCMC chains, as originally
the authors used 4 chains

Obs20 20
Observations

Originally, the authors used 401 observations.
This was reduced to a dataset size more usual
with these types of experiments to observe the
dependency of the methods on the amount of
data

15K 15 Knots The C&S method uses B-splines interpolation.
The original tuning parameters from the
authors’ paper were changed to observe the
sensitivity of the parameter estimation from
these tuning parameters

P3 Polynomial
order 3
(Cubic
Spline)

The original polynomial order is 5. Again, this
was changed to observe the sensitivity of the
parameter estimation from these tuning
parameters

difference between the gradients using splines and a hierarchical
3 level regularization approach is used to configure the tuning
parameters.
GON (Section 2.7): parameter inference is conducted in a non-
Bayesian fashion, implementing a reproducing kernel Hilbert
space (RKHS) and penalized likelihood approach. Comparisons
between RKHS and GPs have been previously explored concep-
tually [for example, see Rasmussen and Williams (2006) and
Murphy (2012)], and in this review we analyze them empiri-
cally in the specific context of gradient matching. The RKHS
gradient matching method in González et al. (2013) obtains the
interpolant gradient using a differencing operator.

Table 4 outlines particular settings with some of the methods
in Table 3. The ranges of the penalty parameter for γ, for LB2
and LB10 methods, are given in Table 1. The increments are
equidistant on the log scale. The M βis from 0 to 1 are set by
taking a series of equidistant M values and raising them to the
power 5 [Friel and Pettitt (2008)].
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4. DATA

4.1. FitzHugh–Nagumo
These equations model the voltage potential across the cell mem-
brane of the axon of giant squid neurons [FitzHugh (1961);
Nagumo et al. (1962)]. There are two “species”: voltage (V) and
recovery variable (R), and 3 parameters; α, β, and ψ. The square
brackets denote the time-dependent concentration for that species
and a dot over a symbol is shorthand for the temporal derivative
d
dt of that symbol:

[V̇] = ψ

(
[V]− [V]3

3 + [R]
)
; [Ṙ] = − 1

ψ
([V]− α+ β ∗ [R]) .

(62)

An example of the signals produced from these ODEs can be
found in Figure 4.

4.2. Protein Signaling Transduction
Pathway
These equations model protein signaling transduction pathways
in a signal transduction cascade, where the free parameters are
kinetic parameters governing how quickly the proteins (“species”)
convert to one another [Vyshemirsky andGirolami (2008)]. There
are 5 “species” (S, dS, R, RS, Rpp) and 6 parameters (k1, k2, k3, k4,
V, Km). The system describes the phosphorylation of a protein,
R→Rpp [equation (67)], catalyzed by an enzyme S, via an active
protein complex [RS, equation (66)], where the enzyme is subject
to degradation [S→ dS, equation (64)]. The chemical kinetics are
described by a combination of mass action kinetics [equations
(63), (64), and (66)] and Michaelis–Menten kinetics [equations
(65) and (67)]. A graphical representation of this system can be
seen in Figure 5. The square brackets denote the time-dependent
concentration for that species and a dot over a symbol is shorthand
for the temporal derivative d

dt of that symbol:

0 2 4 6 8 10

−
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FIGURE 4 | An example of the signals produced from the
FitzHugh–Nagumo ODEs in equation (62). The solid line represents the
signal for species V and the dashed line represents the signal for species R.

[Ṡ] = −k1 ∗ [S]− k2 ∗ [S] ∗ [R] + k3 ∗ [RS], (63)

[ḋS] = k1 ∗ [S], (64)

[Ṙ] = −k2 ∗ [S] ∗ [R] + k3 ∗ [RS] +
V ∗ [Rpp]
Km + [Rpp] , (65)

[ṘS] = k2 ∗ [S] ∗ [R]− k3 ∗ [RS]− k4 ∗ [RS], (66)

[ ˙Rpp] = k4 ∗ [RS]−
V ∗ [Rpp]
Km + [Rpp] . (67)

An example of a typical signal produced from these ODEs can
be found in Figure 6.

FIGURE 5 | Graphical representation of the protein signaling
transduction pathway in equations (63)–(67). There are 5 “species” (S,
dS, R, RS, Rpp) and 6 parameters (k1, k2, k3, k4, V, Km). The system
describes the phosphorylation of a protein, R→Rpp [equation (67)],
catalyzed by an enzyme S, via an active protein complex [RS, equation (66)],
where the enzyme is subject to degradation [S→dS, equation (64)]. Figure
adapted from Vyshemirsky and Girolami (2008).
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FIGURE 6 | An example of a signal produced from the protein signaling
transduction pathway in equation (64). The signal represents species dS
and shows a rapid change in concentration before it plateaus, which is a
feature typical of the remaining species’ signals in equations (63)–(67).
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5. SIMULATION

For those methods for which software was unavailable at the
time [Ramsay et al. (2007); González et al. (2013)], results were
compared directly with the results from the original publica-
tions. To this end, test data were generated in the same way as
described by the authors. For methods for which software was
available at the time [Campbell and Steele (2012); Dondelinger
et al. (2013); Macdonald and Husmeier (2015)], the evaluation
was repeated twice, first on data equivalent to those used in
the original publications, and again on new data generated with
different (more realistic) parameter settings. For comparisons
with Bayesian methods, the authors’ specifications for the priors
on the ODE parameters were used. For comparisons with non-
Bayesian methods, the methods of Dondelinger et al. (2013) and
Macdonald andHusmeier (2015) were applied with the parameter
prior from Campbell and Steele (2012), since the ODEmodel was
the same.

5.1. Reproducing Kernel Hilbert Space
Method (Section 2.7)
The method was tested on the FitzHugh–Nagumo data (see
Section 4) with the following parameters: α= 0.2; β= 0.2, and
ψ= 3. Starting from initial values of (−1,−1) for the two “species”,
50 timepoints were generated over the time course [0, 20], pro-
ducing 2 periods, with iid Gaussian noise (SD= 0.1) added. Fifty
independent datasets were generated in this way.

5.2. Splines and Hierarchical
Regularization Method (Section 2.5)
This method was included in the study by González et al. (2013),
and the results in this review are from the original paper. For a
proper comparison, the methods of Dondelinger et al. (2013) and
Macdonald and Husmeier (2015) were applied in the same way as
in for the comparison with González et al. (2013).

5.3. Tempered Mismatch Parameter Using
Splines-Based Smooth Functional
Tempering (Section 2.4)
The method was tested on the FitzHugh–Nagumo system with
the following parameter settings: α= 0.2; β= 0.2, and ψ= 3,
starting from initial values of (−1, 1) for the two “species” [note
the different starting values to the set-up in González et al.
(2013)]. Four hundred and one observations were simulated over
the time course [0, 20] (producing 2 periods) and Gaussian
noise was added with SD {0.5, 0.4} to each respective “species”.
The original settings were used for inferring the ODE parame-
ters: splines of polynomial order 5 with 301 knots; four parallel
tempering chains associated with gradient mismatch parameters
{10, 100, 1000, 10,000}; parameter prior distributions for the
ODE parameters: α∼N(0, 0.42), β ∼N(0, 0.42), and ψ ∼
χ2
2.
In addition to comparing the methods of Dondelinger et al.

(2013) and Macdonald and Husmeier (2015) with these original
settings, the followingmodifications weremade to test the robust-
ness of the procedures with respect to these (rather arbitrary)

choices. The number of observations was reduced from 401 to 20
over the time course [0, 10] (producing 1 period) to reflect more
closely the amount of data typically available from current systems
biology projects. For these smaller datasets, the number of knots
for the splines was reduced to 15 (keeping the same proportion-
ality of knots to datapoints as before), and a different polynomial
order was tested: 3 instead of 5. Due to the high computational
costs of theCampbell and Steele (2012)method (roughly 1 1

2 weeks
for a run), only 3 MCMC simulations on 3 independent datasets
could be run. The respective posterior samples were combined,
to approximately marginalize over datasets, and thereby remove
their potential particularities. For a fair comparison, the tem-
pering schedule in Campbell and Steele (2012) was applied to
the methods of Dondelinger et al. (2013) and Macdonald and
Husmeier (2015) such that 4 parallel chains were used rather
than 10.

5.4. Inference of the Gradient Mismatch
Parameter Using GPs (Section 2.1)
The methods of Dondelinger et al. (2013) and Macdonald and
Husmeier (2015) were applied in the same way as in the origi-
nal publication of Dondelinger et al. (2013), selecting the same
kernels and parameter/hyperparameter priors. Data were gener-
ated from the protein signal transduction pathway, described in
Section 4, with the following settings; ODEparameters: (k1 = 0.07,
k2 = 0.6, k3 = 0.05, k4 = 0.3, V = 0.017, Km = 0.3); initial values of
the species: (S= 1, dS= 0, R= 1, RS= 0, Rpp= 0); 15 timepoints
covering one period, {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80,
100}.Multiplicative iidGaussian noise of SD= 0.1 was used to dis-
tort the signals, in order to reflect observational error that would
be obtained in experiments. For Bayesian inference, a Γ(4, 0.5)
prior was used for the ODE parameters. For the GP, we used the
same kernel as in Dondelinger et al. (2013); see below for details.
In addition to this ODE system, these methods were also applied
to the set-ups previously described for the FitzHugh–Nagumo
model.

5.5. Choice of Kernel
For the GP, a suitable kernel needs to be chosen, which defines a
prior distribution in function space. Two kernels are considered
in this review [to match the authors’ set-ups in Dondelinger et al.
(2013)], the radial basis function (RBF) kernel

k(ti, tj) = σ2RBF exp

(
−
(ti − tj)2

2l2

)
, (68)

with hyperparametersσ2RBF and l2, and the sigmoid variance kernel

k(ti, tj) = σ2sigarcsin
a+ (btitj)√

(a+ (btiti) + 1)(a+ (btjtj) + 1)
, (69)

with hyperparameters σ2sig, a and b [Rasmussen and Williams
(2006)].

To choose initial values for the hyperparameters, a standard
GP regression model (i.e., without the ODE part) is fitted using
maximum likelihood. The interpolant is then inspected to decide
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whether it adequately represents the prior knowledge of the sig-
nal. For the data generated from the FitzHugh–Nagumo model,
the RBF kernel provides a good fit to the data. For the pro-
tein signaling transduction pathway, the non-stationary nature
of the data is not represented properly with the RBF kernel,
which is stationary [Rasmussen and Williams (2006)], in con-
firmation of the findings in Dondelinger et al. (2013). Fol-
lowing Dondelinger et al. (2013), the sigmoid variance kernel
was used, which is non-stationary [Rasmussen and Williams
(2006)] and this provided a considerably improved fit to
the data.

5.6. Other Settings
Finally, the values for the variance mismatch parameter of the
gradients, γ, needs to be configured for the method inMacdonald
and Husmeier (2015). Log base 2 and log base 10 increments
were used (initializing at 1), since studies that indicate reasonable
values are limited [seeCalderhead et al. (2008) and Friel andPettitt
(2008)]. All parameters were initialized with a random draw from
the respective priors (apart from GON and RAM, which did not
use priors).

6. RESULTS

We present the results in the same way the authors of the methods
we are comparing presented them in the original papers. For the
methodswe had obtained the authors’ code for, we also present the
root mean square (RMS) values in function space. First, the signal
was reconstructed with the sampled parameters and then the true
signal was subtracted (signal created with true parameters and
no observational noise added). The RMS was calculated on these
residuals. It is important to assess the methods on this criterion as
well as looking at the parameter uncertainty, as some parameters
might only be weakly identifiable, corresponding to ridges in the
likelihood landscape. In other words, large uncertainty in param-
eter estimates may not necessarily imply a poor performance by
a method, if the reconstructed signals for all groups of sampled
parameters were close to the truth.

All distributions of the results in this section are displayed
graphically as boxplots, which display whiskers that extend from
the lower (Q1) and upper (Q3) quartiles of the box, to boundaries
defined by Q1− 1.5(Q3−Q1) and Q3+ 1.5(Q3−Q1). All values
outside these boundaries are considered outliers and drawn as a
circle.

LB2 INF LB10 GON RAM LB2 INF LB10 GON RAM LB2 INF LB10 GON RAM

Distribution of absolute differences to the true parameter

Alpha Beta Psi

0
0
.2

0
.4

0
.6

FIGURE 7 | Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 50 datasets. The three sections from left to
right represent the parameters α, β, and ψ from equation (62). Within each section, the boxplots from left to right are: LB2 method, INF method, LB10 method,
GON’s method [boxplot reconstructed from González et al. (2013)], and RAM’s method [boxplot reconstructed from González et al. (2013)]. For an explanation of the
boxplot form, see the beginning of Section 6. Figure reconstructed from Macdonald and Husmeier (2015).
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6.1. Reproducing Kernel Hilbert Space
(Section 2.7) and Hierarchical
Regularization (Section 2.5) Methods
For this configuration, to judge the performance of the methods,
we used the same concept as in GON to examine our results. For
each parameter, the absolute value of the difference between an
estimate and the true parameter (|θ̂i − θi|) was computed and
the distribution across the datasets was examined. For the LB2,
LB10, and INF methods, the median of the sampled parameters
was used since it is a robust estimator. Looking at Figure 7, the
LB2, LB10, and INF methods do as well as the GON method
for 2 parameters (INF doing slightly worse for ψ) and out-
perform it for 1 parameter. All methods outperform the RAM
method.

6.2. Tempered Mismatch Parameter Using
Splines-Based Smooth Functional
Tempering (Section 2.4)
For this set-up, the entire posterior distributions were examined.
The posterior distributions were averaged over datasets in order to
present the overall performance of each method, not confounded
by the particular observational error that was added to a dataset.

The C&Smethod shows good performance over all parameters in
the one case where the number of observations is 401, the number
of knots is 301, and the polynomial order is 3 (cubic spline), since
the bulk of the average posterior distributions of the sampled
parameters surrounds the true parameters in Figures 8 and 10
and is close to the true parameter in Figure 9. However, these
settings require a great deal of “hand-tuning” or time expensive
cross-validation and would be very difficult to set when using real
data. The sensitivity of the splines-based method can be seen in
the other settings, where the results deteriorate. It is also important
to note that when the dataset size was reduced, the cubic spline
performed very badly. This inconsistency makes these methods
very difficult to apply in practice. The LB2, LB10, and INF meth-
ods consistently outperform the C&S method with the bulk of
the average posterior distributions overlapping or being closer to
the true parameters. On the set-up with 20 observations, for 4
chains and 10 chains, the INF method produced largely different
estimates over the datasets, as depicted by the wide boxplots and
long tails. The long tails in all of these distributions are due to the
combination of estimates from different datasets.

By examining Figure 11, we can see how the methods per-
form in function space. The RMS values for some of the C&S
set-ups were very large, so for graphical viewing purposes, we

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Parameter samples of Alpha

LB2

INF

LB10

LB2 10C

INF 10C

LB10 10C

C&S

C&S P3

C&S 15K

C&S 15K

P3

C&S

Obs20

C&S

Obs20 P3

LB2

Obs20

INF

Obs20

LB10

Obs20

LB2
Obs20

10C

INF

Obs20

10C

LB10

Obs20

10C

FIGURE 8 | Average posterior distributions of parameter α from equation (62) over 3 datasets. From left to right: LB2, INF, LB10, LB2 10C, INF 10C, LB10
10C, C&S, C&S P3, C&S 15K, C&S 15K P3, C&S Obs20, C&S Obs20 P3, LB2 Obs20, INF Obs20, LB10 Obs20, LB2 Obs20 10C, INF Obs20 10C, and LB10
Obs20 10C. The solid line is the true parameter. For definitions, see Tables 3 and 4. For an explanation of the boxplot form, see the beginning of Section 6. Figure
reconstructed from Macdonald and Husmeier (2015).
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10C, C&S, C&S P3, C&S 15K, C&S 15K P3, C&S Obs20, C&S Obs20 P3, LB2 Obs20, INF Obs20, LB10 Obs20, LB2 Obs20 10C, INF Obs20 10C, and LB10
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reconstructed from Macdonald and Husmeier (2015).

applied a squashing function

f(RMS) = RMS
1+ RMS , (70)

where f (RMS)=RMS for RMS<< 1, and f (RMS)= 1 for
RMS→∞. The RMS values have been monotonically
transformed and values closer to 0 show better performance,
whereas values closer to 1 show poorer performance. These
results reinforce what we saw from the parameter estimates. The
C&S performs well only in the one case where there was a large
number of datapoints (401) and a cubic spline was used. The
other set-ups for C&S perform very poorly, including the case
where the cubic spline was used with a smaller dataset size. The
LB2, INF, and LB10 methods perform well and similarly across
the different set-ups, with LB10 performing slightly better in
some scenarios.

6.3. Inference of the Gradient Mismatch
Parameter Using GPs (Section 2.1)
In order to see how the tempering method in Macdonald and
Husmeier (2015) performs in comparison to the INF method,
we can examine the results from the protein signaling trans-
duction pathway (see Section 4), as well as comparing the

results in the previous set-ups. The distributions of the posterior
parameter samples minus the true values for the protein sig-
naling transduction pathway are shown in Figure 12. The INF
method was unable to converge properly for some of the datasets.
In order to present the average performance of the methods,
for INF, LB2, and LB10, the root mean square (RMS) of the
difference between the posterior parameter samples and the
true values was calculated across all datasets. The results from
the dataset which produced the median RMS are shown for
each method.

By examining Figure 12, we can see that for each parame-
ter, the bulk of the distributions is close to the true value and
so the methods are performing reasonably. Overall, there does
not appear to be a significant difference between the INF, LB2,
and LB10 methods for this model. Figure 13 shows the dis-
tribution of RMS values for INF, LB2, and LB10 methods in
terms of deviance from the true time series. All three meth-
ods perform similarly to one another, with RMS values close to
zero.

For the set-up in Sections 2.7 and 2.5: Figure 14 shows the
Expected Cumulative Distribution Functions (ECDFs) of the
absolute difference of the posterior parameter samples to the
true values, for INF, LB2, and LB10. Included are the p-values
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reconstructed from Macdonald and Husmeier (2015).

for 2-sample, 1-sided Kolmogorov–Smirnov tests. If a distribu-
tion’s ECDF is significantly higher than another, this constitutes
as better parameter estimation. A higher curve means that a
method has more values that lie in the lower range of absolute
error.

Figure 14 shows that both the LB2 and LB10 methods out-
perform the INF method, shown by p-values of less than the
standard significance level of 0.05. Therefore, we conclude that
the CDFs for LB2 and LB10 are significantly higher than those
for INF. Since we are dealing with absolute errors, this means
that the parameter estimates from the LB2 and LB10 methods
are closer to the true parameters than the INF method. The
LB2 and LB10 methods show no significant difference to each
other.

For the set-up in Section 2.4: The LB2 and LB10 methods
do well over all the parameters and dataset sizes, with most of
the mass of the distributions surrounding or being situated close
to the true parameters. The LB2 does better than the LB10 for
4 parallel chains (distributions overlapping the true parameter
for all three parameters) and the LB10 outperforms the LB2 for
10 parallel chains (distribution overlapping true parameter in
Figure 8, being closer to the true parameter in Figure 9, and

narrower and more symmetric around the true parameter in
Figure 10). The INF method’s bulk of parameter sample dis-
tributions is located close to the true parameters for all dataset
sizes. However, the decrease in uncertainty is at the expense of
bias. When reducing the dataset to 20 observations, for 4 and
10 chains, the inference deteriorates and is outperformed by the
LB2 and LB10 methods. This could be due to the parallel temper-
ing scheme constraining the mismatch between the gradients in
chains closer to the posterior, allowing for better estimates of the
parameters.

7. DISCUSSION

We have carried out a comparative evaluation of various state-
of-the-art gradient matching methods. These methods are based
on different statistical modeling and inference paradigms: non-
parametric Bayesian statistics with Gaussian processes (INF, LB2,
and LB10), hierarchical regularization using splines interpolation
(RAM), splines-based smooth functional tempering (C&S), and
penalized likelihood based on reproducing kernel Hilbert spaces
(GON). We have also compared the antagonistic paradigms of
Bayesian inference (INF) versus parallel tempering (LB2 and
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LB10) of slack parameters in the specific context of adaptive
gradient matching. We discuss aspects of the methodology and
empirical findings separately.

7.1. Methodology
The GON method, due to the RKHS framework, is fast to
implement. This is an attractive property, since the main
motivation for gradient matching methods was to obtain a
computational speed-up over techniques that calculate the
numerical solution to the ODEs. This method hinges on
obtaining better estimates of the interpolant gradient by use of the
EM algorithm, so great care needs to be had when implementing
this step. Care also needs to be exercised in fitting the splines
estimates of the species for terms of the ODEs that cannot be fit
with the RKHS approach. This step is not optimized within the
penalized likelihood of equation (61) and so poor splines estimates
could deteriorate the results. The 3 level hierarchy of the RAM
method, for first configuring the tuning parameters and then
for performing parameter estimation, is sensible. Since gradient
matching methods rely on a good estimate of the interpolant,

focusing on the tuning parameters should achieve more robust
parameter estimates of the ODEs. This 3 level approach, however,
does increase the computational complexity and the RAM
method does not achieve a good speed-up over the numerical
solution methods. The C&S method’s use of parallel tempering
of both the likelihood and gradient mismatch parameter is
intuitive, and allows the MCMC to explore with a reduced chance
of getting stuck on local optima. This method uses B-splines
interpolation, which can be difficult in practice to configure the
tuning parameters for. The INFmethod has the advantage that the
interpolant hyperparameters can be inferred from the data, since
it uses Gaussian process interpolation. The inference approach
to the gradient mismatch parameter, as opposed to tempering,
however, could be overflexible and drive the parameter to values
where the coupling between the gradients is too weak. The LB2
andLB10methods avoid this by using a tempering scheme to drive
the parameter to the theoretically correct value (0 corresponding
to no mismatch between the gradients). However, currently,
there is no way of optimizing the specific step size and increment
schedule.
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FIGURE 12 | Results from the dataset that showed the average RMS of the posterior parameter samples minus the true values for the INF, LB2, and
LB10 methods. The posterior distributions are of the sampled parameters from equations (63)–(67) minus their true values. The horizontal line shows zero
difference. For an explanation of the boxplot form, see the beginning of Section 6. Figure reconstructed from Macdonald and Husmeier (2015).
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FIGURE 13 | Posterior distributions of RMS values for the ODE model in equations (63)–(67). The RMS values are calculated on the residuals of the true
signal (signal produced with true parameters and no observational error) minus the signal produced from the sampled parameters. For an explanation of the boxplot
form, see the beginning of Section 6.
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FIGURE 14 | ECDFs of the absolute errors of the parameter estimation. Top left – ECDFs for LB2 and INF, top right – ECDFs for LB10 and INF, and bottom
– ECDFs for LB10 and LB2. Included are the p-values for 2-sample, 1-sided Kolmogorov–Smirnov tests. For definitions, see Tables 3 and 4. Figure reconstructed
from Macdonald and Husmeier (2015).

7.2. Empirical Findings
The GON method produces estimates that are close to the
true parameters in terms of absolute uncertainty. This, how-
ever, was for the case with small observational noise (Gaussian
iid noise SD= 0.1), and it would be interesting to see how the
parameter estimation accuracy is affected by the increase of
noise. The RAM method performs worse than the rest of the
methods it was compared to, across all parameters. The C&S
method does well only in the one case, where the number of
observations is very high (higher than what would be expected
in these types of experiments) and the tuning parameters are
finely adjusted (which in practice is very difficult and time-
consuming). When the number of observations was reduced, all
settings for this method deteriorated significantly. It is impor-
tant also to note that the settings that we found to be optimal
were slightly different than in the original paper, which high-
lights the sensitivity and lack of robustness of the splines-based
method. The INF method shows a reasonable performance in

terms of consistently producing results close to the true param-
eters, across all the set-ups we have examined. However, this
technique’s decrease in uncertainty is at the expense of bias. The
LB2 and LB10 methods show the best performance across the
set-ups. The parameter accuracy is unbiased across the different
ODE models and the different settings of those models. The
parallel tempering seems to be quite robust, performing simi-
larly across the various set-ups. We have explored four differ-
ent schedules for the parallel tempering scheme (as shown in
Table 1). Overall, the performance of parallel tempering has been
found to be reasonably robust with respect to a variation of the
schedule.
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