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Knowledge about the electrostatic potential on the surface of biomolecules or biomem-
branes under physiological conditions is an important step in the attempt to characterize
the physico-chemical properties of these molecules and, in particular, also their inter-
actions with each other. Additionally, knowledge about solution electrostatics may also
guide the design of molecules with specified properties. However, explicit water models
come at a high computational cost, rendering them unsuitable for large design studies or
for docking purposes. Implicit models with the water phase treated as a continuum require
the numerical solution of the Poisson–Boltzmann equation (PBE). Here, we present a new
flexible program for the numerical solution of the PBE, allowing for different geometries,
and the explicit and implicit inclusion of membranes. It involves a discretization of space
and the computation of the molecular surface. The PBE is solved using finite differences,
the resulting set of equations is solved using a Gauss–Seidel method. It is shown for
the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding
membrane has a strong effect also on the electrostatics within the pore region and, thus,
needs to be carefully considered, e.g., in design studies on membrane proteins.

Keywords: electrostatics, Poisson–Boltzmann equation, finite-difference method, molecular surface, membranes

1. INTRODUCTION

Electrostatic interactions govern the physical–chemical interactions in and between biomolecules
(Perutz, 1978). A quantitative description of electrostatic energies (Warshel et al., 2006) is required
both for a thorough understanding of biomolecular systems, e.g., of membrane-embedded ion
channels or of pKa changes during enzymatic function and in protein design, e.g., the design of
novel protein folds or in the search for high-affinity ligands.

Coulombic forces are modulated by the environment (Warshel et al., 2006), i.e., in case of
soluble proteins by water and ions and possibly other proteins, and additionally by phospholipids
in the case of membrane proteins. In atomistic molecular dynamics (MD) simulations (Karplus and
McCammon, 2002), this environment is treated explicitly for a proper description, in particular, of
the local electrostatics, e.g., in water-mediated hydrogen bonds. Computationally less demanding
models introduced uniform dielectric constants for both the protein and the solvent (Tanford and
Kirkwood, 1957), a distance-dependent dielectric constant accounting for electrostatic shielding
within the solvent (Brooks et al., 1983), or modeled the solvent using an explicit grid of Langevin
dipoles (Warshel and Levitt, 1976).

The electrostatic contribution to free energy differences between two states of a biomolecular
system – e.g., two proteins bound to each other vs. the two proteins separated in space – is in
many cases difficult to directly access; however, it may be computed from ensembles of microscopic
structures. The simulation-based free energy perturbation (FEP) approach or the thermodynamic
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integration (TI) method is frequently used to analyze free energy
difference of biomolecular states. The computational cost of such
methods is, however, at variance with the need for high through-
put, e.g., in protein design or protein–ligand docking and in the
pKa analysis of titratable sites as well. The latter problem requires
the accurate estimation of the free energy differences between
protonated and de-protonated states of all titratable groups in
proteins, either on crystal structures or on trajectories obtained
from molecular dynamics simulations to better grasp the protein
flexibility (Narzi et al., 2008a). Protonation or pK changes are, e.g.,
important during the function of enzymes (Narzi et al., 2008a),
or in protein–ligand binding (Narzi et al., 2008b; Onufriev and
Alexov, 2013).

Due to the computational efficiency required to tackle the
above problems, the solvation free energy is usually addressed
in implicit models by solving the Poisson–Boltzmann equation
(PBE) for the different states [see, e.g., Ullmann and Bombarda
(2014)]. Different values for the dielectric continuum inside the
protein have been used in the literature. The states may be crystal
structures,modeled structures, snapshots frommolecular dynam-
ics simulations [MM/PBSA (Kollman et al., 2000)], or structural
ensembles generated from crystal structures [CC/PBSA (Benedix
et al., 2009)]. The solution of the PBE on structural ensembles
should yield a more accurate solution for the solvation free ener-
gies of the studied biomolecules as it takes the flexibility of the
protein into account.

A number of program packages for the numerical solution of
the Poisson–Boltzmann equation have been developed in the past,
namely APBS (Baker et al., 2001), UHBD (Madura et al., 1995),
or DelPhi (Li et al., 2012), to mention a few. Here, we present a
sequential PBE solver (GroPBS) that allows the accurate analysis
of the electrostatic component of the solvation free energy of
soluble proteins and of membrane proteins in explicit or implicit
membranes. GroPBS is compatible with the GROMACS simula-
tion suite and can, thus, easily be combined with simulations of
biomolecules and the various biomolecular force fields available
in Gromacs.

2. METHODS

2.1. Poisson–Boltzmann Equation
The analysis of the electrostatic potential Φ of a biomolecule in
an implicitly treated solvent environment requires the numerical
solution of the Poisson–Boltzmann equation (PBE). For the most
simple case of a solute molecule in a homogeneous medium,
three different domains (Holst, 1994) may be distinguished (see
Figure 1):

1. Inside themolecule (green) (i.e., within the van derWaals radii
of the atoms of the solute)Φ can be computed using the Poisson
equation and Green’s identity resulting in

∇2Φ(x) =
M∑
i=1

−4πqi
ε1

δ(x− xi)

where M is the number of atoms of the solute with point
charges qi at positions xi.

FIGURE 1 | Representation of a molecule consisting of nine atoms. The
different regions are colored as follows: green, van der Waals surface (inside);
blue, solvent; dark blue, ion exclusion layer.

2. Outside themolecule (light blue), the charge density of the ions
in the solvent is assumed to follow a Boltzmann distribution
that yields

∇2Φ(x) = κ2 kBT
ec

sinh

(
ecΦ(x)
kBT

)
,

kB is the Boltzmann constant, ec the elementary charge, T the
temperature, and κ is the modified Debye–Hückel parameter,
given by

κ2 =
8πNAe2c Is
1000ε3kBT

with NA Avogadro’s number and Is the ionic strength of the
solvent.

3. In the ion exclusion layer (dark blue) around the molecule no
mobile ions are present. The Poisson equation reads accord-
ingly

∇2Φ(x) = 0.

Combining these conditions into one equation, results in the
non-linear PBE

−∇(ε(x)∇Φ(x)) + κ2(x)kBTec
sinh

(
ecΦ(x)
kBT

)
= 4πρ(x) (1)

with the charge distribution function ρ(x) of the molecule and the
spatial relative dielectric function ε(x) and κ2(x), which is 0 in the
solute and the ion exclusion layer and κ2(x)= ε3κ

2 for x in the
solvent. ε(x) allows for the description of the dielectric disconti-
nuity between themolecule and the solvent and is typically chosen
to adopt values between 2 and 20 inside the biomolecule and 80
outside. More complicated models for the dielectric “constant”
taking smoothed boundaries into account were suggested recently
by Li et al. (2013) and will be considered for future work.

The framework provided by equation (1) allows the straightfor-
ward inclusion of various regions with different dielectric prop-
erties, e.g., of membranes. The membrane is modeled as another
bulk medium like the solvent but with its own dielectric con-
stant [εmem ≈ 2. . .3 (Böckmann et al., 2008)]. In a first step, the
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membrane is treated as a box in the xy-plane represented by its
upper and lower z-value. However,more sophisticatedmodels like
curved membranes or taking the surface structure into account
may easily be implemented.

The above partial differential equation cannot be solved analyt-
ically for objects shaped more complex than, e.g., a single sphere
or cylinder. Therefore, the PBE has to be solved numerically.

2.2. Finite-Difference Method
The first step in the numerical solution of the PBE is to map
all physical quantities (charges at atom centers, dielectric val-
ues, etc.) onto a three-dimensional uniform grid. Such a grid
allows to replace differential operators by grid value differences.
This approach is facilitated by linearizing the PBE [LPBE (Holst,
1994)]; For sinh(x)≈ x the latter simplifies to

−∇(ε(x)∇Φ(x)) + κ2(x)Φ(x) = 4πρ(x). (2)

Discretization of this equation yields for every grid point

Φ0 =

∑6
k=1 εkΦk + 4πq0/h∑6
i=k εk + (κ0 · h)2

, (3)

q0 and κ0 denote the charge and Debye–Hückel parameter at
the grid point, Φk is the potentials at the six neighboring grid
positions (in x-, y-, and z-direction), and εk is the dielectric values
at the midpoints between Φ0 and its neighbors Φk (see Figure 2)
(Nicholls and Honig, 1991). h is the step size, i.e., the distance
between the grid points. While charge and the Debye–Hückel
parameter are given values at the grid points, one important step
is to define in which medium a grid point or midpoint is located.
This problem is described in more detail below.

Application of equation (3) for each grid point results in a
system ofN3 linear equations whereN is the grid size. This system
can be reformulated as

Φ = MΦ+ v, (4)

with Φ as a vector containing the potential at all grid points and
M being a sparse matrix containing zeros at positions (i, j) if i and
j are not neighboring grid points and εj∑6

k=1 εk+(κ0·h)2
at positions

(i, j) else, with k denoting all neighboring grid points of i. v is a
vector containing the remaining terms of the discretized LPBE.

FIGURE 2 | 2D representation of the computation scheme for equation
(3): The inner red circle Φ0 is computed using the outer red circles Φk,
and the green circles εk.

2.3. Successive Over-Relaxation
Several alternatives were suggested for the treatment of the grid
boundaries: setting the electrostatic potential at the boundaries to
0, application of distance-dependent quasi-Coulombic boundary
conditions, or periodic extensions of the system box in one or
more directions.

The set of linear equations (4) is iteratively solved using meth-
ods like Jacobi or Gauss–Seidel (Demmel, 1997). Here, we used in
a first serial implementation a successive over-relaxation (SOR)
for Gauss–Seidel yielding the iteration rule

Φ(n+1) = ωΦnew + (1− ω)Φ(n), (5)

n is the iteration step, Φnew is computed using equation (3). ω> 1
is the relaxation parameter. In a sequential implementation, every
newly computed grid point value is immediately used for comput-
ing further grid points in the same iteration step – in contrast to
the Jacobi method that renders the Gauss–Seidel approach much
faster. Since the convergence rate of the Gauss–Seidel method
depends on the spectral radius, i.e., the largest eigenvalue of M,
ω should be chosen in a way it makes the spectral radius smaller.
It can be shown that the optimal value is given by

ω =
2

1+
√
1− λN

,

λN is the spectral radius. The spectral radius of M can be com-
puted using the Connected-Moments Expansion (Cioslowski,
1987; Nicholls and Honig, 1991).

2.4. Solvation Free Energy
The grid-based electrostatic potential is used to compute the
solvation free energy of the system. This is achieved by summing
the product of the potential and the charge at each grid point,
followed by subtraction of the corresponding energy as obtained
for the potential using a uniform dielectric inside and outside of
the solute. This approach eliminates the self-energy terms that are
physically not meaningful. The disadvantage of this approach is
the required double computation of the electrostatic potential.

A different approach can be used if the molecular surface is
known (see below). The reaction field effects due to a dielec-
tric boundary are replaced by the computation of the induced
charges at this boundary (Rocchia et al., 2002). The solvation
energyGW may then be calculated applying Coulomb’s law for the
induced and the real charges. Formalizing this approach yields the
following equation:

GW = 0.5 ·
∑

b∈boundary

∑
p∈grid

qp
dist(bs, p)


·

(
3h
2π

(
Φb −

1
6

6∑
k=1

Φk

)
− qb

)
, (6)

b denotes the grid points at the dielectric boundary, p all grid
points (these can be reduced to all charged grid points, as for all
other points the term is 0) and bs is the points at the molecular
surface obtained by projecting the boundary grid points to the
surface.
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2.5. Optimizations
Some simplifications of equation (3) are possible (Nicholls and
Honig, 1991): first, most grid points do not hold a point charge,
i.e., the term 4πq0/h is equal to 0. Second, most grid points are not
found at a dielectric boundary, i.e., all neighboring midpoints are
located in only one medium. These modifications lead to a quite
simple 7-point stencil (modified by salt if present)

Φ0 =
1
6

6∑
k=1

Φk︸ ︷︷ ︸
without salt

or Φ0 =

∑6
k=1 Φk

6+
(
(κ0·h)2

ε0

)
︸ ︷︷ ︸

with salt

. (7)

In each iteration step of the SOR first this stencil is used,
followed by analysis of the correction for dielectric discontinuities
and charges if necessary. This approach is also a first step for a
parallelization as the uniform stencil in equation (7) suits to be
applied in parallel.

2.6. Extraction of Molecular Surface
In order to define which grid points lie inside and outside of the
solute, the assignment of dielectric constants to the midpoints
and, in particular for the computation of the free energy in a
more sophisticated way (see above), the solute surface needs to
be defined. The molecular surface is determined by its implicit
description from the atom positions and radii of the solute. This
surface is defined as the contact surface between the van der
Waals surface and the surface of a spherical probe representing
the solvent.

The first step is to determine a van der Waals map by mapping
the atoms onto the grid. Every midpoint is categorized as inside
or outside of the solute. This is done by examining all midpoints
inside a box surrounding each atom and comparing their distance
to the atom center with the radius of the atom. The same approach
is used to determine which grid points are in solution, which is
important for knowing which grid points’ stencil has to be modi-
fied by salt. Additionally, the grid points are classified as internal
points if all surrounding midpoints are inside, external points if
all surroundingmidpoints are outside, or boundary points if some
midpoints are in solution and some are not.

Taking into account the probe radius, some of these points
have to be reclassified as sketched in the red marked region in
Figure 3. This is done by iteratively examining the midpoints
that surround the boundary points. For each such point, the
distance to the solvent accessible surface is computed. This dis-
tance is defined as the distance from the van der Waals sur-
face (violet line in Figure 3) extended by the radius of the
probe, e.g., by 1.4 Å for water (one has to take into account that
these extended atoms can overlap, see green line in Figure 3).
If this distance is smaller than the probe radius, the midpoint
remains outside; otherwise, it will be turned into an inside mid-
point. Next, the grid points are reclassified using the new mid-
points. This is repeated until no new boundary grid points are
produced.

The actual surface points are finally constructed by project-
ing the boundary grid points onto the molecular surface either
directly by moving them along the line connecting the grid point

FIGURE 3 | 2D representation of a very simple molecule consisting of
two atoms on a grid. The midpoints inside are marked as green dots, black
dots (and no dots) denote midpoints outside. The grid points of interest at the
boundary are marked with orange diamonds.

FIGURE 4 | Van der Waals surface of a peptide represented as spheres
(orange) and its molecular surface (gray). The molecular surface and the
van der Waals surface match for the convex parts of the molecule.

and the nearest atom center or by projecting them first onto the
closest point of the solvent accessible surface and then back on the
molecular surface in a similar way (Rocchia et al., 2002).

Figure 4 shows the result of the surface computation for a small
peptide. In the convex parts, the molecular surface corresponds to
the van der Waals surface (brightly colored parts), whereas they
differ in concave parts and cavities.

3. RESULTS

3.1. Evaluation of Current Program
The approach described in the Section “Methods” has been imple-
mented in a sequential program using C++. As input separate
files containing the atom positions (“.pdb,” Protein Data Bank
format) and force field parameters, like in the program Delphi
(Li et al., 2012) can be used as well as the Gromacs (Pronk et al.,
2013) input file format (“.tpr”) for atom positions, Lennard Jones
parameters for the atom sizes, and partial atomic charges. The
leading biomolecular force fields for molecular modeling such
as CHARMM, GROMOS, OPLS, or Amber are supported by
Gromacs. This combination with the widely used Gromacs sim-
ulation package considerably simplifies the usage and enhances
the applicability of the presented PBE solver in combination with
biomolecular simulations, e.g., in the analysis of protein–protein
binding free energies using the MM/PBSA approach.
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TABLE 1 | Possible parameters.

in(tpr, path) Gromacs input file Can also be given in the command line
in(pdb, path) Protein positions Alternative to tpr
in(siz, path) Protein sizes Necessary with pdb, optional with tpr
in(crg, path) Protein charges Necessary with pdb, optional with tpr
in(sph, path) Positions in pdb format Optional, to compute the potential

Along a path or a specific postilions

Filling Percentage of box that is filled with protein Default: 80%
Spacing Spacing (in Å) between two grid points Default: 1 Å
gridS Grid size, i.e., number of grid points in each direction (odd) Default: is computed

Two of these three parameters
Can be chosen

rmsc Convergence criterion Default: 0.0001
maxc Convergence criterion Default: 0.0001
maxit Maximal iteration Default: 500

epsIn Dielectric constant inside the molecule Default: 2.0
epsOut Dielectric constant in the solution Default: 80.0
salt Concentration in moles/liter Default: 0.0
temp Temperature Default: 273.15

bc= {1,2} Boundary conditions 1: 0-boundary, 2: quasi-Coulombic
pb= xyz Periodic boundary conditions in x-, y-, z-direction Default: false

nomem No membrane input Default: no information
mem= zmin, zmax, eps Minimal and maximal spread of membrane Default: no information

In z-direction and its dielectric constant
tprmem= res, atm, eps Residue and atoms to be considered membrane in tpr Default: no information

Its dielectric constant

The above-described input files and additional parameters like
grid size, percentage of filling, probe radius, etc. are listed in one
parameter file that serves as input. Table 1 contains all currently
available parameters.

In the following, some of these parameters are explained in
more detail.

3.1.1. Membranes
Membranes are modeled as a slab in the xy-plane defined in
extent by their minimal and maximal z-value. There are several
possibilities to define the membrane extension:

• If the exact values are known beforehand, the
mem= zmin,zmax,eps option in the parameter file
can be used.

• These values can also be entered in the interactivemode after
the z-extent of the molecule is reported.

• If a membrane is included in the “.tpr” file, with the
tprmem= res,atm,eps option in the parameter file (or in the
interactive mode) the associated residue names and atoms
(e.g., POPC as residuum and P as atom) can be used to
specify the membrane. The chosen atoms are separated into
upper and lower parts of the membrane and the according
center of mass is used as zmin and zmax.

3.1.2. Boundary conditions
There are three possibilities to specify boundary conditions. These
have to be fixed, as the grid points at the grid’s boundary do
not have enough neighbors to be computed directly. The first
and easiest way is to set the boundary grid points to 0. Another

possibility is to approximate the potential at the boundary using
quasi-Coulombic dipole conditions:

Φ(x) =
c+ · exp(−d+

λ )

d+ · εsol
+

c− · exp(−d−
λ )

d− · εsol
,

where εsol is the dielectric constant of the solvent, c+ and c− are
the total positive and negative charges, d+ and d− are the distance
of the grid point to the center of the positive and negative charges,
and λ denotes the Debye length.

Alternatively, periodic boundary conditions can be used in each
grid dimension separately. Then for the missing neighbors, the
corresponding points at the opposite side of the grid are used. This
provides the opportunity to model infinite boxes.

3.1.3. Convergence Criterion
There are three possible ways to define the convergence of the
iterative procedure. The first is to set a threshold on the root mean
squared change (rmsc), defined as

rmsc(i) =
√

1
M
∑
x

(Φ(i)(x)− Φ(i−1)(x))2,

M is the number grid points and i is the iteration count. The
rmsc measures the mean differences in the potential between two
iterations. The option maxc limits the maximal change in the
potential between two iterations. The third option allows to limit
the number of iterations without regarding the convergence at all.
Of course, these criteria can be combined, stopping the iteration
process as soon as one criterion is fulfilled.
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FIGURE 5 | The number of iterations and, therefore, the time to solve the linear system depends on the grid size, i.e., the size of the studied solute
molecule.

FIGURE 6 | The computation of the molecular surface, of the energy, as well as of the total CPU time depend on the number of residues.

FIGURE 7 | Electrostatic surface potential of acetylcholinesterase
(Colletier et al., 2006). Blue corresponds to an electrostatic potential of −4,
red to +4 kT/e.

The implementation was tested using molecules of different
sizes, ranging from small proteins with 49 residues to proteins
as large as 1,070 residues (1,260–16,260 atoms, respectively). The
grid size was chosen such that the filling rate was ≈80% using a
grid size of 1Å.Different results regarding the correlation between
the number of atoms and grid size, number of iterations, and
time consumption for different parts of the program are shown
in Figures 5 and 6.

The results show that the number of iterations and, therefore,
the time to solve the linear system strongly depends on the number
of grid points. The surface computation and energy calculation,
however, depend on the size of the molecule.

FIGURE 8 | Sucrose-specific porin ScrY embedded in a POPC
membrane.

The electrostatic potential computed using GroPBS may be
mapped onto the surface of biomolecules using, e.g., PyMOL
(Schrödinger, 2010). As an example, Figure 7 shows the surface
potential of acetylcholinesterase.

3.2. Influence of an Implicit Membrane
In order to evaluate the influence of the low dielectric of a lipid
membrane on the electrostatic potential of an embedded mem-
brane protein, the potential was compared for the sucrose-specific
porin ScrY (Forst et al., 1998) in different environments. Figure 8
shows this porin embedded in a POPC bilayer. The electrostatic
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FIGURE 9 | Potential profiles along the paths through the
sucrose-specific porin ScrY under different conditions. Upper panel:
the electrostatic potential computed without consideration of a membrane
slab (red), and with an implicit membrane slab with ε= 2 (blue) and ε= 4
(green). Lower panel: Results for the electrostatic potential along the sucrose
pore averaged over snapshots of a 100 ns molecular dynamics simulation.
The protein flexibility is highlighted by its influence on the electrostatic
potential (gray shaded region). The vertical lines describe the extent of the
protein (gray) and the membrane (black).

potential was analyzed along a path through the pore of each
monomer of the ScrY homo-trimer. This path was obtained using
the program hole (Smart et al., 1993). For the solution of the PBE,
the gridwas chosen such that the filling ratewas≈80%using a step
size of 0.5 Å and periodic boundary conditions in lateral direction
(membrane plane) and dipole boundary conditions normal to
the membrane. The dielectric constants were set to 4.0 inside
the protein and 80.0 in the solvent phase. The dielectric of the
surrounding implicit membrane was varied to study the influence
of the membrane on the central, membrane-distal pore region.
The PBE was solved every 0.5 ns of a 100 ns simulation, excluding
the initial equilibration period of 20 ns. The electrostatic potential
was averaged over the trajectory.

The obtained electrostatic potential through the ScrY pore
(see Figure 9, upper panel) is drastically decreased if an implicit

membrane is included in the calculations. While the shape of
the potential is similar, the minimum is shifted by approximately
1.5 nm, from the membrane interfacial region to the interior of
the pore. The additional inclusion of flexibility by averaging the
potential along a molecular dynamics trajectory results in an
increase of the potential by up to 7 kT/e (Figure 9, lower panel).

4. DISCUSSION AND FUTURE WORK

A new program for the numerical solution of the Pois-
son–Boltzmann equation around biological macromolecules is
presented (GroPBS). Apart from soluble proteins, GroPBS may
as well be used to analyze the electrostatic potential of integral
membrane proteins. The low-dielectric membrane environment
may be modeled implicitly or explicitly. Additionally, GroPBS
is shown to efficiently perform such computations both on pdb
files and using the Gromacs input file format. This significantly
simplifies the fast calculation of, e.g., the solvation free energies
of biomolecules for different force fields or on ensembles of
structures obtained from molecular dynamics simulations.

On the example of the sucrose-specific porin ScrY, we show
that the inclusion of a membranemay have a substantial influence
also on the potential inside the protein, and thus should not be
neglected in PB calculations of membrane proteins.

In a subsequent step, GroPBS will be parallelized for multi-
core architectures, and in particular, GPUs to enable, e.g., the fast
analysis of changes in pKa values on the fly during biomolecular
simulations. Parallelizationmay be easily achieved by the so-called
checkerboard ordering in the update of the electrostatic potential
(Adams and Ortega, 1982).

The program will be made available free of charge on the fol-
lowing website: www.biotechnik.nat.uni-erlangen.de/research/
boeckmann/downloads/GroPBS.
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