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Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic
challenges for their survival. As a result, actinomycetes metabolism and genomes have
evolved to produce an overwhelming diversity of specialized molecules. Polyketides,
non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes
are well-known bioactive natural products with enormous industrial potential. Accessing
such biological diversity has proven difficult due to the complex regulation of cellular
metabolism in actinomycetes and to the sparse knowledge of their physiology. The past
decade, however, has seen the development of omics technologies that have signifi-
cantly contributed to our better understanding of their biology. Key observations have
contributed toward a shift in the exploitation of actinomycete’s biology, such as using
their full genomic potential, activating entire pathways through key metabolic elicitors and
pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to
achieving enhanced discovery, activation, and manipulation of natural product biosyn-
thetic pathways in model actinomycetes using genome-scale biological datasets.

Keywords: actinomycetes, genome mining, genomics, transcriptomics, proteomics, metabolomics, genome-
scale metabolic reconstructions

INTRODUCTION

Actinomycetes represent one of the largest bacterial phyla and are primary contributors to carbon
cycling and a major source of bioactive natural products (BNP) including, most prominently,
antibiotics. Despite their prime importance, our understanding of actinomycete’s biology remains
elusive owing to a characteristically large, convoluted, high GC content genome (Demain, 2014).
The complexity of actinomycetes genomes was only fully revealed in the last decade as part of the
genomic revolution. Sequencing of the first actinomycetes genomes revealed a plethora of bioac-
tive secondary metabolites yet to be discovered in addition to the well-characterized biosynthetic
gene clusters (BGC) (Doroghazi et al., 2014). According to NCBI database, to date around 1,000
actinomycete genomes have been fully sequenced and annotated. Homology sequence-based
bioinformatic tools have confirmed their great potential as BNP producers; for example, species
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of Streptomyces, Salinispora, and Saccharopolyspora families
contain an average of 30 secondary metabolite gene clusters
(Nett et al., 2009).

The physiological changes leading to BNP biosynthesis in
actinomycetes have been thoroughly studied over the past
10 years. Considerable work has advanced our understanding
of the transitional stage triggering BNP biosynthesis (also
known as the “metabolic switch”; Alam et al., 2010) and with
it, our understanding of the physiological changes leading to
secondary pathways activation. However, a lack of full under-
standing of this physiological transition stage has prevented us
from manipulating fully this cellular process using metabolic
engineering. Here, we review landmark studies contributing
to the discovery, activation, and manipulation of metabolic
pathways for BNP through the development of genome-wide
biological datasets and systems biology in actinomycetes
(Figure 1).

PATHWAY DISCOVERY: FROM IMPROVED
GENOME ANNOTATION TO THE
DISCOVERY OF NEW BNP BIOSYNTHETIC
PATHWAYS

Genome annotation is the basis for pathway discovery and
manipulation. Pathway discovery typically follows a defined
pipeline: genome sequencing, annotation, gene discovery,
and pathway manipulation. The exponential increase in
sequencing efficiency is yielding an ever-increasing num-
ber of sequenced genomes, causing a bottleneck due to an
often limited understanding of genome sequences. In silico
approaches mainly rely on sequence homology scores to
experimentally characterized sequences. Historically, how-
ever, functional microbiology has focused on a handful of
microorganisms. Therefore, the genomic space for in silico
genome annotation pipelines is biased for certain G + C con-
tent sequences, gene length, and organization. For instance,
approximately 60% of the bacterial genomic space is miss-
annotated in terms of gene boundaries (start/stop codons)
caused by minimal cross-checks between computationally
assigned open-reading frames (ORFs) and real genes (Nielsen
and Krogh, 2005).

Bioinformatics-based pipelines failed to annotate accurately
short-length proteins and high G + C content sequences in an
annotation effort for 46 bacterial and archaea genomes (Venter
et al., 2011). By contrast, functional annotations supported
by “omics technologies” dramatically improve gene function
assignment, particularly in less characterized microorgan-
isms such as Geobacter sulfurreducens (Qiu et al., 2010) or
the erythromycin producer actinomycete Saccharopolyspora
erythraea (Marcellin et al.,, 2013a). Integration of proteomics
and transcriptomics approaches has led to the re-annotation
of these genomes, allowing for correction of hundreds of gene
boundaries, the confirmation of hypothetical proteins and the
discovery of dozens of new genes. A combination of proteomics
and genomics, also known as proteogenomics, has also been

used to deliver unbiased correlations between genome sequence
and protein expression (Gupta et al., 2007; Gallien et al., 2009;
Armengaud, 2010; Castellana and Bafna, 2010; Marcellin et al.,
2013a).

Genome Mining and Pathway Discovery
The first sequenced genomes of BNP producers were Streptomyces
coelicolor (Bentley et al., 2002), Streptomyces avermitilis (Ikeda
et al., 2003), producer of the insecticide/anthelmintic aver-
mectin, S. erythraea (Oliynyk et al., 2007) and producer of the
classic antibiotic streptomycin Streptomyces griseus (Ohnishi
et al., 2008). Further sequence inspection of such genomes and
other model actinomycetes have opened a plethora of BGCs,
and revealed the great potential of actinomycetes genomes for
the production of BNPs (Nett et al., 2009; Aigle et al., 2014;
Doroghazi et al., 2014; Ikeda et al.,, 2014). However, exploit-
ing this rich source of BNP has proven challenging. Genomic
analyses show an abundance of known BGCs (i.e., chemically
and genetically known), hypothetical BCGs (i.e., chemically
unknown - genetically known), and cryptic BCGs (i.e., chemi-
cally unknown - genetically unknown) (Zerikly and Challis,
2009; Doroghazi and Metcalf, 2013).

Initial approaches to the discovery and identification of BNP
were based on the search for cryptic BGC. The most common
methodinvolves gene mapping of enzymaticassembly complexes
such as polyketide synthases (PKSs), non-ribosomal peptide
synthases (NRPSs), and other enzymes typically related to BNPs
(e.g., lanthipeptide synthases, terpene synthases, etc.). While
simplistic, accumulation of structural, mechanistic, genetic,
and chemical information on PKs and NRPs has allowed for
the prediction of structures and chemical properties of dozens
of BCGs from DNA sequences (Walsh et al., 2006; Hertweck,
2009; Jenke-Kodama and Dittmann, 2009; Koglin and Walsh,
2009; Walsh and Fischbach, 2010). Incorporating these mining
strategies in specialized bioinformatic pipelines has revolu-
tionized the genome mining scene efficiency. Genome-scale
prediction of putative BGCs is nowadays possible within a few
of hours.

Continuous progress has enabled the emergence of bioin-
formatics platforms, such as CLUSEAN (Weber et al., 2009),
ClustScan (Starcevic et al., 2008), np.searcher (Li et al., 2009),
SMUREF (Khaldi et al., 2010), and antiSMASH (Medema et al.,
2011b; Blin et al., 2013; Weber et al., 2015). The latter is the
most popular system for automated BNP genome mining since
it analyzes BGC domains to propose loci, chemical scaffold,
and putative chemical structures. However, one of the biggest
disadvantages of the use of these genome mining approaches is
their intrinsic limitations to BGCs from known chemical struc-
tures. Complementary approaches have emerged to enable the
discovery of novel BCGs, such as ClusterFinder (Cimermancic
et al, 2014) or EvoMining (Medema and Fischbach, 2015).
ClusterFinder uses hidden Markov model-based algorithms and
Pfam as search database to annotate BCGs by clusters of protein
domains with a biosynthetic logic. The use of ClusterFinder has
allowed the detection of previously unknown classes of BCGs
(Cimermancic et al., 2014). On the other hand, EvoMining is
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FIGURE 1 | Sequencing actinomycete genomes has revealed an unexpected complexity. Systems Biology has opened access to the untapped chemical
diversity encoded within the global microbial genome, including the vast majority (>99%) of taxa that are currently deemed unculturable, and a wealth of
bioactive genes that are currently silent (untranslated) under standard cultivation condition.

a functional phylogenomic pipeline that identifies expanded,
repurposed enzyme families, with the potential to catalyze new
conversions within BGC (Medema and Fischbach, 2015). This
innovative method embraces the predictive power of evolu-
tionary theory leading to model-independent predictions that
include gene clusters that do not follow traditional biosynthetic
rules. The method has been used for the discovery of the genes
directing synthesis of small peptide aldehydes and the first bio-
synthetic system for arseno-organic metabolites.

Overall, genomic approaches have significantly improved
the prediction of BNP from unannotated sequences and pro-
vided deep insights into the identification of novel chemical
species. The genomic approach is limited to the known rep-
ertoire of BCGs, ignoring regulatory information for pathway
activation.

PATHWAY ACTIVATION: SYSTEMS
BIOLOGY ANALYSIS OF ACTINOMYCETE
PHYSIOLOGY AND DEVELOPMENT

Systems biology protocols have been successfully used to describe
germination (Piette et al., 2005; Yagiie et al., 2013a; Bobek et al.,
2014), programed cell death (Manteca et al., 2005), diauxic lag
phase (Novotna et al., 2003), mutant analyses (bald A mutant)
(Kim et al., 2005; Hesketh et al., 2007), and phosphate limita-
tion (Rodriguez-Garcia et al., 2007). Given that biosynthesis of
natural products in actinomycetes is conceived as a physiological
response to environmental changes (e.g., change of temperature,
nutritional conditions, etc.), it is assumed that understanding
their physiological behavior would provide the lead for natural
product pathway activation and manipulation. Here, we focus on
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reviewing efforts devoted to understand the physiological transi-
tions prior the activation of known natural product biosynthesis
and the approaches used for the activation of unknown natural
products biosynthetic pathways in model actinomycetes.

Physiological Transitions and
Development

Actinomycetes undergo drastic physiological changes dur-
ing their developmental cycle (i.e., programed cell death and
sporulation). In contrast to previous assumptions that sporula-
tion events exclusively occurred in solid cultures (Flardh and
Buttner, 2009), differentiation during pre-sporulation stages have
been described in both solid and liquid Streptomyces cultures
(Manteca et al., 2010). The existence of two different mycelia (MI
and MII) across the developmental cycle has been characterized
using iTRAQ LC-MS/MS proteomics, phosphoproteomics, and
microarray-based transcriptomics (Manteca et al., 2010, 2011;
Yagiie et al., 2013b). Specifically, proteins involved in antibiotic
biosynthesis were upregulated in MII, and primary metabolism
proteins from glycolysis, protein biosynthesis, and tricarboxylic
acid cycle were upregulated in the MI. The second multinucleated
mycelium with (aerial) and without (substrate) hydrophobic cov-
ers constituted a unique reproductive structure (Manteca et al.,
2010). The most remarkable differences between MII from solid
and liquid cultures involved proteins regulating the final stages
of hyphae compartmentalization and spore formation (Manteca
et al., 2010).

Similarly, characterization of the S. erythraea developmental
cycle in bioreactors has been explored at base resolution tran-
scription (RNA-seq), proteome (iTRAQ) and phosphoproteome
(sMRM) (Marcellin et al., 2013a,b; Licona-Cassani et al., 2014)
(Figure 2). The studies focused on the metabolic switch, a
distinct transformational event that bisects two growth phases
in actinomycetes and is characterized by rapid molecular and
morphological changes. Authors found that the S. erythraea
transcriptome undergoes extensive events of targeted mRNA
degradation and transcription of mRNAs for adaptive metabolic
functions, thereby resetting cells for the induction of a replace-
ment transcriptional program. A suite of RNase and proteases
mediate a targeted destruction of the transcriptome and pro-
teome (suicidal patterns) in concert with the shifting of broad
transcription macro-domains, delineated by core/non-core
genomic regions. In addition, the temporal-dynamic, semi-
quantitative phosphoproteomic study revealed that proteins from
central metabolism (putative acetyl-CoA carboxylase, isocitrate
lyase, and 2-oxoglutarate dehydrogenase) and key developmental
pathways (trypsin-like serine protease, ribonuclease Rne/Rng,
and ribosomal proteins) in S. erythraea change dramatically the
degree of phosphorylation across the developmental cycle in
liquid cultures (Figure 2) (Licona-Cassani et al., 2014).

One of the most significant observations linking actinomycete
physiologicalbehaviorand pathway activation was made by Nieselt
and collaborators (Nieselt et al., 2010). Using a temporal-dynamic
transcriptomic analysis, Nieselt and collaborators identified the
existence of several transitional stages along the fermentation that
coincide with activation of natural product metabolic pathways

in S. coelicolor (Nieselt et al., 2010). Under their bioreactor set-
tings, early coordinated gene expression changes of genes related
to nitrogen metabolism, including glutamine synthases I and II
and the signaling protein GInK is observed under similar tempo-
ral space as genes from the CPK antibiotic biosynthetic pathway.
Interestingly, such transcriptional changes were observed under
nitrogen sufficiency conditions. In addition, an unexpected
transcriptional switch for developmental genes, such as chap-
lins, bldN, and whiH was registered showing for the first time
that developmental genes are transcribed in S. coelicolor liquid
cultures. Finally, the traditional metabolic switch was observed
by a strong upregulation of the pho regulon together with the
upregulation of the pigmented antibiotic undecylprodigiosin and
actinorhodin (Nieselt et al., 2010).

While we are still far from overcoming the physiological
barrier of achieving pathway activation and exploiting the full
genomic potential of actinomycetes, systems biology approaches
have significantly contributed to shifting key paradigms. First, we
know that pathway activation does not follow the same regulatory
rules to model actinomycetes (e.g., S. coelicolor or Mycobacterium
tuberculosis); in fact, it is now possible to understand such differ-
ences in a single experiment. More importantly, systems biology
has exposed a subset of strain-metabolite-specific regulatory
mechanisms such as non-coding RNAs (Marcellin et al., 2013b),
dynamic phosphorylation of ribosomal proteins (Licona-Cassani
et al., 2014), acetylation of RNA degradation-related proteins
(Huang et al,, 2015), among others. The last part of this mini,
review focuses on the efforts to manipulate metabolic pathways
in actinomycetes using genome-scale metabolic reconstructions
and metabolic engineering strategies.

PATHWAY MANIPULATION: FROM
RATIONAL DESIGN TO GENOME-SCALE
MODEL - GUIDED METABOLIC
ENGINEERING STRATEGIES IN
ACTINOMYCETES

Production processes with sub-hundreds of mg/L product titers
are considered unsustainable for industrial scale production.
Actinomycetes cultures are also slow growing and unpredictable
even under controlled conditions (i.e., bioreactor fermentations),
and as such are difficult to ferment. For over 50 years, entire
teams of metabolic and bioprocess engineers have used classical
approaches such as random mutagenesis rounds (Tanaka et al.,
2009; Jung et al., 2011), media design, and process optimization
(Hamedi et al., 2004; El-Enshasy et al., 2008; Zou et al., 2009),
and rationally designed metabolic engineering strategies (Reeves
et al., 2006, 2007; Olano et al., 2008) to engineer actinomycetes
bioprocesses and strains to achieve acceptable titers. Modern
strain engineering uses genome-scale models (GEMs) in com-
bination with omics data for the integration of genome-scale
biological datasets toward the manipulation of metabolism.
Since the first GEM release, more than a decade ago (Edwards
and Palsson, 1999), applications have expanded from in silico
metabolic predictions (Edwards and Palsson, 2000; Schilling
et al., 2002; Park et al., 2007) to the discovery of antibacterial
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FIGURE 2 | Systems biology aims at understanding the larger picture of actinomycete’s biology - at the level of the organism - by putting its pieces
together rather than apart. It is in stark contrast to decades of reductionist biology in the area of actinomycete’s biology. For example, this figure illustrates the
comprehensive multi-omics characterization of the S. erythraea metabolism across a fermentation time-course. As in most actinomycetes, at the 50th hour, there is
a characteristic metabolic transition, which dictates the production of erythromycin. This figure illustrates how this transition is characterized by a massive loss of
proteins and ribosomal RNA before a new expression pattern emerges. Around 30% of all transcripts arose from previously unannotated DNA and detailed analysis

revealed approximately 350 new coding genes and 300 non-coding genes. Systems biology can unravel the complex nature of actinomycete’s biology at the
transcriptomics, metabolomics, and proteomics level revealing various novel non-coding RNAs and uncharacterized phosphorylation patterns.

targets (Oberhardt et al., 2009; Kim et al., 2010), integration of
biological datasets (Lerman et al., 2012; Imam et al., 2015), phe-
notype prediction (O’Brien et al., 2013), estimation of metabolic
capabilities (O'Brien et al., 2015), and the study of evolutionary
relationships of metabolic and regulatory networks (Oberhardt
et al., 2009; Kim et al., 2010; Barona-Gomez et al., 2012).

While draft GEM are now routinely generated using high-
throughput automated pipelines (Aziz et al., 2008; Henry et al.,
2010), successful applications of GEMs to microbial metabolism
only have occurred on exhaustively (manually) curated/experi-
mentally validated metabolic reconstructions. In this regard,
despite being our primary microbial source for antibiotics, only
a handful of manually curated GEM for actinomycetes have been
reported (Borodina et al., 2005a; Beste et al., 2007; Jamshidi and

Palsson, 2007; Alam et al., 2010; Medema et al., 2010, 2011a;
Chindelevitch et al., 2012; Licona-Cassani et al., 2012). Even more
surprising is the fact that pathway optimization of actinomycete
metabolism has only been achieved at the level of precursor sup-
ply (Borodina et al., 2005b, 2008; Licona-Cassani et al., 2012).
In such approaches, optimal solutions are found because there is
congruence between cellular (maximize growth rate) and engi-
neering objectives (maximize productivity). In order to properly
optimize production of non-growth-associated metabolites (i.e.,
BNP) novel algorithms and new objective functions are to be
incorporated to current protocols.

The last few years have seen the emergence of network recon-
struction beyond metabolism. These next-generation network
reconstructions account for expression coupled to metabolism
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and even transcriptional regulation. The first such model,
known as ME-model, was developed for Thermotoga maritima
(Zhang et al., 2009; Lerman et al., 2012) rapidly followed by the
Escherichia coli ME-model (O’Brien et al., 2013). Incorporation
of gene expression in the mathematical framework allows these
models to expand their predictive capabilities, which may be
what is needed to model non-growth-associated metabolites
such as BNPs. It is expected that as ME-models for actinomycetes
become available, just like GEMs became available 10 years ago,
multi-omics integration may be possible, and with it, models
become more predictive.

FUTURE DIRECTIONS

Like in model organisms, such as yeast and E. coli, systems biology
in actinomycetes has immensely advanced our understanding of
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