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Background: Stroke survivors are commonly left with disabilities that impair activities of
daily living. The main objective of their rehabilitation program is to maximize the functional
performance at home. However, the actual performance of patients in their home
environment is unknown. Therefore, objective evaluation of daily life activities of stroke
survivors in their physical interaction with the environment is essential for optimal guidance
of rehabilitation therapy. Monitoring daily life movements could be very challenging, as
it may result in large amounts of data, without any context. Therefore, suitable metrics
are necessary to quantify relevant aspects of movement performance during daily life.
The objective of this study is to develop data processing methods, which can be used to
process movement data into relevant metrics for the evaluation of intra-patient differences
in quality of movements in a daily life setting.

Methods: Based on an iterative requirement process, functional and technical require-
ments were formulated. These were prioritized resulting in a coherent set of metrics. An
activity monitor was developed to give context to captured movement data at home.
Finally, the metrics will be demonstrated in two stroke participants during and after their
rehabilitation phases.

Results: By using the final set of metrics, quality of movement can be evaluated in a
daily life setting. As example to demonstrate potential of presented methods, data of two
stroke patients were successfully analyzed. Differences between in-clinic measurements
and measurements during daily life are observed by applying the presented metrics
and visualization methods. Heel height profiles show intra-patient differences in height,
distance, stride profile, and variability between strides during a 10-m walk test in the clinic
and walking at home. Differences in distance and stride profile between both feet were
larger at home, than in clinic. For the upper extremities, the participant was able to reach
further away from the pelvis and cover a larger area.

Discussion: Presented methods can be used for the objective evaluation of intra-patient
differences in movement quality between in-clinic and daily life measurements. Any
observed progression or deterioration of movement quality could be used to decide on
continuing, stopping, or adjusting rehabilitation programs.

Keywords: stroke, rehabilitation, inertial sensing, daily life, data processing, technology assessment
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1. INTRODUCTION

Patients who have suffered a stroke are commonly left with dis-
abilities that impair activities of daily living. They are trained to
recover adequate control over their movements with the objective
to optimize their daily life functional performance (Kollen et al.,
2006). In current clinical practice of stroke rehabilitation, the
capacity of stroke patients to perform functional tasks is assessed
using standardized clinical tests. These tests are done regularly
during the entire rehabilitation process to predict functional per-
formance at home (Kollen et al., 2006). While the main objective
of the rehabilitation program is to maximize the functional perfor-
mance at home, the actual performance of patients in their home
environment is unknown (Bussmann et al., 2009). Therefore, daily
life monitoring of the quality of movement during functional
activities of stroke survivors in their physical interaction with the
environment is essential for optimal guidance of rehabilitation
therapy, which goes beyond established activity monitors.

A system for daily life monitoring and assessment of the quality
of movements should be a small wearable system, not be directly
visible, not stigmatizing, and contain small and embedded sensors
(Bergmann and McGregor, 2011). Wearable sensing systems using
inertial sensors are already frequently used for the assessment
of daily life activity (Moe-Nilssen, 1998; Bussmann et al., 2009;
Gebruers et al.,, 2010; de los Reyes-Guzman et al., 2014; Veltink
et al., 2014; van Meulen et al,, 2015). These types of systems
are small and not restricted to a lab environment. We previously
developed, via an iterative process, a modular sensor system for
quantitative analysis of daily life activities of upper and lower
extremity motor function (Klaassen et al., 2014; Paradiso et al,,
2014; Veltink et al., 2014). This system can be used to obtain
knowledge about quality of movement of stroke patients during
in-clinic measurements and performing in a daily life setting.

It should be noted that several challenges remain in performing
a quantitative analysis of daily life performance using wearable
sensing, compared to clinically assess motor capacity using stan-
dardized clinical tests. First, metrics need to be developed that
quantify relevant aspects of quality of movement during daily
life. Metrics that are used in clinic to describe movements cannot
directly be transferred to the evaluation of movements in a daily
life setting. For instance, in clinical assessment scales, participants
are instructed to reach as far as possible; while in a daily life setting,
it might not be necessary to reach that far. A second challenge
is the absence of context when measuring movements without
any visual reference. During the evaluation of movements in a
clinical or lab setting, it is known where and what kind of activities
a participant is performing. This information is not available in
a daily life setting. Therefore, a method is needed to classify
the performed activities from the sensed signals. Finally, during
continuous home measurements, a full body inertial sensor sys-
tem will produce large amounts of movement data. Metrics and
visualizations derived from these large amounts of data should
be presented in a concise manner; otherwise, the evaluation of all
data might be very time consuming for care-professionals.

The objective of this study is to develop data processing meth-
ods, which can be used to process movement data into rele-
vant metrics for the evaluation of intra-patient differences in

the quality of movements in clinic and in a daily life setting.
In a collaborative effort of care-professionals, researchers, and
engineers, a requirements analysis on methods to assess daily
life quality of movements was performed. Subsequently, methods
were developed that also should overcome mentioned challenges
in the daily life assessment of movements. These methods include
the estimation of metrics that show intra-patient differences in the
quality of movements between in-clinic measurements and out-
clinic measurements. These metrics will be demonstrated in two
stroke participants during and after their rehabilitation phases.

2. MATERIALS AND METHODS

This section is divided into six parts: (1) a requirement analysis,
resulting in a coherent set of “must-haves”; (2) a description of the
metric development process and the underlying theory, resulting
in a coherent set of metrics; (3) a description of the sensor system
for the assessment of daily life movements in stroke patients;
(4) the development of an activity monitor to provide context
to the captured movement data of stroke patients performing
activities of daily living; (5) the presentation of vast amounts of
movement data to care-professional, and (6) an analysis of intra-
patient differences, for two cases, in quality of movements between
structured in-clinic and unstructured daily life measurements,
determined using the developed metrics.

2.1. Requirement Analysis

As part of the European project called INTERACTION (Klaassen
et al., 2014; Paradiso et al., 2014; Veltink et al., 2014), a require-
ment analysis was performed as a basis for the metric develop-
ment. A questionnaire was sent out to selected care-professionals
with a background in stroke rehabilitation in the Netherlands
(response: n = 12) and Switzerland (response: n = 4). In addition,
an interview in a round table setting was held with selected stroke
patients (n=3) in the Netherlands. Furthermore, a consensus
meeting with project team members and advisory board (consist-
ing of stroke patients, care-professionals, health insurance com-
panies, and researchers) was organized. Based on the results from
the questionnaire, the interviews, and the consensus meeting, and
using the PACT (People, Activities, Contexts, and Technologies)
(Huis in ‘t Veld et al., 2010) and FICS (Functionalities, Interaction,
Context, and Service) (Jackson, 1997) frameworks, user require-
ments and technical state of the art developments were translated
into functional requirements and technical specifications. These
requirements and specifications were divided into two groups,
namely for lower extremity and upper extremity. The require-
ments and specifications were prioritized using the MoSCoW
technique (“Must-have,” “Should-have,” “Could-have,” and “Won’t
have”) (Clegg and Barker, 1994). These “must-have”-requirements
were the basis for the methods development and are listed and
labeled in Table 1.

2.2. Design of Metrics

An iterative design process was adopted to translate the “must-
have”-requirements that are technically feasible into metrics
the system must contain. These requirements were contin-
ually assessed and revised during the design phase of the
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TABLE 1 | “Must-haves” as a result of the requirement analysis®.

Lower extremity Inc.

Upper extremity Inc.

Which activities are performed?

Which activities are performed?

LE1 Standing Yes UE1 Reaching Yes
LE2 Sitting Yes UE2  Grasping (with gloves) Yes
LE3 Walking Yes
Intensity of walking Intensity of reaching
LE4 Frequency of activities Yes UE3 Frequency of activities Yes
LE5 Duration of activities Yes UE4  Duration of activities Yes
LE6 Speed Yes UE5S Unilateral versus bilateral activities Yes
LE7 Covered walking distance Yes
Quantification of balance Quality of movement
LE8 Step length No UE6  Hand position relative to pelvis Yes
LE9 Relative feet position No UE7  Flexion and extension in the elbow Yes
LE10  Stability during stance No UE8  Shoulder abduction Yes
LE11 Stability during single support Yes
LE12  Orientation of the feet No
LE13  Center of mass movement, relative to base of support No
LE14 Knee flexion and extension No
LE15 Dorsal/plantar flexion of the ankle No
LE16  Circumduction No
2When applicable, metrics will be evaluated for the affected and non-affected side.
P“Must-haves” that are included in the final set of data processing methods.
[ Measures (t) 1 [ Metrics ]
Walking duration
Number of steps 1
Acceleration . ) Walking
Stance, swing Stance duration distance
Angular timing L .
velocity Swing duration Walking
speed
Heel Stride length
position
Heel height
during stride
FIGURE 1 | Lower extremity measures and metric relations.

project to ensure alignment between technical developments and
users’ needs. The design process included focus group sessions
and teleconferences between engineers, care-professionals, and
researchers.

In total, 25 focus group sessions and 15 teleconferences were
organized between 2014 and 2015, which included discussions
and demonstrations of the metrics. Finally, a metrics-overview
was created, which includes realizable “must-have” metrics for
lower and upper extremities, as shown in Figures 1 and 2, which
are further explained in the following sections.

2.2.1. Lower Extremity Metrics

The lower extremity metrics and their relation with system mea-
sures (Roetenberg et al.,, 2009) are shown in Figure 1. All metrics,
shown in Figure 1, were realized by evaluating the heel positions
and by calculating the timing values of stance and swing during

gait, utilizing a step detection algorithm (Skog et al., 2010). Each
metric is determined within a selected time window.

The covered requirement walking distance (LE7) was directly
rendered to the walking distance metric, by combining the num-
ber of steps and stride length as shown in Figure 1. Walking
distance was included, as it is an important predictor for com-
munity walking abilities in stroke patients (Donovan et al., 2008;
Fulk et al., 2010). The walking speed (LE6) requirement was
included, which is regarded as a significant, sensitive, and reli-
able marker of deficit severity and functional community walk-
ing ability and results from the walking distance and walking
duration metrics (Dickstein, 2007). The frequency of activities
(LE4) requirement was translated into the number of steps that
a patient takes within a certain time. Furthermore, the duration of
activities (LE5) requirement was rendered to the walking duration
metric.
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[ Measures (t) 1 [

Metrics ]

Acceleration

jerk

Joint angles

Root mean squared:

Range of motion

. . Max reaching

Hand position Hand-pelws distance > Reaching

. N distance counts
Pelvis position Relative hand Prefered hand

> Work area .\ —

) positon position
Pelvis
orientation Distribution I

of hand position

FIGURE 2 | Upper extremity measures and metric relations.

For quantifying balance during gait, focus was set on sta-
bility during single support (LE11) requirement, which includes
stance and swing times. These classical gait parameters were
implemented earlier by, e.g., Kuo and Donelan (2010), who
explained the dynamic principles of gait and their clinical impli-
cations but also in other studies related to stroke (Von Schroeder
et al., 1995; Evans et al., 1997; Haggard and Cockburn, 1998;
Bowen et al.,, 2001; Cockburn et al., 2003; Brach et al., 2008;
Balasubramanian et al., 2009; Belda-Lois et al., 2011). Variability
in stance and swing time parameters predicts motor disability
and, therefore, seems to be related to walking impairments and
can be used as a quantifiable biomechanical marker to evaluate
motor performance (Brach et al., 2008; Balasubramanian et al,,
2009). Due to the limited accuracy of the sensor system (Klaassen
etal,, 2014) in estimating the relative feet position (LE9), step length
(LE8) requirement was changed into stride length. Studies focus-
ing on fall risks revealed that the stride length, the corresponding
variability, and the swing time variability are key parameters
for gait characteristics in elderly adults (Hausdorff et al., 2001;
Verghese et al., 2009). Stride length is based on the heel position of
the foot, an output measure of the applied kinematic model, and
the stance and swing timing values. The center of mass movement
(LE13) and stability during stance (LE10) requirements were left-
out of the final metric selection, due to the absence of any type
of force sensing in the system. Finally, the heel-height profiles
were added to the final metric selection, which resulted from
discussions in the design process with clinicians. These profiles
are important to estimate the risk of falling and show imbalances
and impairments during walking (Maki, 1997; Verghese et al,,
2009).

2.2.2. Upper Extremity Metrics

The upper extremity metrics target trunk, shoulder, and arm
movements. Each of the measures and metrics associated with the
upper extremity are shown in Figure 2. The quality of movement
requirement hand position relative to pelvis (UE6) was rendered to
the metrics: hand-pelvis distance, covered work area, and maxi-
mum reaching distance for both hands. The hand positions were
expressed in a coordinate frame relative to the pelvis orientation

and position as described by van Meulen et al. (2015). The rel-
ative hand position measure was used to calculate the three-
dimensional hand-pelvis distance and work area that patients are
able to cover with their hands. In addition, the hand trajectory
during a reaching movement was included. Finally, a newly devel-
oped metric named “hand distribution” was added as an extra
quality of movement requirement, which visualizes the distribu-
tion of the patient’s hand position in the transversal plane. The
maximum reached distance and the size of the work area, the
hand is able to cover, was investigated by van Meulen et al. (2015).
They compared these metrics to the upper part of the Fugl-Meyer
assessment scale and found a positive correlation. The reaching
distance was also mentioned in an earlier study by Zariffa et al.
(2012) and was also investigated by Balasubramanian et al. (2012),
who provided a definition of reachable work space.

Another requirement is the flexion and extension in the elbow
(UE7) and the abduction of the shoulder (UE8), which was quan-
tified as the joint range of motion metric for the elbow and
shoulder. Joint range of motion during functional movements was
investigated in several studies (Ronnqvist and Rosblad, 2007; Ellis
et al., 2008; Jaspers et al., 2011) and the joint range of motion
in complete simulated activities of daily living has also been
described extensively in de los Reyes-Guzman et al. (2014).

A final quality of movement metric was added, related to the
smoothness of motion. For each reaching movement of the hand,
asmoothness parameter, which is referred in this paper as the root
mean squared jerk (RMS]J), is calculated based on the change in
acceleration of the hand. The RMS], which normalizes the jerk
over time, has been applied in several studies, including stroke
patients (Young and Marteniuk, 1997; Song et al., 2008; Hogan and
Sternad, 2009). The frequency of activities (UE3) requirement was
translated to a metric showing the number of reaching motions a
patient has performed during a selected time period. The number
of reaches provides an indication of the overall arm activity level
during dailylife. Although it is not mentioned in previous research
on arm activity of stroke patients (Vega-Gonzélez and Granat,
2005; de Niet et al., 2007), reaching counts could provide insight in
arm activity and, therefore, this is a new metric as well. A reaching
activity was derived from the relative hand-pelvis distance and the
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preferred hand position within a certain measurement time frame
during either sitting, standing, or walking.

2.3. Sensor System Overview

Figure 3 shows a flowchart of the main data processing steps.
The modular sensor system that was previously developed for the
assessment of movements in a daily life setting (Klaassen et al.,
2014; Paradiso et al., 2014; Veltink et al., 2014) consists of twelve
inertial measurement units (IMUs), each consisting of a three-
dimensional accelerometer, gyroscope, and magnetometer. These
IMUs are embedded in a garment consisting of a shirt, a pair of
shoes, and a pair of trousers (Paradiso et al., 2014). The IMUs
are placed on the upper and lower arms, upper and lower legs,
both feet, head, pelvis, and sternum. The data are collected at a
sampling rate of 20 Hz, which converted from a higher internal
sensor sampling rate of 1800 Hz (Klaassen et al., 2014). As part
of the Xsens MVN studio software package (Xsens Technologies
B.V., Enschede, the Netherlands) (Roetenberg et al., 2009), a full
body kinematic model is used to process the captured sensor
data and to estimate the three-dimensional body movements
over time, including the position and orientation of each body
segment as well as the joint angles. From there, selected metrics
are computed, which are in turn fed into two filters. The first
filter is a temporal selection filter, with which the time period of
interest can be selected to analyze the data. The second filter is the
activity monitor, which allows the evaluation of certain metrics for
specific activities. All data processing steps are performed in an

: Inertial sensors :
: 12
" H a
' Y 15
H HZ
H £
H 8
H Kinematic model H
Y
Metrics

Patient reports

FIGURE 3 | Data processing steps. From captured inertial sensor data to
patient reports.

offline environment, using MATLAB® (MathWorks Inc., Natick,
MA, USA).

2.4. Development of an Activity Monitor
While performing activities of daily living, stroke patients are
monitored unobtrusively while wearing a full sensor system. Since
visual observation is not employed to monitor the patient, there
is a lack of information about the context in which the different
activities are performed by the patients. Several metrics are con-
text dependent, such as walking speed or reaching distance. For
example, estimating walking speed is only relevant when patients
are walking. Another example is the evaluation of reaching dis-
tance that should be evaluated without including the arm swing
during walking. In order to provide this context to the data, an
activity monitor is required. The activity monitor acts as a filter
and can be considered a separate step within our data processing
methods.

The activity monitor was developed to apply metrics for a select
type of movements, by detecting these movements based on the
kinematic data. The activity monitor has two detection algorithms
as shown in Figure 4. The first algorithm contains a posture
detection (sitting or standing) and walking detection (cyclical or
variable walking). The second algorithm contains an arm move-
ment and reaching detection. Using a moving time window of 1 s,
the type of posture is estimated. First, the classifier estimates if the
patient is seated by evaluating both knee angles. If the flexion of
both knees is more than 40° for the entire second, it is concluded
that the patient is seated. If the participant is not seated, the feet
movement will be evaluated. Foot movement can be detected by
applying a step detection algorithm and using accelerometer and
gyroscope signals from the sensor on both feet (Skog et al., 2010).
If detected, it is inferred that the patient is walking, and if not, the
patient is standing still. If walking is detected, a distinction is made
between variable walking and cyclical walking (with exclusion of
start and stop moments). Cyclical walking consists of at least three
consecutive, alternating steps of the left and the right foot, while
other types of feet movements are classified as variable walking.

Arm movement is detected by evaluating the three-dimensional
hand movements relative to the pelvis. When the participant is
seated and the three-dimensional hand displacement is more than
15cm within a second (i.e., the average hand speed of at least
0.15m/s), then that particular 1-s window will be annotated as one
with hand movements of the specific arm. If the patient is walking
(variable or cyclical), the three-dimensional hand displacement
must be more than 25 cm within a second (i.e., the average speed
of at least 0.25m/s) for it to be considered a deliberate hand
movement. A hand movement is classified as a reaching move-
ment, when a hand displacement of more than 10 cm is away from
the preferred hand position (the average hand position relative to
the pelvis).

To evaluate the performance of the activity monitor, two inde-
pendent reviewers manually classified four example data sets.
Each data set, of a duration of 5min, includes activities of daily
living. By reviewing the kinematic reconstruction of the data,
as with the activity monitor, the reviewers determined for each
second the posture (sitting, standing, variable walking, or cyclical
walking) of the patient and if the affected and/or non-affected
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arm is moving. The overall agreement between the reviewers was
85.5% of the time. Of these cases where there is an agreement
between both reviewers, 86.3% was also in agreement with the
activity monitor.

2.5. Presenting Large Amounts of Data

A large amount of movement data can be collected. At the same
time, our methods must present clinically relevant, usable, and
interpretable data to the health professional in order to assist
clinical decision making and improve the rehabilitation program.
Therefore, large amounts of data have to be presented in a concise
way by, for example, using descriptive statistics and data distri-
bution methods. The resulting set of metrics contains different
types of data, each presented differently to the care-professional.
We can summarize the data by using overall statistics (mean and
SDs), show distributions in box plots, present relative differences
for the affected and non-affected side in a ratio, or visualize body
movement in graphs. These methods make it possible to aggregate
potentially large amounts of data.

For the lower extremities, the mean and SD of stance and swing
times, and stride lengths per foot are estimated (including all
strides). The ratio of the metric values between the affected and
non-affected side are also presented for the number of steps, stance
and swing duration, and stride length. Box plots are created for
the stance and swing durations for multiple steps of each foot. A
single statistic is shown for the walking distance, duration, and
walking speed. Visualizations are presented for the heel height
during walking. These stride profiles show the heel height and
distance of each stride during cyclical walking. They are derived
from the heel position measures and the stance and swing times as
described in Figure 1. The three-dimensional trajectories of each
stride are projected onto a two-dimensional plane for visualization
by rotating the stride trajectory in such way that all strides are
oriented in the same direction.

For the upper extremities, the mean and SD are calculated for all
metrics during a reaching movement. The ratios between affected
and non-affected arm are calculated for the elbow and shoulder
range of motions, work area, maximum reaching distance, and

reaching counts. Hand—-pelvis trajectories during reaching, which
show the norm of the three-dimensional relative hand displace-
ment over time during reaching, and the distribution of the hand
position within the transversal plane are visualized. The hand dis-
tribution plots combine spatial and temporal information of arm
movements, which is useful as not only is the area a patient can
cover with his hand (with respect to the pelvis) of interest but also
how frequent and for how long the hand is at a certain position. By
utilizing a two-dimensional histogram plot that makes it possible
to visualize the distribution of patients’ hand positions during
a whole measurement. The frequency the hand is at a certain
position is indicated by color, where light is less frequent and dark
is the most frequent position.

2.6. Patient Evaluation

To evaluate the metrics and to show its ability to distinguish
between a stroke patient’s quality of movement while perform-
ing structured movements in clinic and performing unstructured
activities of daily living, three metrics were selected for which
large differences were expected. The metrics are as follows: heel
height profiles, hand distribution plots, and the total work area.
The data of two participants (P1 and P2) were selected, as an
example to demonstrate the potential functionality of the metrics.
P1 is a 35-year-old male and P2 is a 50-year-old woman. Both
patients are left-side affected and have a dominant right side.
The main focus for P1 was on the evaluation of lower extrem-
ity functions. The main focus for P2 was on the evaluation of
upper extremity function. The study protocol is a subset of a
larger protocol that was approved by the local cantonal medical
and ethical committee (registered in ClinicalTrials.gov identifier:
NCT02118363). The participants were recruited from the Cereneo
clinic, Center for Neurology and Rehabilitation (Vitznau, Switzer-
land) and gave written informed consent in accordance with the
declaration of Helsinki. Two measurement sessions were selected
within the rehabilitation program of both patients for which large
differences were observed as the rehabilitation progressed. The
first session includes a clinical assessment measurement that was
captured in clinic at discharge and consisted of a 10-m walk test

Sitting

Yes / \ No

Feet moving

Patient is sitting

No \ Yes

Patient is standing

Cyclical walking

Noy” O\ Yes

Arm movement

No / N Yo

Patient is not

moving arms Reaching
No / \ Yes
Unclassified Patient is
arm movement reaching

Patient walks
variable

Patient walks
cyclical

FIGURE 4 | Decision tree of the activity classifier. The gray areas indicate classified activities.
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(Wade et al., 1987) for P1 and a predefined arm task for P2. This
predefined arm task consisted of several arm movements, where
the patient had to reach as far as possible and to make a circle
as wide as possible over a table. The second session includes a
measurement session of 3h of movement data, which was cap-
tured at the patient’s home 4 weeks after discharge. Finally, these
measurement sessions were compared with each other for each
patient individually.

3. RESULTS
3.1. Activity Monitor

In Figure 5, an example of the activity monitor and a summary
report of activities are shown of P2 while performing activities
of daily living at home. Each activity classification is plotted as

function of time. In total, 201 min of data are analyzed, where the
patient was seated for 96 min, standing for 29 min, and walking
for 26 min. Data show a difference in arm usage, the non-affected
arm was moving in 21% of the total time, while the affected arm
was only moving 7% of the total time.

3.2. Lower Extremity Results of P1
The lower extremities analysis of the heel height profile are pre-
sented for a 10-m walk test (10 MWT) in clinic as shown in
Figure 6A and are compared with a selection where the patient
is walking cyclical at home shown in Figure 6B. For each step, the
heel height as function of distance (stride length) is shown for the
left (affected side) and right foot.

The length of all strides for both feet of the participant are
longer during the 10 MWT than during the measurement at home

Total time selected: 201 min.

Posture Sitting:
Standing:

Walking Total:
Variable:
Cyclical:

Arm Affected:
Non-Affected:

Time (min.) % — of Total time
95.6 476 %
28.7 143 %
26 13 %
7.42 3.7 %
18.6 926 %
14.4 7.2 %
419 209 %

Affected arm

Non-Affected arm#

Time selected from: 0 min. to 201 min.

----- -
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------------------- W @D O - -

--------- W OB O O

100 120 140 160 180

FIGURE 5 | Example report of the activity monitor of a measurement sessi
activities during the whole measurement is shown in the table, where the activity ti
measurement session. The first graph shows the activity classification as a functio

feet), and finally stands still. During this period, the non-affected arm is used more

0 20 40 60 ii 80 200
Zoom: Time (min.)
I Time selected from: 69 min. to 71 min.
Sitting— .........................................................
Standing [----rsssrrrnsessssnes s e L RLLEt TUEPPTELLERPPREOLRRS - —
Variable Walkingp-------==-=-==s=rsmsarammaranaanas [ R T S
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the lower graph. In this selection, the patient is first seated, next raises up from a chair, walks in a cyclical pattern (at least three consecutive alternating steps of both

Time (min.)
on of P2, performing activities of daily living. First a summary report of all
imes are mentioned in minutes and as percentage of the total duration of the

n of time for the whole measurement. A zoom of a selected time period is given in

frequently than the affected arm.
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FIGURE 6 | Heel stride profiles during a structured and unstructured measurements of the left (affected side) and right foot. Each line indicates a
three-dimensional stride profile, rotated and projected onto a two-dimensional plane, starting at the origin of the graph. (A) shows a 10-m walk test, a structured
in-clinic measurement. (B) shows an unstructured in-home measurement, where the patient walked in a straight line.

and the walking speed is lower 0.85 and 0.42 m/s respectively.
The stride profile during the 10 MWT seems more equal for
both feet as compared with the in-home measurement. In-home
measurements show a stride profile that differs between the left
and the right heel (non-affected side), showing a larger heel height
and a steeper curve for the right heel.

3.3. Upper Extremity Results of P2

The distribution of hand positions relative to the pelvis is visual-
ized for P2 in Figure 7, where each graph is divided into quadrants.
The colors indicate the total time during the selected time slot at
which the hand is in a certain position, where a darker color is
a longer time. Figure 7A shows the predefined arm task for the
affected and non-affected arm captured at discharge. Figure 7B
shows a measurement session at home, while the patients perform
different activities of daily living for 201 min (of which the activity
report is presented in Figure 5). For both figures, the total area
the patient was able to cover is shown in the lower right corner of
the graph. During the predefined arm task, the patient is able to
cover a larger area with the non-affected right arm (0.57 m*) than
the left arm (0.46 m?). The patient was able to reach further and
cover more area to the contralateral side using the non-affected
right hand than with the left hand. Furthermore, P2 is able to
reach more behind the pelvis with the right hand. In the home
measurement, the right hand is able to cover a larger area (0.91 m?)
than the left hand (0.55 m?). In these home measurements, a large
difference is found in reaching movements of the right behind her
pelvis compared to the left hand. The resting position of the right
hand (indicated by a dark area) is more in front of the pelvis, where
the left hand is closer and more along the patient’s body.

4. DISCUSSION

Objective evaluation of the quality of daily life movements and
intra-patient differences, using a body-worn sensing system, could
be very challenging. While measuring in a daily life setting, no
context on performed activities is available. Furthermore, suitable
metrics are necessary to quantify relevant aspects of movement
performance during daily life. Within this paper, we presented
data processing methods to evaluate quality of movement. Pre-
sented methods can be used for the objective evaluation of intra-
patient differences in movement quality between in-clinic mea-
surements (more structured measurements in a controlled envi-
ronment) and measurements in a daily life setting (unstructured
measurements in an uncontrolled environment). The selection of
metrics is based on discussions with care professionals, engineers,
and researchers. To be able to make a distinction between metric
values during different activities, an activity classifier was devel-
oped, which classifies different types of posture and arm activity.
Finally, methods were developed to present large amounts of data
in a concise manner.

As example to demonstrate potential of presented methods,
data of two stroke patients were analyzed. Differences between
in-clinic measurements (at the moment of discharge) and mea-
surements during daily life (4 weeks after discharge) can be
observed by applying the presented metrics and visualization
methods. In the near future, any observed intra-patient pro-
gression or deterioration of movement quality could be used
to decide on continuing, stopping, or adjusting rehabilitation
programs. Future research should demonstrate the usability of
suggested methods in more patients and how the objective
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FIGURE 7 | Distribution of the hand positions relative to the pelvis (origin of the graph, indicated with a black circle) in the transversal plane, of the
left (affected side) and right hand. (A) Structured in-clinic measurement; (B) Unstructured in-home measurement. A darker color indicates a higher frequency of a
specific hand position during the measurement session. A lighter color indicates a less frequent hand position at a particular location. The total work area is
contoured with a dotted line and the area size is shown in the bottom right corner of each graph. The activity report of the unstructured in-home measurement is
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information on quality of movement can be used in clinical
practice.

Several limitations in the presented work should be acknowl-
edged. First, differences between assessed movements during in-
clinic measurements and measurements during daily life might
be the result of the different circumstances in which the data
are captured. In clinic, patients were instructed to perform a
specific task that might force them to, for instance, use their
affected side or walk at a specific speed. While during daily life
measurements, when no specific instructions were given, it can

be expected that patients will execute tasks in a most comfortable
way. This may result in, e.g., a reduced usage of their affected arm,
areduced walking speed, or smaller steps. Therefore, intra-patient
difference might be expected on the affected and non-affected
side, however, the proposed methods can still be used to describe
relative difference between their affected and non-affected side
for different measurements. Second, the applied activity classifier
determines only a limited number of activities (posture: sitting,
standing, walking, and arm movements). This selection of activ-
ities was the result of the requirement analysis that focused on
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assessing quality of movements, but detection of other activities
is possible as well. Previous research showed many options for
identification of activities, using inertial sensors (Preece et al.,
2009; Yang and Hsu, 2010). Within the presented data processing
method, it is possible to replace the activity monitor filter (as in
Figure 3) with a different activity classifier to identify and evaluate
other activities of interest. Third, due to technical limitations, the
inertial-based sensor system could only be used for measuring
daily life movements up to 3 h. Within this limited period of time,
no significant change in movement performance was expected.
When measuring for longer periods of time, physical activity may
change during one measurement session.

In addition to the presented work, future research should focus
on the unobtrusiveness by reducing the number sensors, which
makes the system more applicable for the assessment of daily
life movements. Data of twelve inertial sensors and a full body
kinematic model are used to estimate movements of all body
segments. Generally, more sensors may increase the validity of
activity detection and accuracy in motion analysis. Depending
on the metrics of interest, sensor reduction is possible while
remaining almost the same validity and accuracy (Bussmann
et al,, 2009). The currently used sensor system is modular, which
allows the reduction of the number of sensors by using only
the lower or upper part of the sensor set depending on the
metrics of interest. Besides the number of sensors within this,
modular part may be decreased. For instance, the number of
sensors in the lower extremity module of the sensor system can be
reduced to only one inertial and an additional ultrasound sensor
on each foot. Using this reduced sensors system, it is already
possible to estimate the same metrics that are presented in the
current study (Weenk et al., 2015). Furthermore, in addition to

REFERENCES

Balasubramanian, C. K., Neptune, R. R., and Kautz, S. A. (2009). Variability in
spatiotemporal step characteristics and its relationship to walking performance
post-stroke. Gait Posture 29, 408-414. doi:10.1016/j.gaitpost.2008.10.061

Balasubramanian, S., Melendez-Calderon, A., and Burdet, E. (2012). A robust and
sensitive metric for quantifying movement smoothness. IEEE Trans. Biomed.
Eng. 59, 2126-2136. doi:10.1109/TBME.2011.2179545

Belda-Lois, J.-M., Mena-del Horno, S., Bermejo-Bosch, I, Moreno, J. C., Pons, J. L.,
Farina, D,, et al. (2011). Rehabilitation of gait after stroke: a review towards a
top-down approach. J. Neuroeng. Rehabil. 8, 66. doi:10.1186/1743-0003-8-66

Bergmann, J., and McGregor, A. (2011). Body-worn sensor design: what do patients
and clinicians want? Ann. Biomed. Eng. 39, 2299-2312. doi:10.1007/s10439-011-
0339-9

Bowen, A., Wenman, R., Mickelborough, J., Foster, J., Hill, E., and Tallis, R. (2001).
Dual-task effects of talking while walking on velocity and balance following a
stroke. Age Ageing 30, 319-323. d0i:10.1093/ageing/30.4.319

Brach, J. S., Studenski, S., Perera, S., VanSwearingen, J. M., and Newman, A. B.
(2008). Stance time and step width variability have unique contributing impair-
ments in older persons. Gait Posture 27, 431-439. doi:10.1016/j.gaitpost.2007.
05.016

Bussmann, J. B., Ebner-Priemer, U. W., and Fahrenberg, J. (2009). Ambulatory
activity monitoring: progress in measurement of activity, posture, and specific
motion patterns in daily life. Eur. Psychol. 14, 142-152. d0i:10.1027/1016-9040.
14.2.142

Clegg, D., and Barker, R. (1994). Case Method Fast-Track: A RAD Approach. Boston,
MA: Addison-Wesley Longman Publishing Co., Inc.

Cockburn, J., Haggard, P, Cock, J., and Fordham, C. (2003). Changing patterns of
cognitive-motor interference (cmi) over time during recovery from stroke. Clin.
Rehabil. 17, 167-173. d0i:10.1191/0269215503cr5970a

the evaluation of movements of stroke patients, the presented
data analysis methods might be useful for other group of patients,
for instance, elderly people, Parkinson’s disease, multiple scle-
rosis, and other neurological diseases. Daily life assessment of
their quality of movement might give more insight on the influ-
ence of the patient’s condition at performing activities of daily
living.

AUTHOR CONTRIBUTIONS

FM and BK developed and tested the algorithms and drafted
the manuscript. BK, JH, and AL provided the data of the stroke
participants. JH, JR, JB, AL, B-JB, and PV assisted with data
interpretation, helped to develop the algorithm, and helped to
draft the manuscript. AL and PV supervised the research. All
authors read and approved the final manuscript.

ACKNOWLEDGMENTS

The authors would like to thank all study participants from Cere-
neo, Center for Neurology and Rehabilitation (Vitznau, Switzer-
land) and all care-professionals, researchers, and scientists, who
participated in the requirement process. The authors also would
like to thank Albert Eenhoorn and Irene Christen for their assis-
tance during the measurements.

FUNDING

This study was part of the INTERACTION project, which was
partially funded by the European Commission under the 7th
Framework Programme (FP7-ICT-2011-7-287351).

de los Reyes-Guzman, A., Dimbwadyo-Terrer, L, Trincado-Alonso, ., Monasterio-
Huelin, F, Torricelli, D., and Gil-Agudo, A. (2014). Quantitative assessment
based on kinematic measures of functional impairments during upper extremity
movements: a review. Clin. Biomech. 29, 719-727. doi:10.1016/j.clinbiomech.
2014.06.013

de Niet, M., Bussmann, J. B., Ribbers, G. M., and Stam, H. J. (2007). The stroke
upper-limb activity monitor: its sensitivity to measure hemiplegic upper-limb
activity during daily life. Arch. Phys. Med. Rehabil. 88, 1121-1126. doi:10.1016/
j.apmr.2007.06.005

Dickstein, R. (2007). Rehabilitation of gait speed after stroke: a critical review of
intervention approaches. Neurorehabil. Neural Repair 22, 649-660. doi:10.1177/
1545968308315997

Donovan, K., Lord, S. E., McNaughton, H. K., and Weatherall, M. (2008). Mobility
beyond the clinic: the effect of environment on gait and its measurement in
community-ambulant stroke survivors. Clin. Rehabil. 22, 556-563. d0i:10.1177/
0269215507085378

Ellis, M. D., Sukal, T., DeMott, T., and Dewald, J. P. (2008). Augmenting clinical
evaluation of hemiparetic arm movement with a laboratory-based quantitative
measurement of kinematics as a function of limb loading. Neurorehabil. Neural
Repair 22, 321-329. doi:10.1177/1545968307313509

Evans, M. D., Goldie, P. A., and Hill, K. D. (1997). Systematic and random error in
repeated measurements of temporal and distance parameters of gait after stroke.
Arch. Phys. Med. Rehabil. 78, 725-729. d0i:10.1016/S0003-9993(97)90080-0

Fulk, G. D., Reynolds, C., Mondal, S., and Deutsch, J. E. (2010). Predicting home
and community walking activity in people with stroke. Arch. Phys. Med. Rehabil.
91, 1582-1586. doi:10.1016/j.apmr.2010.07.005

Gebruers, N., Vanroy, C., Truijen, S., Engelborghs, S., and De Deyn, P. P.
(2010). Monitoring of physical activity after stroke: a systematic review of
accelerometry-based measures. Arch. Phys. Med. Rehabil. 91, 288-297. doi:10.
1016/j.apmr.2009.10.025

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

January 2016 | Volume 3 | Article 210


http://dx.doi.org/10.1016/j.gaitpost.2008.10.061
http://dx.doi.org/10.1109/TBME.2011.2179545
http://dx.doi.org/10.1186/1743-0003-8-66
http://dx.doi.org/10.1007/s10439-011-0339-9
http://dx.doi.org/10.1007/s10439-011-0339-9
http://dx.doi.org/10.1093/ageing/30.4.319
http://dx.doi.org/10.1016/j.gaitpost.2007.05.016
http://dx.doi.org/10.1016/j.gaitpost.2007.05.016
http://dx.doi.org/10.1027/1016-9040.14.2.142
http://dx.doi.org/10.1027/1016-9040.14.2.142
http://dx.doi.org/10.1191/0269215503cr597oa
http://dx.doi.org/10.1016/j.clinbiomech.2014.06.013
http://dx.doi.org/10.1016/j.clinbiomech.2014.06.013
http://dx.doi.org/10.1016/j.apmr.2007.06.005
http://dx.doi.org/10.1016/j.apmr.2007.06.005
http://dx.doi.org/10.1177/1545968308315997
http://dx.doi.org/10.1177/1545968308315997
http://dx.doi.org/10.1177/0269215507085378
http://dx.doi.org/10.1177/0269215507085378
http://dx.doi.org/10.1177/1545968307313509
http://dx.doi.org/10.1016/S0003-9993(97)90080-0
http://dx.doi.org/10.1016/j.apmr.2010.07.005
http://dx.doi.org/10.1016/j.apmr.2009.10.025
http://dx.doi.org/10.1016/j.apmr.2009.10.025
http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive

van Meulen et al.

Objective Evaluation of the Quality of Movement after Stroke

Haggard, P, and Cockburn, J. (1998). Concurrent performance of cognitive and
motor tasks in neurological rehabilitation. Neuropsychol. Rehabil. 8, 155-170.
doi:10.1080/713755565

Hausdorff, J. M., Rios, D. A., and Edelberg, H. K. (2001). Gait variability and fall risk
in community-living older adults: a 1-year prospective study. Arch. Phys. Med.
Rehabil. 82, 1050-1056. doi:10.1053/apmr.2001.24893

Hogan, N., and Sternad, D. (2009). Sensitivity of smoothness measures to movement
duration, amplitude, and arrests. J. Mot. Behav. 41, 529-534. doi:10.3200/35-09-
004-RC

Huis in ‘t Veld, R. M., Widya, A., Bults, R. G., Sandsj6, L., Hermens, H. J,
Vollenbroek-Hutten, M. M., et al. (2010). A scenario guideline for designing new
teletreatments: a multidisciplinary approach. J. Telemed. Telecare 16, 302-307.
doi:10.1258/jtt.2010.006003

Jackson, M. (1997). The meaning of requirements. Ann. Software Eng. 3, 5-21.
doi:10.1023/A:1018990005598

Jaspers, E., Desloovere, K., Bruyninckx, H., Klingels, K., Molenaers, G., Aertbelién,
E., et al. (2011). Three-dimensional upper limb movement characteristics in
children with hemiplegic cerebral palsy and typically developing children. Res.
Dev. Disabil. 32, 2283-2294. d0i:10.1016/j.ridd.2011.07.038

Klaassen, B., van Beijnum, B.-]., Weusthof, M., Hofs, D., van Meulen, E, Luinge, H.,
et al. (2014). “A system for monitoring stroke patients in a home environment,”
in International Conference on Health Informatics (HEALTHINF 2014) (Angers),
125-132.

Kollen, B., Kwakkel, G., and Lindeman, E. (2006). Functional recovery after stroke:
a review of current developments in stroke rehabilitation research. Rev. Recent
Clin. Trials 1, 75-80. doi:10.2174/157488706775246111

Kuo, A. D., and Donelan, J. M. (2010). Dynamic principles of gait and their clinical
implications. Phys. Ther. 90, 157-174. doi:10.2522/ptj.20090125

Maki, B. E. (1997). Gait changes in older adults: predictors of falls or indicators of
fear? J. Am. Geriatr. Soc. 45, 313-320. d0i:10.1111/§.1532-5415.1997.tb00946.x

Moe-Nilssen, R. (1998). A new method for evaluating motor control in gait under
real-life environmental conditions. Part 1: the instrument. Clin. Biomech. 13,
320-327. doi:10.1016/S0268-0033(98)00089- 8

Paradiso, R., Mancuso, C., De Toma, G., and Caldani, L. (2014). “Textile sensing
platforms for remote monitoring of physical interaction with the environment,”
in Medical Information and Communication Technology (ISMICT), 8th Interna-
tional Symposium on (Firenze: IEEE), 1-5.

Preece, S. J., Goulermas, J. Y., Kenney, L. P,, Howard, D., Meijer, K., and Crompton,
R. (2009). Activity identification using body-mounted sensors — a review of
classification techniques. Physiol. Meas. 30, R1-R33. doi:10.1088/0967-3334/30/
4/R01

Roetenberg, D., Luinge, H., and Slycke, P. (2009). Xsens mvn: full 6dof human
motion tracking using miniature inertial sensors. Xsens Motion Technol.
BV Tech. Rep.

Roénngvist, L., and Résblad, B. (2007). Kinematic analysis of unimanual reach-
ing and grasping movements in children with hemiplegic cerebral palsy. Clin.
Biomech. 22, 165-175. d0i:10.1016/j.clinbiomech.2006.09.004

Skog, 1., Handel, P, Nilsson, J.-O., and Rantakokko, J. (2010). Zero-velocity detec-
tion - an algorithm evaluation. IEEE Trans. Biomed. Eng. 57, 2657-2666. doi:10.
1109/TBME.2010.2060723

Song, R., Tong, K. Y,, and Hu, X. L. (2008). Evaluation of velocity-dependent
performance of the spastic elbow during voluntary movements. Arch. Phys. Med.
Rehabil. 89, 1140-1145. doi:10.1016/j.apmr.2007.10.035

van Meulen, E B, Reenalda, J., Buurke, J. H., and Veltink, P. H. (2015). Assessment
of daily-life reaching performance after stroke. Ann. Biomed. Eng. 43, 478-486.
doi:10.1007/s10439-014-1198-y

Vega-Gonzilez, A., and Granat, M. H. (2005). Continuous monitoring of upper-
limb activity in a free-living environment. Arch. Phys. Med. Rehabil. 86, 541-548.
doi:10.1016/j.apmr.2004.04.049

Veltink, P. H., van Meulen, E. B., van Beijnum, B.-]. E, Klaassen, B., Hermens,
H., Droog, E,, et al. (2014). “Daily-life tele-monitoring of motor performance
in stroke survivors,” in 13th International Symposium on 3D Analysis of Human
Movement (3D-AHM 2014) (Lausanne), 159-162.

Verghese, J., Holtzer, R., Lipton, R. B., and Wang, C. (2009). Quantitative gait
markers and incident fall risk in older adults. J. Gerontol. Series A Biol. Sci. Med.
Sci. 64, 896-901. doi:10.1093/gerona/glp033

Von Schroeder, H. P, Coutts, R. D., Lyden, P. D., Billings, E., and Nickel, V. L.
(1995). Gait parameters following stroke: a practical assessment. J. Rehabil. Res.
Dev. 32, 25-25.

Wade, D., Wood, V., Heller, A., Maggs, ]., and Langton, H. R. (1987). Walking after
stroke. measurement and recovery over the first 3 months. Scand. J. Rehabil.
Med. 19, 25-30.

Weenk, D., Roetenberg, D., van Beijnum, B.-]. F, Hermens, H. J., and Veltink, P. H.
(2015). Ambulatory estimation of relative foot positions by fusing ultrasound
and inertial sensor data. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 817-826.
doi:10.1109/TNSRE.2014.2357686

Yang, C.-C., and Hsu, Y.-L. (2010). A review of accelerometry-based wearable
motion detectors for physical activity monitoring. Sensors 10, 7772-7788. doi:
10.3390/5100807772

Young, R. P, and Marteniuk, R. G. (1997). Acquisition of a multi-articular kicking
task: jerk analysis demonstrates movements do not become smoother with
learning. Hum. Mov. Sci. 16, 677-701. doi:10.1016/S0167-9457(97)00010-9

Zariffa, J., Kapadia, N., Kramer, J. L., Taylor, P., Alizadeh-Meghrazi, M., Zivanovic,
V., et al. (2012). Relationship between clinical assessments of function and
measurements from an upper-limb robotic rehabilitation device in cervical
spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 341-350. doi:10.
1109/TNSRE.2011.2181537

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 van Meulen, Klaassen, Held, Reenalda, Buurke, van Beijnum, Luft
and Veltink. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

11

January 2016 | Volume 3 | Article 210


http://dx.doi.org/10.1080/713755565
http://dx.doi.org/10.1053/apmr.2001.24893
http://dx.doi.org/10.3200/35-09-004-RC
http://dx.doi.org/10.3200/35-09-004-RC
http://dx.doi.org/10.1258/jtt.2010.006003
http://dx.doi.org/10.1023/A:1018990005598
http://dx.doi.org/10.1016/j.ridd.2011.07.038
http://dx.doi.org/10.2174/157488706775246111
http://dx.doi.org/10.2522/ptj.20090125
http://dx.doi.org/10.1111/j.1532-5415.1997.tb00946.x
http://dx.doi.org/10.1016/S0268-0033(98)00089-8
http://dx.doi.org/10.1088/0967-3334/30/4/R01
http://dx.doi.org/10.1088/0967-3334/30/4/R01
http://dx.doi.org/10.1016/j.clinbiomech.2006.09.004
http://dx.doi.org/10.1109/TBME.2010.2060723
http://dx.doi.org/10.1109/TBME.2010.2060723
http://dx.doi.org/10.1016/j.apmr.2007.10.035
http://dx.doi.org/10.1007/s10439-014-1198-y
http://dx.doi.org/10.1016/j.apmr.2004.04.049
http://dx.doi.org/10.1093/gerona/glp033
http://dx.doi.org/10.1109/TNSRE.2014.2357686
http://dx.doi.org/10.3390/s100807772
http://dx.doi.org/10.1016/S0167-9457(97)00010-9
http://dx.doi.org/10.1109/TNSRE.2011.2181537
http://dx.doi.org/10.1109/TNSRE.2011.2181537
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive

	Objective Evaluation of the Quality of Movement in Daily Life after Stroke
	1. Introduction
	2. Materials and Methods
	2.1. Requirement Analysis
	2.2. Design of Metrics
	2.2.1. Lower Extremity Metrics
	2.2.2. Upper Extremity Metrics

	2.3. Sensor System Overview
	2.4. Development of an Activity Monitor
	2.5. Presenting Large Amounts of Data
	2.6. Patient Evaluation

	3. Results
	3.1. Activity Monitor
	3.2. Lower Extremity Results of P1
	3.3. Upper Extremity Results of P2

	4. Discussion
	Author Contributions
	Acknowledgments
	Funding
	References


