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The vestibular system incorporates multiple sensory pathways to provide crucial infor-
mation about head and body motion. Damage to the semicircular canals, the peripheral 
vestibular organs that sense rotational velocities of the head, can severely degrade the 
ability to perform activities of daily life. Vestibular prosthetics address this problem by 
using stimulating electrodes that can trigger primary vestibular afferents to modulate 
their firing rates, thus encoding head movement. These prostheses have been demon-
strated chronically in multiple animal models and acutely tested in short-duration trials  
within the clinic in humans. However, mainly, due to limited opportunities to fully char-
acterize stimulation parameters, there is a lack of understanding of “optimal” stimulation 
configurations for humans. Here, we model possible adaptive plasticity in the vestibular 
pathway. Specifically, this model highlights the influence of adaptation of synaptic 
strengths and offsets in the vestibular nuclei to compensate for the initial activation of 
the prosthetic. By changing the synaptic strengths, the model is able to replicate the 
clinical observation that erroneous eye movements are attenuated within 30 minutes 
without any change to the prosthetic stimulation rate. Although our model was only built 
to match this time point, we further examined how it affected subsequent pulse rate 
modulation (PRM) and pulse amplitude modulation (PAM). PAM was more effective than 
PRM for nearly all stimulation configurations during these acute tests. Two non-intuitive 
relationships highlighted by our model explain this performance discrepancy. Specifically, 
the attenuation of synaptic strengths for afferents stimulated during baseline adaptation 
and the discontinuity between baseline and residual firing rates both disproportionally 
boost PAM. Comodulation of pulse rate and amplitude has been experimentally shown 
to induce both excitatory and inhibitory eye movements even at high baseline stimulation 
rates. We also modeled comodulation and found synergistic combinations of stimulation 
parameters to achieve equivalent output to only amplitude modulation. This may be 
an important strategy to reduce current spread and misalignment. The model outputs 
reflected observed trends in clinical testing and aspects of existing vestibular prosthetic 
literature. Importantly, the model provided insight to efficiently explore the stimulation 
parameter space, which was helpful, given limited available patient time.

Keywords: vestibular prosthesis, electrical stimulation, functional models, adaptation, physiological, synapses, 
vestibular ocular reflex
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inTrODUcTiOn

Vestibular prosthetics are designed to restore sensory information 
in chronic and severe loss of natural vestibular organ function. 
Overall, the number of persons with reduced vestibular function 
is estimated to be about 35% (Agrawal et al., 2009). In particular, 
vestibular loss can be debilitating in cases of severe bilateral 
vestibular loss (BVL). In these cases, adaptive mechanisms such 
as central compensation fail to improve the patient’s condition, 
despite intensive physical therapy (Zingler et al., 2007). Patients 
are both restricted in activities of daily life (Guinand et al., 2012) 
and have a poor outlook on recovery (Sun et  al., 2014). This 
highlights the urgent need for new treatment options (Van De 
Berg et al., 2011).

One treatment option currently in the prototype stage 
is vestibular prosthetics. These prosthetics are designed to 
mimic the afferent firing rates that would be generated by 
healthy semicircular canals (SCCs). A configuration that has 
been used both in animal models (Gong and Merfeld, 2002; 
Della Santina et  al., 2007) and humans (Van De Berg et  al., 
2011; Perez Fornos et al., 2014) achieves this via monopolar 
stimulation from electrodes in close proximity to the ampul-
lae or vestibular afferents. This electrical stimulation engages 
afferents from the SCCs and establishes a clear relationship 
between the delivered simulation and sensory response, and 
this relationship is possible due to the homogeneous organi-
zation of these sensory organs. In contrast, the peripheral 
vestibular organs that sense linear acceleration (the otoliths) 
have a heterogeneous organization (Lewis, 2015). Prosthetic 
designers have thus far only attempted to restore canal func-
tion and not otolithic function because of (i) the relatively 
simple organization (and accessibility) of SCC afferents and 
(ii)  the complex anatomo-physiology of the otoliths. Given 
these constraints, current prototypes aim to restore rotational, 
but not translational, information.

In a healthy animal, changes in firing rate of SCC afferents cor-
relate well with the rotational velocities around axes aligned with 
that canal (Fernandez and Goldberg, 1971). Modulating electri-
cal stimulation parameters, e.g., pulse rate or pulse amplitude, 
applied to these afferents can similarly induce corresponding 
eye movements (Suzuki and Cohen, 1964; Merfeld et al., 2007; 
Davidovics et al., 2012). Detailed finite element models have been 
developed to simulate recruitment of vestibular afferents based on 
the applied electrical stimulation; then changes in eye movements 
can be calculated as a function of the number of afferents recruited 
(Marianelli et  al., 2015). That model predicted symmetrical 
changes in eye velocities when pulse rate modulation (PRM) was 
applied, but sharply non-linear changes when pulse amplitude 
modulation (PAM) was applied. Overall, it well approximated the 
literature and also highlighted a range of comodulation possibili-
ties (Marianelli et al., 2015), as experimentally demonstrated in 
Davidovics et al. (2012).

We build on experimental and modeling work discussed in the 
prior paragraph but study a different time point in prosthetic use. 
The existing literature evaluates modulation relative to a baseline 
stimulation rate. Importantly, at the onset of this baseline rate, there 
is a discontinuity in stimulation from 0 pps (pulses per  second) to 
a baseline rate (e.g., 200–400 pps). Since stimulation can overwrite 

residual resting firing rate, there is a corresponding discontinu-
ity in afferent activity. This discontinuous and sharp step from 
resting rate imposes a transient nystagmus that must attenuate 
before the prosthetic can be used. This strategy is reflected in 
common experimental paradigms, e.g., “baseline stimulation 
was applied and after N minutes nystagmus attenuated; we then 
modulated stimulation and measured eye-movement output.” 
The timeframe N is species- and time-dependent [e.g., Merfeld 
et al. (2006), Guyot et al. (2011), and Davidovics et al. (2012)]. 
Our focus is on that often-skipped timeframe.

Specifically, could synaptic plasticity between the afferents 
and the vestibular nuclei accommodate this transient nystagmus 
attenuation? Arnold and Robinson (1997) built a six-layer neural 
network composed of four different types of neurons connecting 
the SCCs with the ocular movements. We model the synaptic 
strength between each afferent (two types) and the vestibular nuclei 
as in Arnold and Robinson (1997), instead of a global function 
between afferent firing and stimulation parameters to eye move-
ments (Marianelli et al., 2015). We start from healthy SCCs with 
afferents having a distribution of resting firing rates, variances, 
and response magnitude to rotation. There is a corresponding 
distribution of synaptic strengths. We then simulate BVL, baseline 
prosthetic stimulation, and finally pulse modulation. The onset of 
baseline stimulation is a “perturbation” and the model adapts the 
synaptic strengths to reduce error (no aberrant eye movements). 
Any subsequent changes in stimulation, either modulation or a 
change in baseline rate, will induce eye movements. We examine 
how synaptic strength adaptation affects subsequent VOR to 
modulation of stimulation. Specifically, how does adaptation of 
a portion of the synapses affect the efficacy of subsequent PRM 
or PAM? Additionally, are there non-obvious characteristics of 
prosthetic stimulation exposed through this model?

We abstract a simple neural network model from biological 
principles to model the pathway including the electrode, affer-
ents, vestibular nuclei, and eyes. Model inputs are electrical pulse 
stimulation amplitude and rate. The model output is eye velocity 
around a single axis (e.g., horizontal, vertical, or torsional); these 
three axes comprise the space of eye movements (Haslwanter, 
1995). Conceptually, the model could produce velocity around 
three axes to accommodate current spread or “cross talk.” 
However, we will discuss in Section “Results” why we restricted 
our analysis to a single axis.

Simulations of acute (short-duration trials within the clinic in 
humans) vestibular prosthetic modulation after this adaptation 
predict eye movements that followed the same trends as acute 
clinical testing for PAM and PRM1. Searching over a spectrum 
of resting firing rate distributions showed minimal influence on 
relative stimulation efficacy. Finally, we simulated a comodulation 
of pulse rate and pulse amplitude that was previously used in ani-
mals (Davidovics et al., 2012). The model predicts both boosted 
outputs for combined stimulation and equipotent outputs using 
less PAM, an important factor in reducing current spread and 
misalignment of eye-movement responses.

1 Nguyen, T. A. K., DiGiovanna, J., Cavuscens, S., Ranieri, M., van de Berg, R., 
Guinand, N., et al. (2016). Characterization of pulse amplitude and pulse rate 
modulation for a human vestibular implant during acute electrical stimulation. 
J. Neural. Eng. (under review).
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MaTerials anD MeThODs

The model is divided into two main components: electrode–nerve 
interface and nerve–nuclei interface. The model has one layer 
of free parameters, specifically the synaptic strengths. These are 
adapted during the onset of prosthetic stimulation. We describe the 
model components below. Experiments were performed in accord-
ance with the Declaration of Helsinki and approved by the ethics 
committees of the University Hospitals Geneva (NAC 11-080).

electrode–nerve interface
Rotation is normally sensed by hair cells within the ampulla; 
it results in modulated firing rates of vestibular nerve fibers. 
In patients with BVL, these cells are significantly less sensitive 
or non-responsive to rotational stimuli or may be lost. The 
electrode–nerve interface is built upon existing physics of 
electrical stimulation (McIntyre et al., 2002; Capogrosso et al., 
2013; Marianelli et al., 2015). An electrical field generated by 
injected current will spread spherically through a space of uni-
form conductance. Injecting more or less current will change 
the radius of this sphere. Any afferents within this sphere 
can be depolarized above the threshold voltage, which will 
generate an action potential if the cell is not in the refractory 
period. Resting firing rate statistics were extrapolated based 
on animal models, including (Fernandez and Goldberg, 1971) 
squirrel monkeys with 91.3  ±  36.3  spikes/s; (Sadeghi et  al., 
2007) macaque monkeys population afferent firing rate was 
approximately 95 spikes/s; (Baird et al., 1988) chinchilla had an 
afferent population firing rate of 70.9 ± 1.1 spikes/s for regular 
units, respectively; (Bronte-Stewart and Lisberger, 1994) 
rhesus monkey had a distribution of resting afferent firing 
rates from 29 to 158 spikes/s with a peak around 100 spikes/s; 
and (Hullar et al., 2005) chinchilla population afferent resting 
firing rate of 42 ±  21.5  spikes/s, However, note that detailed 
characterizations of this nerve have not been performed in 
humans or after BVL.

The model will have N afferents within the sphere of delivered 
charge:

 N n A A= +( )b m  (1)

where n is a ratio between the number of recruited afferents vs. 
injected current. This weighting is dependent on electrode place-
ment and impedance. Here, we set n such that N = 40% of affer-
ents (400 afferents out of the 1000 afferents simulated) at baseline 
(Ab) current while modulated (Am) stimulation is 0. This reflects 
the procedure used in patient trials to set the baseline current 
amplitude in the middle between the threshold current amplitude 
and the upper comfortable level (Perez Fornos et al., 2014). It is 
challenging to generalize “typical” values for Ab and Am, as the 
effect of stimulation is dependent on patient anatomy, surgical 
placement, and electrode condition. Detailed dynamic ranges 
for a group of 11 patients are given in Guinand et al. (2015). We 
use 1000 afferents per SCC for this paper. Results are consist-
ent, simulating different numbers of afferents; only runtime and 
resolution are affected (unpublished).

We assume that afferents continuously generate action 
potentials, according to probability distributions of firing 
rates. Multiple distributions were tested, but for this paper, all 

mean firing rates were sampled from the lognormal distribu-
tion (mean  =  26.3  spikes/s and SD  =  6.6  spikes/s), as shown 
in Figure 1A. Each afferent also had a variance in firing rate, 
depending on whether it was irregular [33% of afferents, coef-
ficient of variation (CV) >0.1] or regular (67% of afferents, 
CV <0.1), these variances were sampled from the uniform 
distribution for each type shown in Figure  1B. The percent-
ages of regular and irregular afferents (and CV ranges for each 
type) were extrapolated based on animal models, including 
(Fernandez and Goldberg, 1971) squirrel monkeys that had a 
1:2 ratio of regular (CV <0.058) to non-regular (CV >0.238) 
afferents; (Sadeghi et  al., 2007) macaque monkeys that had a 
3:2 ratio of regular (CV* <0.15) to irregular (CV* >0.15) affer-
ents; (Baird et al., 1988) chinchilla that had 3:1 ratio of regular 
(CV* <0.1) to irregular (CV* >0.2) afferents; (Bronte-Stewart 
and Lisberger, 1994) rhesus monkey that had a nearly 6:1 ratio 
of regular (CV* <0.1) to irregular (CV* >0.2) afferents; and 
(Hullar et al., 2005) chinchilla had a 1:3 ratio of regular (CV* 
<0.1) to irregular (CV* >0.2) afferents. For the sub ensemble 
of N afferents influenced by the electrical stimulation, the firing 
rate is locked to the stimulation rate if it exceeds the residual 
resting firing rate.

 fr p s ui b m i iPR PR= +( )max , ( , )  (2)

where PRb and PRm are pulse rates of baseline and modulated 
stimulation, i is the afferent index, and u and s are the mean and 
variances of the residual resting firing rates, respectively. The 
difference between the stimulation modalities (PAM and PRM; 
Figure 1C) that influence on vestibular nerve activity (Figure 1D) 
is captured with Am and PRm in Eqs 1 and 2.

nerve–nuclei interface
The vestibular nuclei are innervated by multiple components 
of the nervous system, one of which is partially composed 
of the afferents within the vestibular nerve. Each afferent 
synapses onto the nuclei, with the influence of delivered 
action potentials determined by the synaptic strength (Arnold 
and Robinson, 1997). Afferents within this vestibular nerve 
synapse directly onto position-vestibular-pause neurons 
(Cullen and McCrea, 1993; Sadeghi et al., 2009, 2011) within 
the vestibular nuclei in the brainstem. Each nucleus receives 
bilateral input from afferents within the vestibular nerves. We 
model the strengths of these synapses with linear weight terms. 
The nuclei sum the weighted firing rates from all afferents and 
then apply a saturating non-linearity, which encapsulates both 
non-linearity in the nucleus and in eye muscle contractions 
[for a detailed model of the individual non-linear elements, see 
Arnold and Robinson (1997)]. The synaptic strengths are plas-
tic, i.e., they adapt to minimize retinal slip. Prior research has 
shown that adaptation similar to long-term depression (LTD) 
(Markram et al., 1997) may account for reduced sensitivity to 
unilateral afferent inputs at supra-physiological rates (Mitchell 
et al., 2014).

The final output of these nuclei is an eye velocity command 
(Figure  2A), which will pass through the abducens nucleus, 
trochlear nucleus, oculomotor nuclei, and the ocular muscles 
(Purves et al., 2004). We make three additional assumptions to 
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FigUre 1 | electrode–nerve interface. (a) Distributions of resting mean firing rates for the population. (B) The percentage of regular (67%) and irregular (33%) 
afferents is illustrated in the pie plot; the distribution of CVs for each afferent type is also shown. Each afferent will have a mean residual firing rate sampled from 
(a) and a variance sampled from (B). (c) Concept of stimulation from a monopolar electrode (black dot) in an environment with uniform conductance. The area 
stimulated depends on pulse amplitude, while the frequency of action potentials depends on pulse rate. A sinusoidal envelope modulates both modalities from 
baseline to ± maximum values. This modulation envelope is a 2-Hz sine wave. At baseline, there is no modulation (e.g., Am and/or PRm go to 0). Positive (negative) 
values of the modulation envelope correspond to delivering higher (lower) values of pulse amplitude and/or pulse rate than baseline (e.g., Am and/or PRm are 
non-zero). Pink arrows show that the first and last examples here are at baseline stimulation, while the middle example is a peak positive modulation. (D) Simulated 
vestibular afferent populations during baseline stimulation followed by PAM or PRM. In purple, we overlay the zoom into brief section of the applied stimulation 
pulses, including baseline, maximum, and minimum modulation values.
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model these nuclei: (a) inputs (represented as weighted firing 
rates) from each synapse are summed, (b) an “offset” that can 
globally attenuate inputs (e.g., rely on vision for slow movement 
in good lighting), and (c) other inputs are grouped into a single 
term P. Thus, the equation for the model is

 
v f w fr b P= −







∑ i i

i

,  (3)

where v is the observed eye velocity (around a single axis), wi 
is the synaptic strength for each afferent, i, b is the offset, and 
P represents all other inputs to the vestibular nuclei. These 
inputs are known to influence gains of the VOR, but the exact 
methods for achieving this are disputed (Loeb and Tsianos, 2015). 
For the remainder of this work, we assume P is independent of 
stimulation modality (PRM or PAM) and can be removed from 
the model, as it will cancel out in any differential comparisons. 

A non-linear hyperbolic tangent function was used for the map-
ping f() between the nuclei and eye movements; it was selected 
based on the relationship between firing rate and eye movement 
previously detailed in monkeys (Fernandez and Goldberg, 1971). 
This mapping and the removal of P reduces Eq. 3 to a standard 
single-layer perceptron, as described in Haykin (1994).

acute adaptation
After vestibular injury or loss, the vestibular nerve does not pro-
vide useful information. The hair cells that normally modulate 
afferent firing either die or become non-responsive to rotational 
stimulation. Thus, the population of afferents is no longer modu-
lated by the hair cells and instead reverts to a residual resting 
discharge that is independent of head rotation. The vestibular 
nuclei must attenuate the influence of afferent’s residual resting 
discharge, which may be lower than the healthy resting discharge 
rate, to minimize retinal slip. Retinal slip (e in Eq.  4) is the 
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FigUre 2 | nerve–nucleus interface. (a) Model of primary afferents in BVL without prosthetic stimulation. There is no eye movement despite residual afferent 
activity. (B,c) The onset of baseline stimulation introduces imbalances between the synaptic strengths, self-regulation, and induced firing rates within stimulated 
afferents. Any changes are color coded in orange. (D) Nystagmus occurs immediately after baseline stimulation onset, but attenuated in all tested patients within a 
maximum of 30 min. We model this as a change in synaptic strengths and/or self-regulation in (c).
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difference between the appropriate (i.e., perfectly compensating 
for head rotations) and actual eye movements; this slip induces 
aberrant percepts of image motion. Experimentally, nystagmus 
(an eye movement consisting of a slow movement in one direc-
tion followed by a rapid movement in the opposite direction, 
conceptually a series of retinal slips) induced by abrupt onsets 
of electrical stimulation attenuated to negligible values within a 
maximum of 30 min while the patient was sitting in a dark room 
(Guyot et al., 2011). To achieve this attenuation in the model is 
possible via Eq. 5.

 e v v= +eye head  (4)

 

0

0

=

= −( )∑
v

f w fr b
eye

i ii

 (5)

Setting the sum of weighted firing rates equal to the offset 
will minimize error. We do not reintroduce P from Eq.  3, as 
we assumed that within the timescale of adaptation to baseline 
stimulation onset, while the patient is seated in a dark room, the 
contribution of P is constant. Thus, nuclei adaptation is restricted 
to w and b (Figures 2B,C).

Mean squared error is back propagated, according to Eqs  6 
and 7 (Eq.  7 includes a Fahlman constant; is the error, back 
propagated through the output node), where dv is the desired eye 
velocity, i.e., opposite of head movement to keep the gaze focused. 
The synaptic strengths, here represented as a vector, and offset are 
updated with Eqs 8 and 9.

 e d v= −v  (6)

 δ = × −e v( . )1 1 2  (7)

 ∆w fr= α δs  (8)

 ∆b = α δb  (9)

Here, there are different learning rates for the synaptic strengths 
(αs) and offset term (αb). This feature was added to address the 
uncertainty of the nuclei attenuating all afferent input (αb ≫ αs), 
attenuating only the stimulated afferents (αs ≫ αb), or a hybrid 
approach in response to the discontinuity introduced by the onset 
of baseline stimulation. This spectrum of relative learning rates 
was chosen to emulate heterosynaptic and homosynaptic LTD, 
respectively. Homosynaptic LTD is a Hebbian-type learning that 
decreases the synaptic strength if both the pre- and postsynaptic 
neurons are active (Purves et al., 2004). In contrast, heterosyn-
aptic LTD attenuates synapses independently of neuron activity.

Modulation
The prosthetic modulates eye velocity commands (Eq. 3), based on 
the changing afferent firing rates, as described by Eqs 1 and 2. The 
relationship between actual head rotations and afferent firing rates 
in healthy monkeys (Fernandez and Goldberg, 1971) is shown in 
Figure 3A. Similarly, the mapping between detected rotations and 
prosthetic stimulation is given in Figure 3B for PRM. Equivalently, 
PAM can be achieved by swapping PRm with Am.

For this paper, we apply only a fixed sinusoidal (2  Hz) 
modulation of stimulation parameters (see Figure 1B) between 
Ab + Am and Ab − Am independently of any actual head rotations 
of the vestibular prosthetic user (or between PRb  +  PRm and 
PRb  −  PRm). This modulation frequency (2  Hz) was selected 
because it is a prevalent head frequency in everyday tasks, such as 
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FigUre 3 | relationship between head rotation and afferent activity. 
(a) Approximate transfer function between head rotations along a single axis 
and afferent firing rates in healthy monkeys (Fernandez and Goldberg, 1971). 
(B) Imposed transfer function for each axis in a vestibular prosthetic using 
PRM. The width of the linear region can be set based on the observed 
patient-specific head rotations or the maximal range of possible rotations 
(Gong and Merfeld, 2000; Della Santina et al., 2007).
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walking (Grossman et al., 1989; Guinand et al., 2015). The desired  
outcome is to evoke maximal eye velocity. This configuration 
mimics the acute clinical testing of a prosthetic as shown by Guyot 
et al. (2010). Outputs for PAM and PRM using common clinical 
settings are shown in Figures  4A,B. The metric for evaluating 
performance is the positive peak eye velocity (PEV) shown in 
Figure 4C. Using only positive, PEV hides the imbalance between 
positive and negative eye velocities in this model with PAM 
(Figures 4A,C). However, real eye-movement data (Figure 4D) is 
noisy, particularly in the measured eye positions during the nega-
tive portion of the cycle. Differentiating this signal to calculate 
velocity compounds the problem, so we first applied a 5-Hz low-
pass filter (third order, non-causal Butterworth) to the position 
(Figure 4D). This creates the expected periodic modulation in 
the velocity signals, in this example, it is obvious for times >2 s 
(Figure 4E). However, compiling and averaging these modula-
tion cycles reveals a sinusoid with different phase amplitudes and 
frequencies (Figure 4F). Alternatively, eye position can be fit for 
each cycle, as in Perez Fornos et al. (2014), and then differentiated 
(Figure 4G). This generates a much cleaner output, but the neces-
sary detail (positive vs. negative velocity) for model fitting is lost. 
Given the noise in the eye velocity calculations (Figure 4F) and 
the dependency on the cut-off frequency of the low-pass filter, we 
only consider one portion (PEV) of the model output.

These representative eye positions also highlight another chal-
lenge for vestibular prosthetics. In this patient, the lateral SCC 
was stimulated, which should have evoked purely horizontal eye 
movements. Instead, there are both horizontal and vertical eye 
movements. This is an example of the common phenomena of 
current spread; here, the unwanted movements (vertical) are 
nearly two thirds as large as the desired (horizontal) movements. 
Using PAM accesses the horizontal SCC as desired but also spreads 
to stimulate the anterior SCC (and potentially other unintended 
targets), which generates unwanted eye movements. Current 
spread may be reduced by changing the maximal change in PAM; 
however, this will also reduce the desired horizontal movement 

magnitude. In the model, the maximal change in stimulation for 
PRM and PAM was balanced for any comparisons. Specifically, 
the multiplier from Ab to Am was the same as from Pb to Pm. We 
labeled this “charge-balanced.” This multiplier was often 1.25 (or 
25%), which has been a common upper bound in current acute 
clinical PAM testing.

Hybrid comodulation of stimulation was also modeled. All 
three stimulation modes are summarized by the change in charge 
in Eq.  10. (Note that the Am component also has a geometric 
multiplier based on Eq.  1. We also removed the pulse-width 
term, as this is common over methods). In PAM or PRM, only 
the first or second terms, respectively, are non-zero. In contrast, 
for hybrid stimulation all three terms are non-zero. We do not 
restrict hybrid stimulation to be charge-balanced with PAM or 
PRM. Instead, we characterize possible hybrid model outputs 
across possible percentages of PRM and PAM.

 ∆Q A A A= + +PR PR PRb m m b m m  (10)

resUlTs

This simple model of vestibular prosthetic and vestibular–ocular 
interaction exposed two important relationships. First, there may 
be a large discontinuity between the induced pulse rate and the 
residual resting discharge of the population of non-recruited 
afferents. This discontinuity is exacerbated, as higher baseline 
pulse rates are used. Second, the adaptation to baseline stimula-
tion tends to attenuate the weight of the recruited afferents (e.g., 
afferents #1–#400 in Figure  1C). Both of these relationships 
disproportionally degrade the efficacy of PRM.

influence of Baseline Pulse rate and 
residual resting Discharge
The most influential relationship exposed by this model is the 
discontinuity between baseline pulse rate and residual resting 
discharge. In Figure  5A, we compare the average firing rate 
within the ensemble of afferents for PAM (22.5–62.5% affer-
ents stimulated, 200 pps) and PRM (40% afferents stimulated, 
200 ± 50 pps) at 25% modulation for both methods. Note that 
this average includes many non-modulated afferents (for either 
PAM or PRM), which lowers the value toward the residual rest-
ing firing rates as shown in Figure  1A. For example, afferent 
#500 (Figure 1C) switches from a mean firing rate of approxi-
mately 27 to 200 pps during the positive modulation half-cycle 
of PAM. The subpopulation of neurons with this discontinuity 
contributes to the sharp increase in ensemble firing rate. This 
dependency is described in Eqs  10 and 11, where Δfr is the 
change in the afferent ensemble firing rate, and all other variables 
are from Eqs 1 and 2.

 
∆fr fr

i nA

n A A

PAM b iPR
b

m b

= −
= +

+

∑
1

( )

 (11)

 ∆fr nAPRM b m bPR PR= −( )  (12)

The baseline population (n  ×  Ab) of stimulated neurons 
subjected to the modulated pulse rate (Eq. 12) is larger than the 
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FigUre 4 | Model outputs and patient measurements. Models were trained using clinical settings of 200-pps baseline stimulation and then ±25% modulation 
depth was applied. (a) PAM generated relatively large positive eye velocities with muted negative eye velocities. Applying a sinusoidal fit shows a peak positive eye 
velocity of 2.5 in arbitrary units. (B) Applying PRM to the same model generates much smaller eye velocities, but without any imbalance in positive and negative 
outputs. There is complete overlap of the model outputs on the sinusoidal fit. (c) The peak eye velocities for each modality are shown. (D) Representative PAM 
recording from a single patient during stimulation of the lateral ampullary nerve (which should elicit purely horizontal eye velocities) shows a 2-Hz modulation of eye 
position (dots) in the horizontal (red) and vertical (blue) dimensions. Traces are generated with a 5-Hz low-pass filter. (e) Differentiating these traces estimates eye 
velocity. (F) Compiling all cycles of modulation reveals a broad and uneven positive velocity peak followed by a more sinusoidal shaped and larger magnitude 
negative velocity peak. (g) Alternatively, each cycle of the position signal in (D) is fitted with a sinusoid, then differentiated. This dramatically cleans up the velocity 
outputs but obscures any imbalance in positive and negative outputs or modulation shapes.
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modulated population [n × (Am − Ab)], i.e., afferents stimulated 
only during the positive sine wave of PAM. However, the 
discrepancy between baseline pulse rate and residual resting 
discharge in Eq.  11 during the positive sine wave of PAM 
causes a larger overall change in ensemble firing rate.

In the first acute tests with proof of concept prosthetics (Perez 
Fornos et  al., 2014), 25% modulation depth (i.e., stimulation 
intensity ranged from 25 to 75% of the dynamic range, where 
100% is the upper comfortable level) corresponded to a typical 
clinical case. Fixing the modulation depth of PR to ±25% of 
baseline PR, it is clear that PAM will generate eye movements 

with greater magnitude throughout a majority of possible 
 combinations (Figure 5B).

influence of stimulated afferents and 
learning rates
The differences in outputs can be understood through the syn-
aptic strengths in the model. In the healthy situation, synapses 
are organized such that increasing firing rates in afferents from 
a SCC on one side are weighted positively while inputs from the 
opposite SCC are weighted negatively (Figure 6A). Conceptually, 
one could consider positive synaptic strengths excitatory while 
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FigUre 5 | ensemble and residual firing rates. (a) Given changes in 
pulse rate or pulse amplitude, there is a larger modulation in firing rate for 
PAM. Here, the baseline recruitment (Ab) is fixed to 40% of afferents, 
modulation (pulse rate or pulse amplitude) is fixed to 25%, and we scan over 
all residual firing rates and baseline pulse rates. (B) There is higher peak eye 
velocity for PAM (red) over a large region of this space. However, PRM does 
generate higher peak eye velocities (blue) for low baseline pulse rates, 
especially if the residual firing rate is also low.
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negative strengths are inhibitory. Alternatively, positive and 
negative may be defined relative to the direction that the eyes are 
moved. Either interpretation combines the push–pull mechanism 
of vestibular sensory function to create a single eye movement in 
the correct direction. After BVL, there is no more natural modu-
lation in afferents from either SCC; instead, all afferents fall to a 
distribution of residual resting rates (Figure 1A). The synapses in 
the model are all evenly adapted to accommodate this lower input 
rate. Later, a unilateral prosthetic is implanted and afferents from 
a single canal are stimulated tonically at a baseline frequency for 
approximately 30 min (Figure 2D). We assumed that 40% of affer-
ents would be recruited at this current amplitude. This means 400 
afferents (shown in gray in Figure 6B) suddenly went from a low 
residual firing rate (normally distributed around approximately 
27 pps) to the baseline stimulation rate of 200 pps. The model 
again adapts the weights, according to Eqs 8 and 9; however, there 
is a sharp difference in the firing rate for this subpopulation of 
afferents. Thus, synapses for these afferents are adapted more 
rapidly than the non-stimulated afferents. Figure 6B shows the 
impacts of this adaptation, many synapses within the recruited 
population (in gray) become negative and overall the mean value 
of these synapses is lower than other afferents. This means that 
increases in firing rate within certain afferents in the recruited 
population actually contribute to attenuate positive eye move-
ments. It also highlights the subpopulation of afferents (in purple) 
only influenced during PAM, which have a higher mean synaptic 
strength. Given the same change in firing rate between two affer-
ents, the afferent with the higher synaptic strength contributes 
more to generate positive eye movement. The different changes 
in ensemble firing rates (inputs) and synaptic strengths combine 
to generate a much higher velocity from PAM than from PRM 
(Figures 4A,B and 6C).

The ratio of bias vs. synaptic learning rates also affects the model 
output. At extreme values of bias learning rate (heterosynaptic, 
solid lines in Figure 6C), the magnitude of model output for PRM 
increases, and the imbalance between PEV and negative peak eye 
velocity (NEV) for PAM decreases. Both of these effects are due 

to adaptation of the bias term completely offsetting any errors at 
high learning rates. That strategy preserves the afferent weights at 
nearly the original values (Figure 6A), which boosts PRM output. 
Not adapting the afferent weights also avoids the discontinuity 
between baseline and PAM stimulated afferents (Figure  6B); 
this correspondingly reduces PEV vs. NEV imbalance for PAM. 
Scanning over possible learning rate ratios in Figure 6D shows 
that these positive changes occur at bias learning rates that are 
3 × 104 times larger than the learning rate for a synapse (or 30 times 
larger than the combined change in all afferents). Such rapid bias 
learning rates mitigate the problematic synaptic properties shown 
in Figure 6B for lower bias learning rates.

Modulation efficacy
Precise modulation of eye velocity is important for vestibular 
prosthetic function. All prior sections focused on peak output 
using a 200-pps baseline with ±25% modulation depth. We also 
checked other modulation strengths from 10 to 50%. For two 
baseline pulse rates, 100 and 200 pps, PAM generated larger eye 
velocities (Figure  7A). However, we see a large drop in PAM 
output at the 100-pps baseline due to the PRb term in Eq.  11. 
This change in baseline does not affect PRM. Normalizing by eye 
velocity at 10% modulation depth, we see that both PAM and 
PRM created an approximately unity increase in eye velocity for 
each additional 10% change in modulation (Figure 7B), indicat-
ing similar modulation efficacy.

Finally, we combined the two methods to simulate comodu-
lation. Specifically, both Am and PRm were varied together at a 
200-pps baseline stimulation rate and 2 × 103 bias learning rate 
ratio. Adding PRM on top of PAM creates a non-linear multiplier 
(see Eq. 10) on the eye velocity output (Figure 8A). For example, 
adding 100% PRM to 25% PAM increases the model output by 
a factor of 2. Alternatively, we assume that eye velocity at 25% 
modulation depth for PAM is sufficient for prosthetic function. 
To reduce current spread and avoid reaching the upper level, there 
are equipotent contours in hybrid stimulation space (Figure 8B) 
that can achieve the same eye velocity output with less PAM.

DiscUssiOn

We have presented a simple, functional model of the interaction 
between vestibular prosthetic stimulation and induced eye veloc-
ity. The novelty of this model is the adaptation of vestibular nuclei 
synaptic strengths to emulate neural plasticity in the processing 
of afferent activity. We specifically focus on the tonic baseline 
stimulation period of vestibular prosthetic onset, which initially 
causes a nystagmus that attenuates after 30  min (Guyot et  al., 
2011). Since there has been no change in the input, we focused 
on the synapses to explain the change in the output. LTD was 
proposed as a physiological mechanism for synaptic adaptation, 
including both hetero- (all synapses are adapted independently 
of activity) and homo- [only active (stimulated) synapses are 
adapted] synaptic components. Spike-time-dependent plasticity, 
which LTD is a subset of, appears rapid enough to allow such 
error attenuation. It has been shown to occur with approximately 
100 action potential pairings repeated at fixed frequencies 
(Markram et al., 1997; Bi and Poo, 1998; Sjöström et al., 2001). 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


FigUre 8 | comodulation. An alternative stimulation strategy to PAM and 
PRM is to modulate both the pulse amplitude and rate of stimulation. (a) The 
orange and purple dots represent pure PAM and PRM, respectively, as 
previously presented. Combining these modulation methods further increases 
the possible PEV output. (B) Similarly, there are multiple combinations of 
stimulation methods which are equivalent to 25% PAM. For example, the 
white dashed line shows that the same output can be achieved with 12.5% 
PAM combined with 55% PRM.

FigUre 7 | Modulation efficacy. (a) Peak eye velocity over different 
modulation strengths for PAM and PRM at 100- and 200-pps baseline 
stimulation. There is a clear attenuation of PAM at lower baseline stimulation 
while PRM remains unaffected. (B) Normalizing to the change in output at 
10% modulation, we see both PAM and PRM increase PEV about 100% per 
10% change in modulation.

FigUre 6 | synaptic strengths and learning rate ratios. (a) Modeled healthy afferent strength values connecting to the vestibular nuclei. Increased firing rates 
from left SCC afferents cause positive eye movement (move to right); decreased firing rates from right SCC afferents have the same effect as they are multiplied by a 
negative strength (B) During baseline adaptation to left SCC stimulation by a vestibular implant, there is a population (shown in gray) of afferents entrained to 
200-pps activity. This excess activity causes nystagmus (error). To correct this error, the network increases the bias term and adapts the other strengths. Here, the 
bias strength was 2 × 103. Now, there are strengths in the incorrect region of space (inverted synapses are colored yellow), and increasing firing rates in these 
afferents would yield negative eye movement. Additionally, the mean strength value is lower in the gray area compared to the rest of the population (mean values 
shown as white overlay lines for each region). This creates an advantage for PAM, which interacts with a subpopulation of afferents (shown in purple) with larger 
strengths during the positive phase of modulation. (c) The ratio of learning rates between the bias term and neurons is adapted to simulate heterosynaptic (bias rate 
very high) vs. homosynaptic (synapse rate very high) LTD. The ratio of learning rates affects the magnitude of PRM and the symmetry of PAM. Relatively faster bias 
term adaptation increases both the factors. (D) Simulation of different bias rates showing the increase in PEV for PRM, as bias learning rate increased above 
3 × 104. The increase in symmetry (PEV/|NEV| goes toward 1.0) for PAM occurs around the same learning rate.
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There is no consensus of the optimal baseline prosthetic stimula-
tion rate; however, even 100 pps already delivers an abundance of 
action potentials to the stimulated afferents. This adaptation was 
modeled as back propagation of error with a bias term serving to 
model homosynaptic components. Specifically, adaptation of the 
bias term has a relative impact on the contribution of all synapses, 
regardless of their activity level.

Importantly, we did not focus on model fitting to clinical data. 
Such patient-specific models have been evaluated (unpublished), 
but the data were insufficient to test for robust generalization. To 
date, there are only 12 total patients implanted with some variant 
of a 1- to 3-branch vestibular prosthetic (Guinand et al., 2015). 
This makes it impossible to pool data across patients to train 
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the models. Further, eye velocity data are extremely noisy (see 
Figures 4D,E) (Perez Fornos et al., 2014), and only the positive 
half of the modulation cycle is reliably present in the recordings. 
Without a measurement of the PAM output imbalance, there is 
no reference point to set the ratio of bias to synaptic learning 
rates beside a very wide range of relative differences in PEV in 
Figure 6D. There were also modulation frequency dependent 
gains (Van De Berg et al., 2015) and current spread during PAM 
to adjacent vestibular structures that caused eye velocities along 
unwanted axes. These were not addressed in this paper but fur-
ther diluted the available data. Despite these strong caveats, we 
were able to reproduce the relative differences in PEV for PAM 
and PRM at 2 Hz for a 200-pps baseline stimulation as shown in 
Nguyen et al. (2016)1 across a spectrum of residual firing rates 
and learning rate ratios. We also reproduced the drop in PAM 
output for 100-pps baseline stimulation without any significant 
change in PRM output1. Interestingly, our model predicts that 
the same normalized modulation is possible using either PAM 
or PRM. However, since PRM is modulating relative to such 
a small absolute output, it may be obscured by measurement 
noise.

This simplified model not only replicated the higher efficacy 
of PAM of electrical stimulation compared to PRM observed 
in acute clinical testing (Guyot et  al., 2011; Pelizzone et  al., 
2014; Perez Fornos et  al., 2014) but also presented two non-
intuitive relationships that may explain this phenomenon. First, 
physics dictate that PAM will cause a larger overall change 
in afferent ensemble firing rate than PRM, given the same 
amount of relative modulation. The charge spreads spheri-
cally to recruit a larger population of afferents, and there is a 
discontinuity between these afferents’ residual resting discharge 
rates and the (usually much higher) baseline simulation rates. 
Second, the model sharply attenuates the synaptic strengths 
for the subpopulation of afferents recruited during baseline 
stimulation to reduce nystagmus. Synapses for non-recruited 
afferents are less sharply attenuated. PRM only interacts with 
the subpopulation of afferents with sharply attenuated synaptic 
strengths. Combining these relationships, it is clear that PRM is 
less efficient in enacting a change in ensemble afferent activity 
and further restricted by lower amplitude synapses. Although 
this model is limited to synaptic strengths, those parameters are 
sufficient to predict multiple behaviors. Thus, those parameters 
may serve an important role in the actual circuit (Loeb and 
Tsianos, 2015).

Finally, we explored the comodulation of PA and PR, because 
this strategy had shown good results in chinchilla experiments 
(Davidovics et al., 2012). By incorporating non-zero PAM, any 
PRM partially accessed the less-attenuated synapses normally 
solely available to PAM. Adding a PRM component to the stimu-
lation boosts the eye velocity output of a given PAM percentage. 
One way to think about this is generating larger total eye velocity 
that is useful for prosthetics. Alternatively, it is important to 
consider current spread and misalignment of eye-movement 
responses shown in Figure 4. This is a limiting factor that prevents 
prosthetic controllers from using high magnitudes of PAM. As 
amplitude grows too large, the charge spreads to adjacent canals 
and begins to generate eye velocities along incorrect axes. To avoid 
this, the model suggests following an equipotent hybrid stimula-
tion contour to find a comodulation that can avoid current spread 
or user discomfort while maintaining velocity magnitudes.

If more high-quality data become available, it will be valu-
able to emulate chronic adaptation to vestibular prosthetic use. 
A chronic model of vestibular prosthetic function is critically 
missing. Specifically, there are multiple chronic animal studies 
that demonstrate effective control of eye movements using PRM 
(Gong and Merfeld, 2002; Wall et al., 2003; Della Santina et al., 
2007; Merfeld, 2008; Fridman et al., 2010); this was not captured 
by any possible parameter combination in our acute model. 
Furthermore, prosthetic designers could rapidly scan different 
stimulation parameter combinations to minimize adaptation 
time and error, all the way from acute prosthetic onset in the 
clinic to chronic outside-the-clinic use.
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