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This paper explores the use of a novel device in detecting different finger actions among 
healthy individuals and individuals with stroke. The device is magnetoencephalography 
(MEG) and functional magnetic resonance imaging (fMRI) compatible. It was prototyped 
to have four air-filled chambers that are made of silicone elastomer, which contains low 
magnetizing materials. When an individual compresses the device with his/her fingers, 
each chamber experiences a change in pressure, which is detected by a pressure 
sensor. In a previous recent work, our device was shown to be MEG/fMRI compatible. 
In this study, our research effort focuses on using the device to detect different finger 
actions (e.g., grasping and pinching) in non-shielded rooms. This is achieved by applying 
a support vector machine to the sensor data collected from the device when partici-
pants are resting and executing the different finger actions. The total number of possible 
finger actions that can be executed using the device is 31. The healthy participants 
could perform all the 31 different finger actions and the average classification accuracy 
achieved is 95.53 ± 2.63%. The stroke participants could perform all the 31 different 
finger actions with their healthy hand and the average classification accuracy achieved 
is 83.13 ± 6.69%. Unfortunately, the functions of their affected hands are compromised 
due to stroke. Thus, the number of finger actions they could perform ranges from 2 to 
24, depending on the level of impairments. The average classification accuracy for the 
affected hand is 83.99 ± 16.38%. The ability to identify different finger actions using the 
device can provide a mean to researchers to label the data automatically in MEG/fMRI 
studies. In addition, the sensor data acquired from the device provide sensorimotor- 
related information, such as speed and force, when the device is compressed. Thus, 
brain activations can be correlated with this information during different finger actions. 
Finally, the device can be used to assess the recovery of the sensory and motor functions 
of individuals with stroke when paired with fMRI.

Keywords: Meg/fMri compatible, finger sensor, stroke, classification of finger actions, support vector machines

inTrODUcTiOn

Devices that detect finger movements can be utilized in evaluating motor functions of human 
hands. Common solutions for detecting finger movements include piezoelectric buttons (Zatsiorsky 
et al., 1998, 2000), load cells (Edgren et al., 2004; Boonstra et al., 2005; Krejci et al., 2007), optical 
switches (De Luca et al., 2007), and gloves (Schaechter et al., 2006; Vanello et al., 2008), which are 
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loaded with electronics, such as accelerometer and radio emit-
ter. Buttons/straps functionalized by piezoelectric components 
(Zatsiorsky et al., 1998, 2000) and load cells (Edgren et al., 2004; 
Boonstra et al., 2005; Krejci et al., 2007) detect forces exerted by 
individual fingers. These devices keep finger positions station-
ary and measured the compression forces when the fingers flex 
toward the palm. Technically, these devices fall into the category 
of dynamometer, which measures the force rather than the 
movement of fingers. Optical switches (De Luca et al., 2007) and 
electronic buttons (Schwartz et al., 2010) provide information on 
whether a finger reaches a designated position. The data collected 
basically are binary, i.e., “on” or “off ” of a finger reaching the 
predefined position. These switches provide few information of 
the motor function, as the fingers can activate passively, known as 
the enslaving effect. Gloves (Schaechter et al., 2006; Vanello et al., 
2008) with electronics, on the other hand, can detect finger move-
ments more precisely than the technologies discussed earlier. The 
3D trajectories of finger movements can be recorded but not the 
force exerted during movements. The use of these gloves usually 
does not involve touching any other devices. Thus, the system 
provides no sensory information.

The correlation between the motor functions of human hands 
and brain activities have been of interest among neuroscientists for 
a long time (Volkmann et al., 1998; Fuchs et al., 2000; Jerbi et al., 
2007; Waldert et al., 2008). There are a few devices for monitoring 
brain activities. Functional magnetic resonance imaging (fMRI) 
and magnetoencephalography (MEG) are widely used due to the 
fact that they are non-invasive and easy to set up (Lystad and 
Pollard, 2009). fMRI applies high magnetic field to the measur-
ing participants (Ogawa et al., 1992), while MEG relies on highly 
sensitive sensors arrays to detect magnetic field difference during 
neuron firings (Hämäläinen et  al., 1993). Collecting data from 
MEG/fMRI and finger movement sensors simultaneously placed 
a challenge since the signals from both devices interfere with each 
other (Tsekos et al., 2007). Most of the technologies developed 
for finger movement detection, as introduced previously, are 
manufactured by metals and contain electronic components. 
These materials can easily introduce noise to the highly sensi-
tive sensors of MEG. Also, as these materials are movable under 
high magnetic field in an fMRI environment, the participant 
under measurement could be in danger. Therefore, the choices 
of material for the finger movement sensor are limited to low 
magnetizing and low ferromagnetic materials. Furthermore, the 
digitization of the finger movement signals are preferably placed 
outside the MEG/fMRI shielded environment. Some researchers 
(Yoo and Jolesz, 2002; Pilgramm et al., 2009) also use video cam-
eras to observe finger movements when collecting neural activity 
data. While video cameras are commonly installed in MEG/fMRI 
shielded rooms as a measure of safety assurance, the recording 
only provides information of finger gestures but not force and 
sensory information of the movements. Besides, it is difficult to 
synchronize the video recording with the neural activity.

In this work, we use a novel polymeric device to detect finger 
movements of both healthy and poststroke participants. The 
device, also referred as finger sensor in our previous work (Li 
et al., submitted), is made of low magnetizing material and proven 
to have no interference with an MEG. As the signals collected 

from the finger sensor has a high signal-to-noise ratio (SNR), 
reliable detection of finger movements using a supported vector 
machine is made possible. Both healthy and stroke participants 
were involved in the tests for assessing the performance of the 
detection of finger movements. The sensor signals collected 
from the healthy and poststroke participants were also analyzed 
for further interpretation of the different accuracies achieved 
using the machine learning method. The promising results of 
finger pattern recognition enable future MEG/fMRI studies, 
which paired with the finger sensor to measure motor-related 
information of different finger actions. The remaining of the 
paper is organized as follows: material and methods are provided 
in Section “Materials and Methods”; results from both healthy 
and poststroke participants are presented in Section “Results”; 
and finally the discussion of the experimental results is given in 
Section “Discussion.”

MaTerials anD MeThODs

This section first provides details about the design of the finger 
sensor system. Then, the inclusion and exclusion criteria of the 
participants as well as the experimental procedures are presented. 
Finally, the machine-learning algorithm used for the classifica-
tion of different finger actions and the metrics employed for per-
formance evaluation are elaborated. All the methods within this 
study were in compliance with the declaration of Helsinki and 
were approved by the Simon Fraser University (SFU) Office of 
Research Ethics (#2012s0527). All the participants gave informed 
consent before taking part in the experiment.

Finger sensor system
The finger sensor is made of silicone elastomer (TC-5005, BJB 
enterprise) with a 3D-printed mold (Li et  al., submitted). It 
consists of four chambers, which have the same size and are 
arranged in a line within a cylinder (see Figure 1). Each of the 
chambers is connected to a pressure sensor via a rubber tube. The 
pressure sensors (±25  kPa, MPXV7025, freescale semiconduc-
tor) measure the pressure changes of the chambers. The voltage 
outputs recorded from the four pressure sensors are sent to a 
bridge controller (PhidgetBridge 4-Input 1046, Phidgets, Inc.) 
that is connected to a computer via a USB cable. The raw signals 
are acquired at a sampling rate of 16 Hz in this study and saved to 
the computer for offline analysis.

The finger sensor can be held with a right or left hand. An 
example is demonstrated in Figure  1 where the finger sensor 
is held with a right hand. Each of the fingers (middle, ring, and 
little fingers) is placed on one of the chambers (labeled as “3,” 
“2,” and “1,” respectively). Both the thumb and index fingers 
share the chamber labeled as “4.” The finger sensor is designed to 
consist of only four chambers because when an individual grasps 
a cylindrical object, the thumb will naturally be placed opposite 
to the other four fingers. When one or more fingers compress 
the finger sensor, pressure changes will take place and result in 
changes in the raw signals (voltage outputs). It is also important 
not to place the fingers on the wall that separates the chambers so 
that the pressure change in each chamber can be traced back to 
the corresponding finger movements.
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FigUre 1 | Finger sensor. The finger sensor consists of four chambers 
labeled as “1”–“4.” When holding the finger sensor, the thumb and index 
fingers are placed on chamber 4. The middle, ring, and little fingers are 
placed on chamber 3, 2, and 1, respectively.

January 2016 | Volume 3 | Article 2053

Yong et al. Classification of Finger Actions

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

The voltage outputs can also provide information about the 
force exerted by the fingers (Li et  al., submitted). The voltage 
is directly proportional to the chamber pressure (Freescale 
Semiconductor Inc., n.d.). Thus, the chamber pressure can be 
directly converted to the amount of force exerted by the corre-
sponding finger. For example, a 0.1 V output from the pressure 
sensor indicates a chamber pressure of ~1.1 kPa. A finger (e.g., 
index, middle, or ring finger) of a female adult with the height of 
1.55 m has roughly a surface contact area of 14 cm2 when it is com-
pressing the cylinder. Therefore, the force exerted by the finger 
on the chamber is ~1.54 N. Also, the finger-moving velocity can 
be calculated using the following equation (Li et al., submitted):

 
F m dv

dt
=

 

 
∴ =dv Fdt

m  

where m is the mass of the finger, v is velocity, t is time, and F 
is force. The mass of the finger can be estimated based on the 
close proximity between the human body average density and the 
water density at 1 kg/m3 (Krzywicki and Chinn, 1967).

Participants
Five healthy individuals and five individuals with chronic stroke 
(>6  months after stroke) were recruited. The inclusion criteria 
for stroke participants include (a) age range from 35 to 85 years 
old, (b) poststroke duration more than 6 months, and (c) abil-
ity to give informed consent. Individuals with stroke who have 
other neurological conditions in addition to stroke and unstable 
cardiovascular diseases are excluded from the study. To assess the 
motor functions and impairment severity of the stroke partici-
pants, the Wolf motor function test (WMFT) (Wolf et al., 2001) 
and the upper-extremity subtest of the Fugl-Meyer (FM-UE) 
(Gladstone et al., 2002) were employed.

experimental Procedures
In the beginning of the experiment, each healthy participant 
was asked to hold the finger sensor with his/her dominant hand 
(without compressing the finger sensor with any of the fingers). 
Approximately 10 s worth of data were recorded and labeled as 
the baseline or rest data. Next, the participant was instructed 
to perform 31 different finger actions (i.e., compress the finger 
sensor with one or more fingers). Table 1 provides details about 
the finger(s) involved in the 31 different finger actions. For each 
finger action, the participant was asked to compress and hold for 
5 s, followed by a 5-s rest interval. Each finger action was repeated 
for five times. The participant was free to decide the amount of 
force to apply to the finger sensor for each finger action.

The same experimental procedures described above were 
applied to the stroke participants except that each of them was 
asked to hold the finger sensor with his/her affected hand. Also, 
as stroke impairs the motor functions of the affected hand, the 
stroke participants were not able to perform all the 31 different 
finger actions. For three of the five stroke participants, the test 
was repeated with their healthy hands for comparison purposes.

classification of Finger actions
The signals collected from the four pressure sensors of the finger 
sensor have a high SNR (Li et al., submitted). Thus, the features 
used for classification were the voltage output measured from 
each of the sensor, resulting in a total number of four features.

This is a multiclass classification problem. If the number of 
finger actions performed by the participant is N, then, the clas-
sifier will classify (N + 1) classes of data including the baseline 
or rest data. For example, the healthy participants completed all 
the 31 different finger actions and for each of them, a 32-class 
classifier was set up and evaluated.

In this study, a support vector machine (SVM) with a radial 
basis function (RBF) kernel (Bishop, 2006) was used to classify 
the multiclass data. Given some training data with labels, SVM 
solves the following optimization problem (Hsu et al., 2003):

 
min

, ,w b

T
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l
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ε

ξ
1
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T
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where xi ∈ ℜ4 is the feature vector (i.e., the voltage output meas-
ured from each of the four chamber), yi is the corresponding label 
of xi, i is the index of the training sample, w is the normal vector to 
the hyperplane, b is the bias term, C > 0 is the penalty parameter 
of the error ξi, and ϕ is the function that maps xi into a high-
dimensional space. The kernel function, K x x x xi j i

T
j( , ) ) )= φ( φ(  

for RBF is defined below (Hsu et al., 2003):

 
K x x ei j

x xi j( , ) ,|| ||= >− −γ γ
2

0
 

where γ is the kernel parameter.
The data collected were split into three partitions: the first par-

tition was used to train the classifier, the second partition was used 
for cross-validation, and the third partition was used to evaluate 
the performance of the classifier. The cross-validation data were 
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TaBle 1 | Finger actions.

compress with 
one finger

compress with  
two fingers

compress with  
three fingers

compress with four 
fingers

compress with 
five fingers

Total number 
of classes

5 classes: F1, 
F2, F3, F4, F5

10 classes: F12, F13, F14, F15, 
F23, F24, F25, F34, F35, F45

10 classes: F123, F125, F125, F134, 
F135, F145, F234, F235, F245, F345

5 classes: F1234, F1235, 
F1245, F1345, F2345

1 class: F12345 31 classes

All the finger actions that could be performed using the finger sensor.
F, finger; 1, thumb; 2, index finger; 3, middle finger; 4, ring finger; 5, little finger/pinky.

TaBle 2 | healthy participant information.

Participant age hh

P01 32 Right
P02 33 Right
P03 27 Right
P04 32 Right
P05 34 Right
Mean ± SD 31.6 ± 2.7

Age and handedness (HH) for each healthy participant.
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important in the process of optimizing the two parameters of 
the SVM classifier, i.e., the kernel parameter gamma (γ) and the 
penalty weight (C). The optimal parameters were obtained from 
a grid search with γ ranging from 2−15 to 23 and C ranging from 
2−5 to 215 (Hsu et al., 2003).

To apply SVM to a multiclass problem, a one-against-one 
strategy was employed. More specifically, K(K  −  1)/2 binary 
classifiers for a K-class problem were trained. During testing, all 
these binary classifiers were applied to new and unseen samples. 
For each sample, the class that received the most number of votes 
won (Bishop, 2006).

The classification accuracy, which is the percentage of the 
correctly classified data, was used as a metric to assess the 
performance of a classifier. For each participant, both the cross-
validation accuracy obtained from the second partitions of the 
data and the classification accuracy obtained from the third 
partitions of the data were computed.

resUlTs

healthy individuals
The healthy participants, aged between 27 and 34 (31.6 ± 2.7), are 
right handed (see Table 2). They were able to perform all the 31 
different finger actions.

Figure 2 shows a representative data pattern corresponding to 
each of the following finger actions [the number(s) in the square 
brackets listed after the name of one or more fingers represents 
the chamber(s) being compressed]: (Figure  2A) thumb [4], 
(Figure  2B) index finger [4], (Figure  2C) middle finger [3], 
(Figure 2D) ring finger [2], (Figure 2E) little finger [1], (Figure 2F) 
thumb + index finger [1], (Figure 2G) thumb + index + middle 
fingers [4, 3], (Figure 2H) thumb + index + middle + ring fingers 
[4, 3, 2], and (Figure 2I) all fingers [4, 3, 2, 1]. The y axes represent 
the voltage measurements from the pressure sensors, and the x 
axes represent the time.

When the finger sensor is compressed by the thumb [4] 
(Figure 2A), index finger [4] (Figure 2B), or thumb and index 
fingers together (Figure 2F), the patterns of the signals are similar. 
This is due to the fact that both the thumb and index fingers are 
placed on the same chamber (i.e., chamber 4). Thus, when either 
or both of the fingers are in action, chamber 4 will experience 
the highest pressure, followed by chambers 3, 2, and 1. Despite 
of the similarity in terms of the order of the magnitude of the 
pressure in different chambers, the pressure difference between 
chambers 3 and 4 for these three different finger actions appears 
to be different. This difference may be attributed to the different 
locations where the thumb and index fingers are positioned.

For middle finger flexion [3] (Figure 2C), chamber 3 has the 
highest pressure, followed by chamber 2 (where the ring finger 
is placed). This could be due to the enslaving effect, i.e., the ring 
finger also produces some unintentional force even when the 
instructed finger is the middle finger (Wilhelm et al., 2014). The 
pressure of chamber 4, on the other hand, is the third highest. 
This is because the thumb and index fingers were holding the 
finger sensor body when the middle finger was flexing.

For the ring finger flexion [2] (Figure  2D), chamber 2 
experiences the largest change in pressure since the ring finger 
is placed on the chamber. A relatively high pressure is observed 
in chambers 3 and 1, respectively because both the neighboring 
middle and little fingers also produces unintentional force due 
to enslaving when the ring finger moves. Chamber 4, where the 
thumb and index fingers are placed to hold the finger sensor body, 
has the lowest pressure among the four. The enslaving effect does 
not affect the thumb and index fingers when the ring finger flexes.

For the little finger flexion [1] (Figure 2E), chambers 1 and 2 
experience high pressure, followed by chambers 3 and 4. The ring 
finger is apparently moving with the little finger when the little 
finger is compressing the chamber.

When the finger actions involve the thumb, index, and middle 
fingers [4, 3] (Figure 2G), the signal patterns are similar with that 
of the thumb and/or index fingers [4] (Figures 2A,B,F). However, 
the pressure difference between chambers 3 and 4 is smaller in 
the case of Figure 2G. This is because the middle finger, which is 
placed on chamber 3, is also in action.

Next, Figure 2H shows the signal patterns obtained when all 
fingers except the little finger [4, 3, 2] applied force to compress 
the finger sensor. Chambers 2, 3, and 4 have high voltage outputs. 
Chamber 1, where the little finger is positioned, has the smallest 
change in pressure because the little finger produced the least 
force.

When the finger sensor body is compressed by all fingers [4, 
3, 2, and 1] (Figure 2I), not all fingers apply the same force to the 
device. In this example, the ring and middle fingers produced 
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FigUre 2 | representative signal patterns for different finger actions. Signals recorded from the four chambers of the finger sensor when nine different types 
of finger actions were performed, which include compressing the sensor body with (a) thumb, (B) index finger, (c) middle finger, (D) ring finger, (e) little finger, (F) 
thumb + index finger, (g) thumb + index + middle fingers, (h) thumb + index + middle + ring fingers, and (i) all fingers, respectively.

TaBle 3 | classification performance for healthy participants.

Participant cross-validation accuracy (%) Test accuracy (%)

P01 99.03 93.38
P02 95.58 92.30
P03 99.85 96.43
P04 99.68 96.79
P05 99.54 98.74
Mean ± SD 98.74 ± 1.79 95.53 ± 2.63

Classification accuracy achieved when an SVM was used to classify the signals 
acquired from the finger sensor when different finger actions were executed.
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more force. Thus, chambers 2 and 3 have a higher pressure than 
the other two chambers. The magnitude of the voltage (e.g., 
~0.70 V in chamber 2) acquired from each chamber is on average 
larger than those when fewer fingers are involved in the finger 
actions. This result suggests that the grip force is much larger than 
the force produced by other finger actions.

Next, the performance of the classifier in classifying rest 
against the 31 finger actions is presented. As described earlier, 
the data were divided into three parts: part 1 for training the 
classifier, part 2 for cross-validation, and part 3 for testing or 
evaluating the performance of the classifier on unseen samples. 
Table 3 presents both the cross-validation and testing accuracies 
obtained from the five healthy participants, P01-P05. On average, 
the classifier achieved 98.74 ± 1.79% on cross-validation data and 
95.53 ± 2.63% on testing data. The results are encouraging as the 
classifier is able to discriminate all the different finger actions 
despite of the similarities in their associated data patterns in 
some actions (e.g., thumb, index finger, thumb + index fingers). 
We observe that most errors or misclassifications correspond 
to finger actions that involved the compression of the same 
chambers. For example, some samples of the action involving the 
index + middle + ring fingers [4, 3, 2] were misclassified as that 
involving the thumb + index + middle + ring fingers [4, 3, 2].

individual with stroke
Table 4 presents the demographics and stroke-related informa-
tion of the five stroke participants. The participants, aged between 
58 and 79 years (67.8 ± 7.7), are right handed. The affected hand 
for the participants is left (except S01). The WMFT time for 

the affected hand ranges from 1.0 to 83.6  s, with larger values 
indicating lower functioning levels. Next, the FM-UE scores for 
the affected hand range from 12 to 49, indicating mild to severe 
motor impairments. The maximum score for FM-UE is 66, and 
smaller FM-UM scores indicate more severe motor impairments.

When asked to perform different finger actions with the 
affected hand, all the stroke participants were not able to complete 
all. The number of finger actions that was completed by S01–S05 
is 2, 24, 8, 9, and 9, respectively. Three of the stroke participants 
(S03–S05) also completed the same procedures with their healthy 
hand. They successfully completed all the finger actions with their 
healthy hands.

Figure 3 compares the signal patterns obtained when S03 was 
performing different single finger action [thumb [4], index [4], 
or middle finger [3]] with his healthy (left column) and affected 
(right column) hands. As shown in the figure, the pressure meas-
urements for the affected hand are significantly smaller than the 
measurements for the healthy hand. Also, as S03 experienced 
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TaBle 4 | stroke participant information.

Participant age Das  
(months)

hh ah WMFT FM-Ue

S01 65 115 Right Right 83.6 12
S02 70 31 Right Left 7.4 38
S03 58 34 Right Left 66.5 26
S04 67 90 Right Left 2.5 49
S05 79 27 Right Left 1.0 38
Mean ± SD 67.8 ± 7.7 59.4 ± 40.4 32.2 ± 39.7 32.6 ± 24.1

Age, duration after stroke (DAS), handedness (HH), affected hand (AH), WMFT scores, 
and FM-UE scores for each participant with stroke.
DAS, duration after stroke; HH, handedness; AH, affected hand.

FigUre 4 | comparison between healthy and affected hands of s05. 
Signals recorded from the four chambers of the finger sensor when three 
different types of finger actions were performed by S05, namely compressing 
the sensor body with thumb, index finger, and little finger, respectively.

FigUre 3 | comparison between healthy and affected hands of s03. 
Signals recorded from the four chambers of the finger sensor when three 
different types of finger actions were performed by S03, namely compressing 
the sensor body with thumb, index finger, and middle finger, respectively.
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difficulty on releasing his finger (affected hand) from pressing 
the finger sensor, the signals collected from the affected hand 
did not fully return to their baseline values before the next finger 
action. In contrast, the finger of S03’s healthy hand can press and 
release the finger sensor with a much higher degree of control. 
Nevertheless, S03’s healthy hand experiences a higher degree of 
enslaving effect compared to healthy participants when perform-
ing index or middle finger flexion (see Figure  3, left column). 
For example, when he pressed the finger sensor with his index 
finger [4], his middle finger [3] produced almost as much force 
as his index finger (middle plot of the left column in Figure 3); 
when he pressed with his middle finger, both chambers 2 and 3 
registered high pressure changes (lower plot of the left column 
in Figure 3). The enslaving effect is even greater in his affected 
hand, especially when he was trying to perform index and middle 
fingers independently.

Next, Figure  4 compares the signal patterns obtained from 
the healthy and affected hands when S05 performed single finger 
actions. S05 has better functioning levels compared to S03. Thus, 
the signal patterns obtained from both the healthy and affected 

hands are similar, except that the force production of the affected 
hand was smaller.

Figures  5 and 6, respectively, compare the signal patterns 
obtained from both the healthy and affected hands when S03 and 
S05 were grasping the finger sensor with all the fingers. Similar to 
Figures 3 and 4, the force produced by the affected hand is smaller 
due to smaller voltage values recorded from the pressure chamber. 
When grasping with the healthy hand, the middle [3] and ring 
fingers [2] applied larger force. In contrast, when grasping with 
his affected hand, the first three digits (the thumb, index, and 
middle fingers) of both S03 and S05 appear to have more strength.

Next, the performance of the classifier in classifying rest 
against the different finger actions is presented. Table 5 presents 
both the cross-validation and testing accuracies obtained from 
the healthy hand of the stroke participants, S03–S05. On aver-
age, the classifier achieved 94.20  ±  4.57% on cross-validation 
data and 83.13  ±  6.69% on testing data. Table  6 reports the 
cross-validation and testing accuracies obtained from the 
affected hand of all the stroke participants, S01–S05. The num-
ber of classes and the different finger actions that were able to 
be performed by each participant are also listed in the table. 
The classifier achieved an average accuracy of 96.07 ± 6.07% on 
cross-validation data and 83.99 ± 16.38% on testing data. S01, 
who has the most severe level of impairments, could only per-
form grasp, but no other finger actions. The binary classification 
of rest and grasp led to high classification accuracy of 100.0% 
on both the cross-validation and testing data. S02, on the other 
hand, was able to perform the most number of finger actions 
(24). The classification accuracy achieved when tested on new 
unseen testing data was 60.21%. The low classification accuracy 
could be due to the confusion caused by enslaving effects. For 
example, the classifier misclassified some samples of middle 
finger [3] movement to the finger action involving index [4], 
middle [3], and ring fingers [2].
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FigUre 5 | comparison between healthy and affected hands of s03 
(grasp). Signals recorded from the four chambers of the finger sensor when 
S03 compressed it with all fingers (both healthy and affected).

FigUre 6 | comparison between healthy and affected hands of s05 
(grasp). Signals recorded from the four chambers of the finger sensor when 
S05 compressed it with all fingers (both healthy and affected).
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DiscUssiOn

In our previous work (Li et al., submitted), we have proposed a 
novel device that is made of silicone elastomer, which consists 
of low ferromagnetic materials. This device or finger sensor was 
designed to be MEG/fMRI-compatible so that it can be used in 
MEG and fMRI studies to investigate brain activations and sen-
sorimotor functions of healthy individuals. The device can also 
be used to assess the recovery of the sensory and motor functions 
of individuals with stroke when paired with MEG/fMRI. The 
device’s property of being MEG compatible was validated.

In this paper, our research effort focuses on exploring the 
different finger actions that can be performed by both healthy 
individuals and individuals with stroke in non-shielded rooms. 
Besides, we also look into the feasibility of classifying all the dif-
ferent types of finger actions based on the signals recorded from 
the finger sensor. The ability to classify different finger actions 
can benefit MEG/fMRI studies that use the finger sensor to detect 
movements. First, automated labeling of the data achieved via the 
classification of finger actions can reduce labor-intensive work 
in labeling data in various MEG/fMRI studies. For example, 
comparing the brain activations when the fingers are voluntarily 
moved in a predefined (i.e., determined by the investigator) and 
random (determined by the participant) sequence. Furthermore, 
the device can be used to study finger interdependence and the 
enslaving effects due to different finger actions.

The finger sensor consists of four air-filled chambers that are 
made of silicone elastomer. When an individual compresses the 
device with his/her finger(s), each chamber experiences a change 
in pressure, which is detected by a pressure sensor. The signals 
recorded provide sensorimotor-related information, such as 
speed and force, when the device is compressed. The data can 
potentially be used to assess the dexterity of the hands. It is 

known that the dexterity of the affected hand of individuals with 
stroke, as evidenced by a decrease in the force, a reduction in the 
independence of finger movements, an increase in the timing, or 
an increase in the deficiency of finger sequencing (Térémetz et al., 
2015). By comparing the signals recorded from both the healthy 
and affected hands of the stroke participants (e.g., Figures 3–6), 
it can be observed that the affected hand produced less force, i.e., 
it has less strength due to stroke. If the participants were asked 
to compress the device with maximal force using the healthy and 
affected hands, respectively, the strength difference between the 
two hands can be computed. Besides, the affected hand usually 
experienced fatigue (i.e., a drop in the voltage after achieving the 
peak) earlier than the healthy hand (e.g., Figure 6). Some individ-
uals may also experience a decrease in the speed of returning the 
fingers to certain positions. For example, one of the participants, 
S03 experienced a decrease in the speed of pressing and releas-
ing the device, as evidenced by Figures  3 and  5. Finally, from 
Figures 3–6, the effects of stroke on the independence of finger 
movements and coordination of fingers can also be observed.

The signals recorded from the finger sensor have a high SNR. 
Finger actions that activate different chamber(s) produce distinct 
signal patterns, which facilitate the classification of different 
finger actions. The number of possible finger actions that can 
be executed using the finger sensor is 31, which involves the 
flexion of different digits: the thumb, index, middle, ring, and 
little fingers. The healthy participants were able to perform all 
the 31 different finger actions and high average classification 
accuracies were achieved (see Table 3). The stroke participants 
could also perform all the 31 different finger actions with their 
healthy hand; the classifier can achieve a slightly lower accuracy 
(see Tables 5 and 6). As their affected hand’s dexterity was com-
promised due to stroke, the stroke participants have difficulty 
moving certain fingers independently and thus performing many 
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TaBle 6 | classification performance for participants with stroke 
(affected hand).

Participant number of classes cross-
validation 

accuracy (%)

Test 
accuracy 

(%)

S01 2 (rest, f12345) 100.0 100.0
S02 24 (rest, f1, f2, f3, f4, f5, f12, 

f13, f14, f15, f23, f25, f34, 
f35, f45, f123, f125, f134, 

f145, f234, f235, f245, f345, 
f12345)

85.63 60.21

S03 8 (rest, f1, f2, f3, f12, f123, 
f1234, f12345)

100.0 90.93

S04 9 (rest, f1, f2, f3, f4, f5, f12, 
f123, f12345)

95.93 74.35

S05 9 (rest, f1, f2, f3, f12, f15, 
f25, f2345, f12345)

98.82 94.47

Mean ± SD 10.40 ± 8.14 96.07 ± 6.07 83.99 ± 16.38

Classification accuracy achieved when an SVM was used to classify the signals 
acquired from the finger sensor when different finger actions were executed. The finger 
actions that were executed by each participant were listed in the second column.

TaBle 5 | classification performance for participants with stroke 
(healthy hand).

Participant cross-validation accuracy (%) Test accuracy (%)

S03 97.86 90.82
S04 89.07 79.94
S05 95.66 78.64
Mean ± SD 94.20 ± 4.57 83.13 ± 6.69

Classification accuracy achieved when an SVM was used to classify the signals 
acquired from the finger sensor when different finger actions were executed.

January 2016 | Volume 3 | Article 2058

Yong et al. Classification of Finger Actions

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

of the finger actions instructed. The number of finger actions 
they can perform with their affected hand ranges from 2 to 24. 
For example, S01, who has the highest level of impairments, was 
only able to perform grasping using the device. No significant 
correlation exits between the number of finger actions the stroke 
participants can perform and their WMFT (r = −0.59, p = 0.29) 
and FM-UE scores (r = 0.50, p = 0.39), respectively. This may be 
caused by other confounding factors that also affect the number 
of finger actions an individual with stroke can perform, e.g., how 
motivated the person was when performing the different finger 
actions and whether or not the person had other problems, such 
as arthritis in joints. Participant S04, who has the largest FM 
score and second lowest WMFT score, could only perform eight 
finger actions because he was not able to move most of his fingers 
independently. This number of finger actions which can be per-
formed is fewer than S02, who has a higher level of impairments 

compared to S04. The average accuracy obtained when classifying 
the different finger actions performed with the affected hand is 
83.199 ± 16.38%.

One limitation of the finger sensor is that it is only suitable 
for studies involving finger flexion but not finger extension, 
abduction, or adduction. Also, the locations of the finger may 
shift from test to test when the finger sensor is in use. This limita-
tion, however, can be overcome by attaching extra straps to fix the 
locations where the fingers compress.

In our future work, MEG studies will be conducted to further 
understand the neural representations and activities in the brain 
when different single/multi-finger actions are executed randomly 
or in a predefined sequence. The studies will involve both healthy 
individuals and individuals with neurological disorders, such as 
stroke. The signal patterns of different finger actions will be classi-
fied to automatically label the data for data analysis. Besides, cor-
relation between brain activations and motor-related information, 
such as force and velocity, will be explored. The finger sensor can 
also potentially be used to study finger interdependence and enslav-
ing effects on brain activities. Other metrics that can be potentially 
derived using the finger sensor include (i) the time taken to reach 
a certain percentage of the maximum voltage when a finger action 
is executed to assess neural response time, (ii) the decrease in the 
maximum voltage to assess the fatigue level of the fingers, and (iii) 
the drift in the baseline to assess how fast one can release the fingers 
after an action and the ability of an individual to relax after an 
action. These metrics are potentially useful in examining the effects 
of rehabilitation sessions on the recovering of finger functions.
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