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Repetitive patterns in genomic sequences have a great biological significance and also
algorithmic implications. Analytic combinatorics allow to derive formula for the expected
length of repetitions in a random sequence. Asymptotic results, which generalize previous
works on a binary alphabet, are easily computable. Simulations on random sequences
show their accuracy. As an application, the sample case of Archaea genomes illustrates
how biological sequences may differ from random sequences.
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1. INTRODUCTION

This paper provides combinatorial tools to distinguish biologically significant events from random
repetitions in sequences. This is a key issue in several genomic problems asmany repetitive structures
can be found in genomes. One may cite microsatellites, retrotransposons, DNA transposons, long
terminal repeats (LTR), long interspersed nuclear elements (LINE), ribosomal DNA, and short
interspersed nuclear elements (SINE). In Treangen and Salzberg (2012), it is claimed that half of
the genome consists of different types of repeats. Knowledge about the length of a maximal repeat
is a key issue for assembly, notably the design of algorithms that rely upon de Bruijn graphs. In re-
sequencing, it is a common assumption for aligners that any sequenced “read” shouldmap to a single
position in a genome: in the ideal case where no sequencing error occurs, this implies that the length
of the reads is larger than the length of the maximal repetition. Average lengths of the repeats are
given in Gu et al. (2000). Recently, heuristics have been proposed and implemented (Devillers and
Schbath, 2012; Rizk et al., 2013; Chikhi and Medvedev, 2014).

A similar problem has been extensively studied: the prediction of the length of maximal common
prefixes forwords in a random set. Typical parameters are the background probabilitymodel, the size
V of the alphabet, the length n of the sequence, and so on. Deviation fromuniformity was studied for
a uniformmodel as early as 1988 (Flajolet et al., 1988). A complexity index that captures the richness
of the language is addressed in Janson et al. (2004). A distribution model, valid for binary alphabets
and biased distributions, was introduced in Park et al. (2009), the so-called trie profile and extended
to Patricia tries in Magner et al. (2014). The authors pointed out different “regimes” of randomness
and a phase transition, by means of analytic combinatorics (Sedgewick and Flajolet, 2009). It was
observed in Jacquet and Szpankowski (1994) that the average length of maximal common prefixes
in a random set of n words is asymptotically equivalent to the average length of maximal repetitions
in a random sequence of length n. Sets of words are considered below in the theoretical analysis.
A comparison with the distribution of maximal repetitions in random sequences or real Archaea
genomic sequences is presented in Section 3.

Our first goal is to extend results of Park et al. (2009) to the case of a generalV-alphabet, including
the special case {A, C, G, T} where V is 4. A second goal is to compare the results consistency with
random data and real genomic data in the finite range.
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To achieve the first goal, we rely on an alternative, and sim-
pler, probabilistic and combinatorial approach that is interest-
ing per se. It avoids generating functions and the Poissoniza-
tion–dePoissonization cycle that is used in Park et al. (2009) and
it extends to non-binary alphabets. In that case, there is no closed
formula for the asymptotic behavior. Nevertheless, the Lagrange
multipliers allow to derive it as the solution of an equation that
can be computed numerically.

Explicit and computable bounds for the profile of a random
set of n words are provided. Three domains can be observed. A
first domain is defined by a threshold k for the length, called
the completion length: any prefix with a length smaller than this
threshold occurs at least twice. This threshold is extremely stable
over the data sets and it is highly predictable. A similar phe-
nomenonwas observed for a uniformmodel in Fagin et al. (1979a)
and a biased model (Mahmoud, 1992; Park et al., 2009). For larger
lengths, some prefixes occur only once. In a second domain, called
the transition phase, the number of maximal common prefixes
is sublinear in the size n of the sequence: increasing first, then
decreasing slowly, and, finally, dropping rapidly. In the third
domain, for a length larger than some extinction length, almost no
common prefix of that length occurs. Despite the fact that these
bounds are asymptotic, a good convergence is shown in practice
for random texts when a second-order term is known.

Differences between the model and the observation are studied
on the special case of Archaea genomes. A dependency to the GC-
content, which is a characteristic of each genome, is exhibited.
Regimes and transitions are studied on these genomic data and
theoretical results are confirmed, with a drift in the values of
transition thresholds. Notably, the length of the largest repetitions
is much larger than expected. This difference between the model
and the observation arises from the occurrences of long repeated
regions.

Section 2 is devoted to Main Results, to be proved in Section 4.
First, some notations are introduced; then, an algebraic expression
for the expectation of the number of maximal common prefixes in
a sequence is derived in Theorem 2.1. Second, this expression is
split between two sums that are computable in practical ranges.
Then, it is shown that a Large Deviation principle applies. It
yields first and second order asymptotic terms, and oscillations,
that are provided in Theorem 2.2. A comparison between exact,
approximate, and asymptotic expressions is presented in Section 3.

2. MAIN RESULTS

It is assumed throughout this study that sequences and words are
randomly generated according to a biased Bernoulli model on an
alphabet of sizeV. Let p1, · · · , pV denote the probabilities of theV
characters χ1, · · · ,χV.

Definition 2.1. For any i in {1, · · · ,V}, one notes

βi = log
1
pi
.

Additionally,

pmin = min{pi; 1 ≤ i ≤ V} and αmin =
1

log 1
pmin

=
1

max(βi)
;

(1)

pmax = max{pi; 1 ≤ i ≤ V} and αmax =
1

log 1
pmax

=
1

min(βi)
.

(2)

The two values min(βi) and max(βi) are different when the
Bernoulli model is non-uniform.

2.1. Enumeration
Definition 2.2. Given U a set of words and an integer k, k≥ 2, a
unique k-mer in U is a word wχi of length k such that

1. w is a prefix of at least two words in U;
2. and wχi is a prefix of a single word.

By convention, a unique 1-mer is a character χi that is a prefix
of a single word.

Definition 2.3. Let U be a set of n words.
For k≥ 1, one denotes B(n, k) the number of unique k-mers

in U.
One denotes µ(n, k− 1) the expectation of B(n, k) over all sets

of n words.
Remark: It follows from Definition 2.2 that quantity B(n, k) is

upper bounded by n. Observe that, for each random set U, it is
the sum of a large number – Vk – of correlated random variables.
Expectation µ(n, k) is studied below and compared in Section 3
with B(n, k+ 1).

Profiles of repetitions can be expressed as a combinatorial sum.
Theorem2.1.Given a length k, the expectationµ(n, k) satisfies:

µ(n, k) = n
∑

k1+···kV=k

(
k

k1, · · · , kV

)
ϕ(k1, · · · , kV)ψn(k1, · · · , kV)

(3)

where

ϕ(k1, · · · , kV) = pk11 · · · pkVV (4)

ψn(k1, · · · , kV) =
V∑

i=1
pi[(1 − ϕ(k1, · · · , kV)pi)n−1

− (1 − ϕ(k1, · · · , kV))n−1]. (5)

Proof. A word wχi is a unique (k+ 1)-mer iff (i) w has length
k and is the prefix of at least two words, including wχi; (ii) wχi is
not repeated.

Event (i) has probability

nϕ(k1, · · · , kV)pi[1 − (1 − ϕ(k1, · · · , kV))n−1].

Event (ii), which is a sub-event of (i), has probability

nϕ(k1, · · · , kV)pi[1 − (1 − ϕ(k1, · · · , kV)pi)n−1].

2.2. A Combinatorial Expression
Definition 2.4. Given a k-mer w, let α denote k

log n and ki denote
the number of occurrences of character χi in w. The objective
function is

ρ(k1, · · · , kV) =
V∑

i=1

ki
k βi −

1
α
. (6)
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The character distribution (k1, · · · , kV) of a k-mer may be
viewed as barycentric coordinates for a point β(k1, · · · , kV) =∑V

i=1
ki
k βi that lies in [min(βi);max(βi)] =

[
1

αmax
; 1

αmin

]
. The

order of β points on that interval allows for a classification of
k-mers that is a key to this study.

Definition 2.5. A k-mer w is said

• a common k-mer if ρ(k1,. . ., kV)< 0;
• a transition k-mer if ρ(k1, · · · , kV)≥ 0 and its ancestor is a

common k-mer;
• a rare k-mer, otherwise.

Remark: If ρ(k1, · · · , kV)= 0, the condition on the ancestor is
trivially satisfied.

Definition 2.6. Given a set U of n words and an integer k, let
Dk(n) denote the set of character distributions (k1, · · · , kV) for
rare and transition k-mers. Let Ek(n) denote the set of character
distributions for common k-mers.

The set Dk(n) is the empty set if k< αmin log n and is the set
of character distributions (k1, · · · , kV) if k>αmax log n. Compu-
tation of (3) is split among the two sets Dk(n) and Ek(n). Com-
putations show that the main contribution arises from transition
k-mers. A probabilistic interpretation will be discussed in 2.4.

Notation: Let S(k) and T(k) be

S(k) = n
∑
Dk(n)

(
k

k1 · · · kV

)
ϕ(k1, · · · , kV)ψn(k1, · · · , kV); (7)

T(k) = n
∑
Ek(n)

(
k

k1 · · · kV

)
ϕ(k1, · · · , kV)ψn(k1, · · · , kV). (8)

So µ(n, k) rewrites

µ(n, k) = S(k) + T(k). (9)

These sums S(k) and T(k) can be efficiently computed for
moderate k, up to a few hundred, approximately. In practice, αmax
log n is below this threshold for the sizes of actual genomes and
for their ordinary GC content value. The simulations in Section 3
show that this estimation is rather tight. Behavior and asymptotic
estimates are derived and discussed in the next section.

2.3. Asymptotic Estimates
In this section, asymptotic estimates for (3) are derived. First, some
characteristic functions are introduced. Then, it is observed that
a Large Deviation Principle applies for the combinatorial sums
to be computed and asymptotics for the dominating term follow.
Amortized terms are also computed. It is shown in Section 3 that
this second-order term cannot be neglected in the finite range.

2.3.1. Notations
For general alphabets, asymptotic behavior is a function of the
solution of an equation and depends on domains whose bounds
are defined below.

Definition 2.7. Let (pi)1≤i≤V be a Bernoulli probability distri-
bution. Let σ2 denote

∑V
i=1 p2i .

The fundamental ratio, noted α̃, is
(∑

i pi log 1
pi

)−1
.

The transition ratio, noted ᾱ, is σ2
(∑

i p
2
i log 1

pi

)−1
.

The extinction ratio, noted αext, is 2
log 1

σ2

.

Definition 2.8. Let α be a real value in [αmin, αmax]. Let τα be
the unique real root of the equation

1
α

=
∑V

i=1 βie
−βiτ∑V

i=1 e−βiτ
(10)

Let ψ be the function defined in [αmin, αext] as

αmin ≤ α ≤ ᾱ : ψ(α) = τα + α log

( V∑
i=1

e−βiτα

)
;

ᾱ ≤ α : ψ(α) = 2 − α log
1
σ2
.

Proposition 2.1. The following property holds

αmin ≤ α̃ ≤ ᾱ ≤ αmax ≤ αext.

Function ψ increases on [αmin, α̃] and decreases on [α̃,∞]. It
satisfies

ψ(αmin) = ψ(αext) = 0 and ψ(α̃) = 1. (11)

Remark:Uniqueness of τα is shown in Section 4.2. As τᾱ = 2,
ψ is continuous at α = ᾱ, with ψ(ᾱ) = 2 − ᾱ log 1

σ2
.

2.3.2. Asymptotic Results
Theorem 2.2.Given a length α log n, when n tends to∞ the ratio
log µ(n, α log n)

log n satisfies:

0 ≤ α ≤ αmin or αext ≤ α :
logµ(n, α log n)

log n ≤ 0; (12)

αmin ≤ α ≤ αext :
logµ(n, α log n)

log n ∼ ψ(α). (13)

Moreover, let ξ be the function defined in [αmin,αext] as ξ(α) =
µ(n, α log n)

log n − ψ(α). It satisfies

αmin ≤ α ≤ ᾱ : ξ(α) ∼ −V − 1
2

log(α log n)
log n ; (14)

ᾱ ≤ α ≤ αext : ξ(α) ∼ log(1 − σ2)
log n . (15)

Proof. The key to the proofwhenα ranges in [αmin,αmax] is that
ψn(k1, · · · kV) is maximal when ρ(k1, · · · kV) is close to 0. Sum
T(k) satisfies a Large Deviation Principle.

log T(k̃)
k ∼ max

{
−

V∑
i=1

ki
k log

ki
k ; ρ(k1, · · · , kV) = 0

}
.

(16)
The maximization problem rewrites as

max

{ V∑
i=1

θi log
1
θi

;
V∑

i=1
θi = 1;

V∑
i=1

βiθi =
1
α

; 0 ≤ θi ≤ 1

}
(17)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2016 | Volume 4 | Article 353

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Régnier and Chassignet Prediction of Repetitions

The maximum value is τα + α log
(∑V

i=1 e−βiτα
)
that is

reached for the V-tuple
(
θi = e−βiτα∑V

i=1 e−βiτα

)
1≤i≤V

.
S(k) satisfies again a Large Deviation Principle when α < ᾱ,

which yields the asymptotic result in this range. For larger α, S(k)

is approximately (1 − σ2)n1−α log 1
σ2 that dominates T(k).

Details for the proof, including the short and long lengths, are
provided in Section 4.

Remark: The discussion will depend of the ratio α = k
log n .

Possible values for α range over a discrete set as they are con-
strained to be the ratio of an integer by the log of an integer. An
interesting property is that, for any real α, the set T = {n ∈ N;
α log n ∈ N} is either empty or infinite. Indeed, when T is
non-empty, it contains all values n(α)p where n(α) denotes the
minimum value of T. It is beyond the scope of this paper to
establish the number of other possible solutions.

2.3.3. Domains
Different domains arise from this Theorem, which were observed
in Park et al. (2009). Equalities ψ(αmin)= 0 and ψ(ᾱ) = 2 −
ᾱlog 1

σ2
show that there is a continuity between domains.

When α lies inside the domain [αmin, αext], the ratio
log µ(n,α log n)

log n is positive and parameters µ(n, α log n) are sub-
linear in the size n of the text: some k-mers – mostly transition
k-mers – are unique k-mers. Observe that the maximum value
for ψ(α) is 1. When the Bernoulli model is uniform, this central
domain is empty.

When the length is smaller than the completion length αmin
log n or greater than the extinction length αext log n, the ratio
log µ(n, α log n)

log n is negative.

2.3.4. Oscillations
Parameters (k1, · · · , kV) in the combinatorial sums are integers.
As the optimum values (kθi)1≤i≤V may not be integers, the
practical maximum is a close point on the lattice (k1, · · · , kV).
The difference introduces a multiplicative factor that ranges in[
− log pmax

pmin
, log pmax

pmin

]
. This leads to a small oscillation of log

µ(n, k). For large n, this contribution to log µ(n,k)
log n becomes negli-

gible. As mentioned above, the set of lengths n that are admissible
for a given α is very sparse. Nevertheless, an approximate value

may be used: for instance, for an integer k′, 1
k′ log

⌈
n(α)

k′

k

⌉
is

very close to α. This oscillation phenomenon was first observed
in Nicodème (2005).

2.3.5. Binary Alphabets
Results for binary alphabets in Park et al. (2009) steadily follow
fromTheorem 2.2. A rewriting ofψ leads to alternative expression
(18). This explicit expression points out the dependency to the
distances to αmin and αmax, and the behavior around these points.

Corollary 2.1. Assume that the alphabet is binary. Then

ψ(α) =
α

log pmax
pmin

log[sα
1
α − 1

αmin + sα
1
α − 1

αmax ] (18)

where
sα =

αmin

αmax
· α− αmin

αmax − α
. (19)

A similar result holds for DNA sequences when the alphabet
is 4-ary and the probability distribution satisfies pA = pT and
pC = pG. Such a distribution is defined by its GC-content pG + pC.

2.4. A Probabilistic Interpretation
The main contribution to µ(n, k) arises from k-mers with an
objective function close to 0, i.e., transition k-mers. Such k-mers
exist in the transition phase [αmin log n, αmax log n] where they
coexist with rare or common k-mers. Observe that this phase is
shrinked when the Bernoulli model is uniform, as pmin = pmax and
αmin =αmax. Therefore, most unique k-mers are concentrated on
the two lengths ⌊αmin log n⌋ and ⌈αmin log n⌉, as observed initially
in Fagin et al. (1979b).

Let k be some integer in the transition phase. First, the relative
contribution of S(k) and T(k) to µ(n, k) varies with the length k.
For lengths close to αmin log n, most words are common and T(k)
dominates S(k). When k increases, the proportion of common
words decreases and the relative contribution of T(k) decreases.

Second, the dominating term in µ(n, k) arises from transition
k-mers. Let w be a word of length k, the character distribution
in w be (k1, · · · , kV) and χi be some character. The number
of words that admit w or wχi as a prefix fluctuates around the
expectations nϕ(k1, · · · , kV) and nϕ(k1, · · · , kV)pi, respectively.
On the one hand, when wordwχi is a rare word, nϕ(k1, · · · , kV) is
less than 1. The smallest nϕ(k1, · · · , kV) is, the less likely the actual
number of occurrences of w is greater than 2 and the smallest the
contribution of wχi to S(k), and µ(n, k), is. On the other hand,
let wχi be a common k+ 1-mer; w is a common k-mer and then
nϕ(k1, · · · , kV) is greater than 1. The largest nϕ(k1, · · · , kV) is,
the more likely the word wχi is repeated and the smallest the
contribution to T(k), and µ(n, k), is.

For a short length, i.e., k smaller than the completion length
kmin, all words are common. In a given sequence, most k-mers are
repeated at least twice and there is (almost) no unique k-mers.

For a large length k, i.e., k greater than kmax, all words are rare.
Nevertheless the number of unique k-mers remains sublinear in n
in the range [αmax log n,αext log n]: the sumof small contributions
arising from a large number of possible words is significant.

A folk theorem (Szpankowski, 2001; Jacquet and Szpankowski,
2015) claims that the objective function is concentrated around
1
α̃ − 1

α . Consequently, when α = α̃, most k-mers are transition
k-mers and the exponent, the ψ function, is maximal.

3. EXPERIMENTS AND ANALYSIS

Simulations are presented for random and real data. For each
simulation, a suffix tree (Ukkonen, 1995) is built, where each leaf
represents a unique k-mer. For random cases, theUkkonen’s inser-
tion step is iterated until a tree with exactly n leaves is build. This
requires n+ kins insertions of symbols, where kins> 0 is relatively
small (there is a value of a few dozen in practice for considered n).
One can observe that the event of having n leaves after n+ k− 1
insertions corresponds to the fact that the trailing k-mer is unique
in the sequence of length n+ k− 1.

Even if a statistical bias exists, with respect to the case of a set
of N random words analyzed in previous sections, this bias for
respective values on k and n is below the numeric precision used
for tables below.
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Then, one simulation that is related to the case of a set of n
random words, requires the generation of the order of N random
symbols from a small alphabet, following a Bernoulli scheme. For
this range of n, and even in the case of a hundred consecutive sim-
ulations, this corresponds to a regular use of a common random
number generator (Knuth, 1998).

A first set of simulation dealswith the case of randomsequences
over a binary alphabet, since the results can be comparedwith pre-
vious work. A second set addresses the case of random sequences
over a quaternary alphabet {A, C, G, T} with a constrained dis-
tribution such that probabilities pA ≈ pT and pC ≈ pG as it is the
case for DNA sequences (where the sum pC + pG is also known
as the GC-content). Results on such random sequences are then
compared with the sample biological sequence of an Archaea
(Haloferax volcanii).

An implementation with a suffix array (Manber and Myers,
1993) allows for a compact representation and an efficient count-
ing (Beller et al., 2013).

3.1. Random data
A hundred binary sequences were randomly generated. The num-
ber of leaves in each tree was fixed to n= 5000000 and the
Bernoulli parameter was pmax = 0.7000. Therefore, pmin = 0.3000,
p̃= 0.5429, and log n= 15.4249. The thresholds for α and the
corresponding lengths α log n are:

αmin = 0.8306 α̃= 1.6370 ᾱ= 2.0484 αmax = 2.8035 αext = 3.6714
kmin =12.81 k̃=25.25 k̄= 31.60 kmax = 43.24 kext =56.63

3.1.1. Statistical Behavior on Random Sets
Throughout experiments, every sample profile for a given
sequence fluctuates very little around the expectation.

Table 1 provides experimental results averaged over a hundred
binary sequences. Short length with no observed unique k-mer
is removed. Column 2 gives the mean of B(k+ 1), i.e., the mean
number of observed leaves at depth k+ 1, over the set of a hundred
simulations. Columns 3 to 5 give the computed values for S(k),
T(k), and µ(k), using the expressions, equations (7–9).

The actual number of leaves B(n, k+ 1) is very close to the
average valueµ(n, k), and simulations show that this is the general
case when (only) a hundred simulations are performed: µ(n, k) is
a very good prediction.

Observed lengths of extinction also show very little variations.
In array below, each column gives nk, the number of sequences
out of the one hundred sample set for which the longest repetition
had length k.

Distribution of the extinction level for 100 random binary sequences.
pmax is 0.7.

k 51 52 53 54 55 56 57 58 59 60 61 62 63 64
nk 10 16 13 19 14 14 6 1 1 2 1 1 0 2

In the binary case, the predicted extinction length is between 56
and 57. It is noticeable that, in most cases, the observed depth is
slightly smaller than this value. In Table 1, value 0.04 for µ(n, 61)

means that one expects a total of four leaves at depth 60 over one
hundred sequences. In that run, exists a total amount of 8.

3.1.2. Quality of Estimates
1. Tightness of the asymptotic estimates.Asymptotic estimates (13)

given in Column 7 significantly overestimate the observed
values in Column 6 that is computed directly from Column 2
and n. A first conclusion is that first-order asymptotics provide
a poor prediction: next term is O

(
1

log n

)
that goes slowly to 0.

2. Tightness of the second-order asymptotics. Second term for
the asymptotic ξ(α) ensures a much better approximation in
Column 8.

3. Growth of asymptotic estimates. Observed values increase with
length until k = k̃ and then decrease. This is consistent with
the variation of asymptotic values ψ(α).

3.1.3. Dependency to Probability Bias
Thresholds were computed for a given sequence length n and
various probabilities. The more pmax departs from 0.5, the value
for the uniform model, the largest the extinction length is. The
completion length, kmin, slightly decreases, while the extinction
length significantly increases. Nevertheless, this effect is limited
when the largest probability pmax remains in the range [0.5;0.7].

Dependency of thresholds to pmax for binary alphabets, n=5,000,000.

pmax kmin k̃̃k̃k k̄̄k̄k kmax kext

0.50 22.25 22.25 22.25 22.25 44.51
0.55 19.32 22.42 22.74 25.80 45.16
0.60 16.83 22.92 24.27 30.20 47.18
0.65 14.69 23.82 27.06 35.81 50.83
0.70 12.81 25.25 31.60 43.25 56.63
0.75 11.13 27.43 38.80 53.62 65.64
0.80 9.58 30.83 50.63 69.13 79.99
0.85 8.13 36.49 71.78 94.91 104.80
0.90 6.70 47.45 116.72 146.40 155.45
0.95 5.15 77.70 259.56 300.72 309.05

3.2. Long Repetitions in Archaea Genomes
The experimental data set is the sequence fromHaloferax volcanii
DS2 chromosome, complete genome (Hartman et al., 2010). The
alphabet is quaternary. Profile results are shown in Table 2.

Sequence length is n= 2847757. The observed symbol
frequencies are pA = 0.1655; pC = 0.3334; pG = 0.3330;
pT = 0.1681. Therefore, observed GC-content is 0.6664.
Parameters for an approximate degenerated quaternary model are
pA = pT = pmin = 0.1668; pC = pG = pmax = 0.3332; p̃ = 0.2645;
and log n= 14.8620. The thresholds for the domain are

αmin = 0.5584 α̃=0.7520 ᾱ= 0.8079 αmax =0.9099 αext =1.5609
kmin=8.30 k̃= 11.18 k̄= 12.01 kmax = 13.52 kext = 23.20

Statistics on one hundred random sequences with same param-
eters are shown in Table 3. GC-content is 0.6664. Extinction
level is provided in Table 4. Observe first a good match between
the observed values, the predicted values for µ(n, k), and the
asymptotic values for randomdata. As shown for binary alphabets,
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Régnier and Chassignet Prediction of Repetitions

TABLE 1 | Mean profile for 100 random binary sequences.

Observed Predicted Observed Asymptotic

k B(k+1) S(k) T(k) µ(n, k) logloglog BBB(k(k(k+++ 1)1)1)
logloglog nnn ψψψ(ααα) ψψψ(ααα)+ξξξ(ααα)

11 0.29 0 0.3 0.3 −0.0803
12 7.91 0 8.3 8.3 0.1341

kmin
13 87.87 0.1 86.9 87.1 0.2902 0.0843 0.0012
14 552.88 1.2 550.3 551.5 0.4094 0.3340 0.2485
15 2456.77 86.6 2366.4 2453.0 0.5061 0.4962 0.4085
16 8269.20 209.4 8069.1 8278.5 0.5848 0.6181 0.5282
17 22516.20 406.1 22097.7 22503.8 0.6497 0.7136 0.6218
18 51085.15 4823.8 46267.2 51091.0 0.7028 0.7897 0.6960
19 99387.01 6636.1 92717.6 99353.7 0.7460 0.8504 0.7549
20 169303.03 37415.5 131882.6 169298.1 0.7805 0.8984 0.8013
21 256358.10 42003.9 214454.4 256458.3 0.8074 0.9357 0.8370
22 349801.23 137615.9 212264.2 349880.1 0.8276 0.9635 0.8634
23 434625.83 134807.6 299824.7 434632.4 0.8416 0.9830 0.8814
24 495572.93 122283.1 373279.8 495562.8 0.8501 0.9949 0.8919
25 522788.19 255284.4 267476.3 522760.7 0.8536 0.9998 0.8955

k̃
26 513374.76 211204.2 302252.5 513456.7 0.8524 0.9982 0.8926
27 472126.51 315154.7 157087.0 472241.6 0.8470 0.9906 0.8838
28 408946.76 242583.4 166360.3 408943.7 0.8377 0.9772 0.8692
29 335080.05 273441.0 61579.7 335020.7 0.8248 0.9582 0.8491
30 260999.29 198163.4 62712.5 260875.9 0.8086 0.9339 0.8236
31 194100.36 137502.0 56463.1 193965.1 0.7894 0.9043 0.7930

k̄
32 138437.13 122218.3 16090.9 138309.2 0.7675 0.8699 0.8136
33 95017.33 80937.1 14067.8 95004.9 0.7431 0.8346 0.7783
34 63082.67 60397.1 2744.6 63141.7 0.7165 0.7993 0.7430
35 40742.97 38411.9 2368.9 40780.8 0.6882 0.7639 0.7077
36 25679.21 23888.2 1817.4 25705.6 0.6582 0.7286 0.6724
37 15860.59 15622.9 255.8 15878.7 0.6270 0.6933 0.6371
38 9645.84 9455.0 194.2 9649.2 0.5948 0.6580 0.6018
39 5791.32 5772.7 15.9 5788.6 0.5617 0.6227 0.5664
40 3433.87 3426.4 12.1 3438.5 0.5278 0.5874 0.5311
41 2032.57 2027.2 0.4 2027.6 0.4938 0.5520 0.4958
42 1188.84 1189.0 0.3 1189.3 0.4590 0.5167 0.4605
43 692.28 694.8 0.2 695.0 0.4240 0.4814 0.4252

kmax
44 402.75 405.1 0 405.1 0.3889 0.4461 0.3899
45 233.35 235.7 0 235.7 0.3535 0.4108 0.3545
46 135.42 137.0 0 137.0 0.3182 0.3755 0.3192
47 78.39 79.6 0 79.6 0.2828 0.3401 0.2839
48 44.69 46.2 0 46.2 0.2463 0.3048 0.2486
49 25.35 26.8 0 26.8 0.2096 0.2695 0.2133
50 14.57 15.6 0 15.6 0.1737 0.2342 0.1780
51 8.44 9.0 0 9.0 0.1383 0.1989 0.1426
52 4.76 5.2 0 5.2 0.1012 0.1636 0.1073
53 2.76 3.0 0 3.0 0.0658 0.1282 0.0720
54 1.74 1.8 0 1.8 0.0359 0.0929 0.0367
55 1.02 1.0 0 1.0 0.0013 0.0576 0.0014
56 0.64 0.6 0 0.6 −0.0289 0.0223 −0.0339

kext
57 0.32 0.3 0 0.3 −0.0739 −0.0130
58 0.18 0.2 0 0.2 −0.1112 −0.0483
59 0.16 0.1 0 0.1 −0.1188 −0.0836
60 0.12 0.07 0 0.07 −0.1375 −0.1190
61 0.08 0.04 0 0.04 −0.1637 −0.1543
62 0.06 0.02 0 0.02 −0.1824 −0.1896
63 0.04 0.01 0 0.01 −0.2087 −0.2249
64 0.04 0.008 0 0.008 −0.2087 −0.2602

(pmax; pmin)= (0.7; 0.3).
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TABLE 2 | Profile for the sequence from Haloferax volcanii DS2 chromo-
some, complete genome.

Observed Predicted

k B(k+1) S(k) T(k) µ(n, k)

6 4 0 0.05 0.05
7 1975 0 4e+ 02 4e+ 02
8 41349 0 2e+ 04 2e+ 04

kmin
9 178523 781.2 213568.8 214350.1
10 382032 66858.4 617279.6 684137.9
11 542386 171711.2 742379.1 914090.3

k̃
12 570499 407976.5 215942.2 623918.7

k̄
13 459330 259860.7 6512.5 266373.2

kmax
14 305002 87488.6 0 87488.6
15 169317 25704.4 0 25704.4
16 86379 7264.7 0 7264.7
17 40391 2028.2 0 2028.2
18 17432 564.1 0 564.1
19 7866 156.7 0 156.7
20 3830 43.5 0 43.5
21 1957 12.1 0 12.1
22 1229 3.4 0 3.4
23 910 0.9 0 0.9

kext
24 733 0.3 0 0.3
25 617 0.07 0 0.07
26 561 0.02 0 0.02
27 492 0.006 0 0.006
28 446 0.002 0 0.002
29 436 0.0005 0 0.0005
30 397 0.0001 0 0.0001
31 374 1e−05 0 1e−05
32 359 2e−06 0 2e−06
33 322 2e−08 0 2e−08
. . . truncated . . . truncated . . .

the observed extinction level for random sequences departs very
little from the predicted kext level.

Numerous differences with random data can be observed on
real genomes.

Interestingly, the behavior for short lengths and in the transition
phase is similar to the random behavior. Observation and predic-
tion have the same order of magnitude. In particular, the number
of unique k-mers is maximum for length k̃where observation and
prediction coincide. For a real genome and a length k smaller
than kmin, observed B(n, k+ 1) is larger than predicted µ(n, k).
This indicates, at a level k+ 1 where completion is expected,
more leaves in the real trie, more missing words at level k+ 2.
Simultaneously, less internal nodes occur at level k+ 1 because
the total sum is constant and equal to Vk+1.

The effect of (non-random) repetitions is more sensible in the
decreasing domain. First, the number of unique k-mers decreases
much more slowly than expected for lengths larger than kmax. A
significant gap can be observed around extinction level kext. The
decrease rate, whichwas around 0.02–0.04 drops to 0.007 and then
becomes even lower. Finally, the extinction level is much larger
than the predicted value 23: the largest repetition is 1395 bp long.

To evaluate the contribution of long repetitions, one may erase
the longest ones. When a word w is repeated, any proper suffix of

w is also repeated. Consequently, once the longest repeatedword is
erased, one unique k-mer (only) disappears for each length larger
than the length of the second largest subsequence (here, 935). The
profile remains far from the random profile. This observation is
still true if the 10 longest subsequences are erased.

4. COMBINATORIAL AND ANALYTIC
DERIVATION

4.1. Lagrange Multipliers
Lagrange multipliers method allows to maximize an expression
under constraints. To compute (17), one sets

F =
V∑

i=1
θi log θi; (20)

G =
V∑

i=1
θi; (21)

H =
V∑

i=1
θiβi. (22)

Two constraints are given:

G = 1 and H =
1
α
.

An intermediary function ϕα(τ 1, · · · τV) is defined

ϕα = F + λαG + ταH (23)

In order to maximize ϕ under these two constraints, ϕ function
is derived with respect to each random variable τ i. This yields V
equations

1 + log θi + λα + ταβi = 0. (24)

Two indices imin and imax are chosen that satisfy βimin ̸= βimax .
For instance

βimin = min (βi)1≤i≤V = log
1

pmax
;

βimax = max (βi)1≤i≤V = log
1

pmin
.

Solving equation (24) with indices imin and imax yields

τα =
log θimin − log θimax

βimax − βimin

= log
θimin

θimax

1
βimax−βimin ;

1 + λα =
βimin log θimax − βimax log θimin

βimax − βimin

.

Remaining equations rewrite:

log θi = log θimin + τα(βimin − βi). (25)

Using the constraint
∑V

i=1 θi = 1 that yields

θimine
βiminτα

V∑
i=1

e−βiτα = 1,
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TABLE 3 | Mean profile for 100 random degenerated quaternary sequences.

Observed Predicted Observed asymptotic

k B(k+1) S(k) T(k) µ(n, k) logloglog BBB(k(k(k+++ 1)1)1)
logloglog nnn ψψψ(ααα) ψψψ(ααα)+ξξξ(ααα)

6 0.03 0 0.0 0.0 −0.2359
7 363.29 0 363.9 363.9 0.3967
8 21236.17 0 21252.2 21252.2 0.6704

kmin
9 214371.12 781.6 213574.7 214356.3 0.8260 0.7242 0.5024
10 684344.68 66877.4 617315.1 684192.5 0.9041 0.9280 0.6956
11 914013.67 171742.8 742383.0 914125.8 0.9235 0.9985 0.7564

k̃
12 623870.12 407973.4 215914.6 623888.0 0.8978 0.9655 0.7147

k̄
13 266366.73 259826.1 6510.8 266336.9 0.8406 0.8792 0.8574

kmax
14 87424.58 87471.6 0 87471.6 0.7656 0.7930 0.7711
15 25704.95 25698.5 0 25698.5 0.6832 0.7068 0.6849
16 7253.72 7262.9 0 7262.9 0.5981 0.6206 0.5987
17 2025.99 2027.6 0 2027.6 0.5123 0.5344 0.5125
18 565.97 563.9 0 563.9 0.4265 0.4482 0.4263
19 155.90 156.7 0 156.7 0.3397 0.3620 0.3401
20 43.52 43.5 0 43.5 0.2539 0.2758 0.2539
21 12.28 12.1 0 12.1 0.1688 0.1895 0.1677
22 3.06 3.4 0 3.4 0.0753 0.1033 0.0814
23 0.80 0.9 0 0.9 −0.0150 0.0171 −0.0048

kext
24 0.28 0.3 0 0.3 −0.0857 −0.0691 −0.0910
25 0.14 0.1 0 0.1 −0.1323 −0.1553 −0.1772

GC-content is 0.6664.

TABLE 4 | Distribution of the extinction level for 100 random degenerated
quaternary sequences.

k 21 22 23 24 25
nk 26 42 18 7 7

GC-content is 0.6664.

and an expression for θimin follows. Therefore Equation 25 rewrites:

θi =
e−βiτα∑V

i=1 βie−βiτα

. (26)

Finally, Equation
∑V

i=1 θiβi = 1
α yields equation (10).

1
α

=
∑V

i=1 βie
−βiτα∑V

i=1 e−βiτα

.

For this V-tuple
V∑

i=1
θi log θi = −

( V∑
i=1

θiβi

)
τα −

( V∑
i=1

θi

)
log

( V∑
i=1

e−βiτα

)

= −τα
α

− log

( V∑
i=1

e−βiτα

)
.

4.2. Approximation Orders
Derivating the RHS of (10) yields

∑
i̸=j (βi+βj)2e−(βi+βj)τ

(
∑

i e−βiτ )2
that is

positive. Therefore, for any α, the solution to (10) is unique.
Moreover, τα increases with α. Let

ψ1(α) = τα + α log

( V∑
i=1

e−βiτα

)
; (27)

ψ2(α) = 2 − α log
1
σ2
. (28)

Notably, the solutions τα of (10) associated with the four
increasing values of α: (αmin, α̃, ᾱ, αmax) are (–∞, 1+ 2,+∞).
Computing ψ for these values yields (11) and Equality ψ1(α̃) =
ψ2(α̃).

Derivating both expressions yields

∂ψ1

∂α
(α) = log

( V∑
i=1

e−βiτα

)
; (29)

∂ψ1

∂α
(α) − ∂ψ2

∂α
(α) = log

(
1
σ2

V∑
i=1

e−βiτα

)
. (30)

Both derivatives are monotone functions of τα. In equation
(30), derivative is 0 when α = ᾱ. Therefore, ψ is the maximum
of the two values ψ1 and ψ2 over the interval [αmin, αmax]. The
former equation is 0 if α = α̃. Therefore, ψ is maximum when
α = α̃.

4.3. Approximations
4.3.1. Short Lengths
Assume that k≤αmin log n. Each term ϕ(k1, · · · , kV) is lower
bounded by pkmin = nαlogpmin = n− α

αmin . Each termψn(k1, · · · , kV)

is trivially bounded by e−n
1−

α
αmin that is upper bounded by

1 and nψn(k1, · · · , kV) tends to 0 when n goes to ∞. As∑(
k

k1···kV

)
ϕ(k1, · · · , kV) = 1, the ratio log µ(n, k)

log n is negative.
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4.3.2. Moderate and Large Lengths
For a length k in the transition domain [αmin log n, αmax log n],
the objective function may be either positive or negative. When
k>αmax log n, set Ek(n) is empty and µ(n, k) reduces to S(k).

The maximum M among the terms

e
k
(

−
∑

i
ki
k log

ki
k − 1

k log nϕ(k1,··· ,kV)
)

in T(k) is reached when
ρ(k1, · · · , kV) is 0. Due to the exponential decrease of
e−nϕ(k1,··· ,kV) when nϕ(k1, · · · , kV)≥ 1, T(k)

k is upper bounded.
Computation of log M is done with Lagrange multipliers, as
explained above.

Computation of S(k) relies on the local development of
ψn(k1, · · · , kV), that is n(1–σ2)ϕ (k1, · · · , kV). S(k) rewrites
σ2

k S̃(k) + (S(k) − σ2
k S̃(k)) where S̃(k) =

∑
ρ(k1,··· ,kV)≤0(

k
ki

)(
p21
σ2

)k1
· · ·
(

p2V
σ2

)kV
. This sum satisfies a Large Deviation

Principle when ρ(k1, · · · , kV) + 1
α ≥ 1

α̃ , or α < α̃. In this range,
S̃(k)
k ∼ max

{
−
∑V

i=1
ki
k log ki

k

}
, which was shown to be ψ(α).

When α > α̃, sum S̃(k) rewrites 1 − S̄(k) where

S̄(k) =
∑

ρ(k1,··· , kV)+
1
α <

1
α̃

(
k
ki

)(
p21
σ2

)k1
· · ·
(
p2V
σ2

)jV
.

This sum satisfies a Large Deviation Principle and

S̄(k)
k ∼ max

{
−
∑V

i=1
ki
k log ki

k +
∑V

i=1
ki
k log p2i

σ2

}
.

As
∑V

i=1
ki
k log p2i

σ2
= − 2

α + log 1
σ2
, this maximum is

− 1
α

[2 − α log
1
σ2

− ψ(α)]

that is negative.

4.4. Binary Case
Barycentric coordinates of α are unique. Indeed, equation (10)
reduces to a linear equation on the variable e−(β2−β1)τ

1
α

=
β1 + β2e−(β2−β1)τ

1 + e−(β2−β1)τ

whereβ2−β1 = βmin−βmax = log pmax
pmin

. Therefore, e−(β2−β1)τ =
1−αβ1
αβ2−1 . Finally

τα =
1

log pmax
pmin

log
αβ2 − 1
1 − αβ1

=
1

log pmax
pmin

log
1

αmin
− 1

α
1
α − 1

αmax

.

Function ψ rewrites, in the binary case:

ψα = τα = α log e−
1
α τα

(
e−

(
β1−

1
α

)
τα + e−

(
β2−

1
α

)
τα

)
.

Observing that e−(β2−β2)τα = sα and changing variable

τα into (β2 −β1) yields e−
(

β1−
1
α

)
τα = sα

−
( 1

αmin
− 1

α

)
and

e−
(

β2−
1
α

)
τα = sα−

( 1
αmax

− 1
α

)
.

5. CONCLUSION

This paper describes the behavior of the number of unique or
repeated k-mers in a random sequence, on a general alphabet.
Derivation relies on a combination of analytic combinatorics and
on Lagrange multipliers. It simplifies an approach provided for
binary alphabets and allows to address larger alphabets, including
the quaternary alphabets, such as DNA alphabet. Precise asymp-
totic estimates are provided and a probabilistic interpretation is
given. They are validated on random simulated data and shown to
be valid in the finite range. Therefore, they provide a valuable tool
to estimate a suitable read length for assembly purposes and tune
parameters for assembly algorithms. Real genomes significantly
depart from the randombehavior for long repetitions. The general
shape of the trie profile is observed, with a maximum of the
number of unique k-mers at the expected length. However, for real
genomes, a number of very short k-mers are missing and, on the
contrary, one observes a number of very long repetitions. Besides
these events, the behaviors are rather similar.

In the future, it is worth extending the method to generalized
Patricia tries, Markov models and approximate repetitions.
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