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Bioelectric cell properties have been revealed as powerful targets for modulating stem
cell function, regenerative response, developmental patterning, and tumor reprograming.
Spatio-temporal distributions of endogenous resting potential, ion flows, and electric
fields are influenced not only by the genome and external signals but also by their
own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both
determine, and are themselves gated by, cellular resting potential. Thus, the origin and
progression of bioelectric patterns in multicellular tissues is complex, which hampers
the rational control of voltage distributions for biomedical interventions. To improve
understanding of these dynamics and facilitate the development of bioelectric pattern
control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a
finite volume method multiphysics simulator, which predicts bioelectric patterns and their
spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking
changes to the fundamental property of ion concentration. We validate performance
of the simulator by matching experimentally obtained data on membrane permeability,
ion concentration and resting potential to simulated values, and by demonstrating the
expected outcomes for a range of well-known cases, such as predicting the correct
transmembrane voltage changes for perturbation of single cell membrane states and
environmental ion concentrations, in addition to the development of realistic transepithelial
potentials and bioelectric wounding signals. In silico experiments reveal factors influencing
transmembrane potential are significantly different in gap junction-networked cell clusters
with tight junctions, and identify non-linear feedback mechanisms capable of generating
strong, emergent, cluster-wide resting potential gradients. The BETSE platformwill enable
a deep understanding of local and long-range bioelectrical dynamics in tissues, and assist
the development of specific interventions to achieve greater control of pattern during
morphogenesis and remodeling.

Keywords: bioelectric simulation, pattern formation, resting potential, transmembrane voltage

1. INTRODUCTION

1.1. Bioelectricity: Why Model Electrical Activity
in Non-Neural Cells?
Explaining and learning to control large-scale pattern is a central unsolved problem, with implica-
tions for mitigation of birth defects, and the advancement of regenerative medicine and synthetic
bioengineering. The dynamics of signals orchestrating large-scale order in vivo are a key area of
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research, as understanding these signals is an essential first step
in developing interventions that alter anatomical outcomes. The
dynamics of chemical signals and their gradients are becoming
increasingly well-understood (Reingruber and Holcman, 2014;
Slack, 2014;Werner et al., 2015). However, endogenous bioelectric
signals represent a parallel regulatory system that exerts instruc-
tive control over large-scale growth and form. Recent work has
demonstrated that ionic and bioelectrical signaling of various cell
types underpins a powerful system of biological pattern control
[reviewed in Nuccitelli (2003a), McCaig et al. (2005), Levin (2012,
2014), Levin and Stephenson (2012), andTseng and Levin (2013)].
Importantly, endogenous bioelectric gradients across tissues can
be a very early pre-pattern for subsequent transcriptional and
morphogenetic events. For example, during craniofacial develop-
ment of frogs, specific transmembrane voltage (Vmem) patterns
determine the downstream shape changes and gene expression
domains of the developing face (Vandenberg et al., 2011; Adams
et al., 2016) and brain (Pai et al., 2015). Furthermore, experimen-
tal modulation of cell Vmem states can radically alter large-scale
anatomy, for example, inducing eye formation in ectopic body
areas, such as the gut, where the master eye regulator Pax6 cannot
induce eyes (Pai et al., 2012), reprograming the regeneration
blastemas of planaria to produce heads instead of tails (Beane et al.,
2011), or rescuing normal brain patterning despite the presence of
mutated neurogenesis genes, such as Notch (Pai et al., 2015).

1.2. Local and Long-Range Order
in Bioelectrical Networks
On the scale of single cells, the Vmem spanning every living cell’s
plasma membrane is a demonstrated regulator of key processes,
such as cell proliferation (Blackiston et al., 2009), programed
cell death (Boutillier et al., 1999; Wang et al., 1999), and differ-
entiation (Ng et al., 2010), and is known to be a factor in the
activation of immune cells (Bronstein-Sitton, 2004). For example,
despite the action of growth factors, stem cells have been inhibited
from differentiation by preventing the cells from developing a
hyperpolarized Vmem (Sundelacruz et al., 2008). The bioelectric
properties of single cells are fairly well-understood (Lodish et al.,
2000; Wright, 2004). However, bioelectric states often regulate
large-scale anatomical properties, such as axial polarity (Marsh
and Beams, 1952; Beane et al., 2011), organ size (Perathoner et al.,
2014) and shape (Beane et al., 2013), and induction of formation
of whole appendages (Adams et al., 2007; Tseng et al., 2010).
Moreover, pattern control involves long-range coordination of
bioelectric states. In metastatic conversion (Morokuma et al.,
2008; Blackiston et al., 2011; Lobikin et al., 2012), tumor suppres-
sion (Chernet and Levin, 2014; Chernet et al., 2015), brain size
regulation (Pai et al., 2015), and head–tail polarity in planarian
regeneration (Beane et al., 2011), the patterning outcome in one
region of the animal is a function of the bioelectric states of both
local and remote cells. Thus, it is imperative to understand not
only how ion channel and pump activity controls single-cell elec-
trical properties but also how electrical gradients self-organize,
propagate, and evolve inmulticellular networks.Moreover, under-
standing the origin of developmental order also requires that we
understand how tissue-level gradients of bioelectric properties
arise.

In a multicellular collective, endogenous patterns of Vmem and
electric fields provide positional information and achieve long-
range coordination of cell activity. As in the central nervous
system, this occurs because cells in a tissue are not isolated, but are
electrochemically connected (and, therefore, communicating) in
several ways, including intracellular channels known as gap junc-
tions [GJ (Goodenough and Paul, 2009)], and by ephaptic cou-
pling created by local field potentials, which enable one cell’s Vmem
activity to influence that of its neighbor’s (Zhou et al., 2012). These
connections between cells create bioelectrical circuits involving
long-range signal patterns through whole structures, which have
been determined crucial for developing embryos (Jaffe, 1981;
Hotary and Robinson, 1990; Hotary and Robertson, 1994; Shi
and Borgens, 1995), normal limb development of animals (Altizer
et al., 2001), healing of wounds (Nuccitelli, 1992, 2003a; McCaig
et al., 2005; Zhao, 2009), and even in continuous tumor suppres-
sion in adult animals (Chernet and Levin, 2013, 2014). The ability
for cells to couple and communicate makes local changes to cell
Vmem relevant in terms of long-range signals capable of affecting
the whole. Likewise, the inability for cells to form communication
networks, for instance, due to improper expression or function of
GJ connections, is observed in disease processes, such as cancer
(Leithe et al., 2006; Trosko, 2007). Even briefly altering the bio-
electric connectivity of a cellular network enables rewriting of an
organism’s target morphology. For example, genomically normal
fragments of planarian flatworms can be induced to regenerate
heads with shapes and internal anatomy belonging to other extant
species (Emmons-Bell et al., 2015), or changed to a two-headed
form that regenerates with two heads in perpetuity, illustrating
the ability to stably re-wire bioelectric circuits with permanent
changes to the overall anatomy (Oviedo et al., 2010).

Another important bioelectrical signal relevant to multicellular
clusters is a voltage gradient known as the trans-epithelial poten-
tial (TEP), which forms at the outer boundary of an organ or
organism. The TEP is also implicated in normal developmental
processes (Shi and Borgens, 1995), wound healing (Zhao, 2009),
and disease processes, such as cystic fibrosis (Hay and Geddes,
1985), fungal infection (Gow and Morris, 1995), inflammation,
and cancer (Soler et al., 1999). The TEP is created when multicel-
lular structures develop impermeable tight junctions (TJ) between
cells at the exterior boundary (Hay andGeddes, 1985); disruptions
to this process induce electric fields that serve as guidance cues for
many migratory cell types during injury response (McCaig, 1990;
Zhao, 2009; Yamashita, 2013) and limb development (Borgens,
1984; Borgens et al., 1987). Understanding plasma membrane
voltage gradients and transepithelial potentials, and their spatio-
temporal transitions in vivo, is a key enabling step for the field of
developmental bioelectricity and its applications.

1.3. Modeling: The Need for In Silico
Simulation
Understanding and learning to control patterning signals requires
a quantitative appreciation of their intrinsic dynamics and the way
they evolve through time. Since the pioneering work of Turing
(Turing, 1952; Raspopovic et al., 2014; Watanabe and Kondo,
2015), much effort has gone into mathematical modeling of the
dynamics of biochemical signals and their gradients. While there
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are many platforms for modeling spiking activity in the brain
(Bower and Beeman, 2007), there are few available frameworks
for formulating predictive models of bioelectric signaling dur-
ing slower processes involved in somatic cell pattern regulation
(Cervera et al., 2016), and even fewer working from the more
biorealistic perspective of ionic concentrations and movements,
rather than an equivalent electric circuit model. Such biorealistic
models are crucial if we are to develop effective interventions
that target powerful bioelectric control processes. Furthermore,
ion channels and GJs are themselves voltage-sensitive (Nau, 2008;
Palacios-Prado and Bukauskas, 2009). This means that cell groups
can implement highly non-linear behaviors and feedback loops
that are too complex to predict or control by direct inspection.
While recent efforts have begun to model some of the interest-
ing behavior of these GJ-coupled dynamical systems (Cervera
et al., 2014, 2015; Law and Levin, 2015), there is a need for a
flexible, powerful platform to facilitate in silico experimentation
andmodel-building, and for connecting bioelectric dynamicswith
other aspects of physiology, physical forces, and genetic networks.
The availability of a realistic modeling system for bioelectricity
will enable (1) formulation of models of specific patterning events
based on realistic physiological and channel expression data, (2)
design of predicted intervention strategies for inducing desired
changes in electrical state and downstream patterning outcomes,
and (3) investigation of the broader capabilities of non-neural
bioelectrical networks for use in synthetic biology (Doursat and
Sanchez, 2014; KammandBashir, 2014;Mustard and Levin, 2014)
and unconventional computation architectures (Adamatzky and
Jones, 2011; Adamatzky et al., 2012).

As a core component of enabling the unraveling of the bio-
electrical dynamics of tissues in this exciting emerging field, we
have created the Bio-Electric Tissue Simulation Engine (BETSE)
to quantitatively explore bioelectrical signals in networked cell
collectives. BETSE integrates a diverse range of mechanisms and
physiologies to enable model building and hypothesis testing at
a level congruent with experimental observables, including elec-
trodiffusion of multiple ions under chemical and electrical gradi-
ents in various contexts; consideration of concentration, charge,
voltage, and current in both intra- and extracellular networks in
order to capture important signals, such as tissue-wide endoge-
nous ion currents, TEP, and local field potentials; and dynamic
control of membrane permeability and gap junction state to sim-
ulate voltage and ligand-gated channels. This work is the first in a
series of studies modeling specific patterning systems, and using
BETSE to infer targeted modulation strategies. Here, we discuss
the design of BETSE, validate BETSE’s bioelectrical modeling
performance, and provide some insights into the fundamental
mechanisms involved in patterning of networked multicellular
clusters.

2. MATERIALS AND METHODS

2.1. Model Overview
Whether working with metals, semiconductors, or the salt-water
electrolyte of biological systems, voltages (electric potential ener-
gies) are created by net electrical charge. In typical electrical sys-
tems, such as metals and semiconductors, the charge carriers are

electrons or the absence of electrons (holes). In electrolytes, ions
from dissolved salts can develop concentration profiles generating
net charge in a region of space and, therefore, create voltages.
Furthermore,mass flux of ions can generate a net current, which is
associated with intracellular and tissue-wide electric fields. There-
fore, ions are the fundamental units of the bioelectrical system,
and their concentrations, mass fluxes, and transport mechanisms
are ultimately important. BETSE can consider ions relevant to
most living systems: Na+, K+, Cl−, Ca2+, HCO−

3 , H+, and
charged macromolecules, such as proteins (X−). In addition,
BETSE can consider the movement of a charged biomolecule,
such as a voltage reporter dye, glutamate, serotonin or inositol
triphosphate (symbolized as Yn− or Yn+, where n is a variable
charge number) present at low concentrations and, therefore,
assumed to not affect voltage directly due to its inconsequential
contribution to local charge density.

Cells create and control Vmem by selectively altering ion fluxes
across their membrane. Ion pumps, such as the sodium potassium
pump (Na/K-ATPase), use free-energy released fromATP hydrol-
ysis to move ions across the insulating cell membrane, creating
net ionic charge density and voltage gradients inside and outside
of the cell, similar to a self-charging capacitor (Veech et al., 1995).
Ion channels in the plasmamembrane allow charge tomove under
these concentration and voltage gradients, altering charge densi-
ties and thereby changing the concentration and voltage gradients
to create bioelectrical signals. At its core, BETSE keeps track of ion
concentrations and ion fluxes in space and time, reducing them to
net charge distributions inside and outside of the cell, using these
net charges to calculate voltages inside and outside of the cellular
space, calculating changes to concentrations resulting from ion
mass fluxes resulting from concentration/voltage gradients and by
active ion pumps, and calculating endogenous currents from the
net mass flux of ions. Membrane permeability to specific ions is
used as a dynamic variable to simulate the action of specific ion
channels (including K+ leak channels, calcium gated K+ and Cl−
channels, and voltage-gated Na+, K+, and Ca2+ channels).

The following details how electro-diffusive transport, voltage
calculations, ion pumps, ion channel dynamics, voltage-sensitive
GJ, and electroosmotic flows are handled in BETSE. Further
details regarding BETSE’s underlying theory and implementation
can be found in Supplementary Material. Table 1 summarizes key
parameter and typical variable values and their units. A highly
simplified schematic of the “bioelectric circuit” implemented in
BETSE is shown in Figure 1.

2.2. BETSE Platform and Performance
BETSE is a finite volume method multiphysics simulation plat-
form, uniquely specialized to work with a range of bioelectric
phenomena arising in biological tissues, which are highly spatially
heterogeneous by nature.

BETSE was implemented in Python 3.4, making heavy use
of the scientific and engineering toolboxes Numpy, Scipy, and
Matplotlib (Millman and Aivazis, 2011).

To make each time step of a simulation as quick as possible,
BETSE uses matrix-based differential equation solvers, making
memory one of the limitations of simulation size and extent.
Simulating a square millimeter of tissue (~10,000 cells) with all
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TABLE 1 |Main model parameters and variables.

Parameter Description Typical value Units

i Ion index (i=Na, K, Cl, Ca, H, M)

Doi Free diffusion coefficient for ion i 1.0×10−9 m2
s

t Time 10 s

x, y Spatial coordinates 500 µm

h System height 10 µm

∆Go
ATP Standard free energy of ATP

hydrolysis
37 kJ/mol

T Temperature 310 K

F Faraday’s constant 96,485 C/mol

R Ideal gas constant 8.3145 J/K mol

q Electron charge constant 1.6×10−19 C/ion

kb Boltzmann constant 1.38×10−23 J/K

vcell, vecm Cell and extracellular volume 7.85×10−16 m3

σcell, σmem,
σecm

Cell, membrane and extracellular
surface area

3.14×10−10 m2

cmem Membrane capacitance 0.022 F/m2

cself Electrolyte-induced
self-capacitance

0.86 F/m2

αpump Maximum rate constant for pump 2.0×10−7 1/s m2

ν1/2GJ GJ voltage-gating half-closed
parameter

15 mV

dmem Cell membrane thickness 7.5×10−9 m

dgj Intercellular spacing 26.0×10−9 m

µ Water viscosity 5.0×10−3 Pas

Variable Description Typical value Units

ciext Extracellular concentration 1 to 150 mol
m3

ciint Intracellular concentration 1 to 150 mol
m3

Dmemi Membrane diffusion coefficient
for ion I

1.0×10−18 m2
s

Pmemi Membrane permeability for ion i 0.13 nm
s

Vcell, Venv Voltage in cell and environment −10 to −80 mV

Vmem Transmembrane voltage −10 to −80 mV

Φ⃗i Mass flux of ion i 1.0 µmol
s m2

ρe Ionic charge density 600 C
m3

J⃗ Ionic current density 10–500 µA
cm2

βo
GJ GJ diffusion scaling-coefficient 5.0×10−7

βTJ TJ diffusion scaling-coefficient 1.0×10−7

DNaV, DKV Max membrane diffusion for
voltage-gated channel

1.0×10−14 m2
s

E⃗ Electric field 1×105 V/m

features enabled (e.g., extracellular space simulation, electroos-
motic fluid flow, all ion types included) uses approximately 14Gb
of RAM, and is considered the current limit of simulation size.

BETSE code is available from the public repository: http://ase.
tufts.edu/biology/labs/levin/resources/software.htm

2.3. Core Mathematical Strategy
Biological tissue represents a challenging modeling scenario
due to its highly heterogeneous nature, where closely spaced

(~10–30 nm), membrane bound, electrolyte-filled cells are indi-
vidually interacting with a small extracellular space at individual
plasma membranes, and where the extracellular spaces con-
nect with a continuous, aqueous environment at the cell clus-
ter boundary. Individual cells are also connected internally via
transmembrane channels, such as GJ, which enable passage of
small molecules and ionic current between cells. To manage this
involved biophysical situation, BETSE uses an irregular Voronoi
diagram-based cell grid, embedded within a regular square envi-
ronmental grid, to model the heterogeneous nature of tissues,
while also allowing modeling of a continuous environmental
space around the cell cluster (Figure 2A).

Each modeled cell in the cell grid has a center point (indi-
cated in grid diagrams as ∆, see Figure 2), where scalar cell
properties, such as concentration (ci) and intracellular voltage
(Vcell) are defined. Each cell also has a unique volume (volcell) and
perimeter representing the cell membrane. This allows unique
membrane properties, such as Vmem, to be defined for each seg-
ment of each individual cell membrane, thereby opening the
possibility for study of individual cell polarizations and self-
electrophoresis/electroosmosis of membrane-bound ion pumps
and channels (Jaffe, 1981; McLaughlin and Poo, 1981).

Membrane-specific scalar and vector properties are defined at
each membrane segment midpoint (indicated as * in Figure 2B).
Each membrane segment also has normal and tangent unit vec-
tors. The membrane midpoints of each cell interface with the
central points of local environmental grid squares (red “o” in
Figure 2) via a nearest-neighbor interpolation scheme. A weight-
ing function (cell membranes seen per grid square) is used to
properly assign the mole transfer for a mass flux between cell and
environment, thereby conserving mass and charge of the system
(see Supplementary Material for more information).

The interconnected grid systems of BETSE, whichmodels indi-
vidual cells as discrete patches, make it possible to shape the
cluster into complex forms and to cut holes into the cell cluster
(before or during a simulation). Holes in the tissue represent
the continuous electrolyte in the region of the hole. This enables
study of simple vasculature (e.g., capillaries feeding the tissue by
diffusion from the environment), cysts (such as the model shown
in Figure 2A), and wounding. BETSE uses bitmaps to define the
shape of the cluster, cut holes, and to assign specific properties
(i.e., membrane permeability) to desired regions of the modeled
tissue (see Supplementary Material).

The core mathematical operators of differential equations used
in BETSE are:

• gradient (∇sj), which calculates the degree of change in the
spatial property over space at grid point j

• divergence (∇ · F⃗j), which measures the amount of outward
flow of a vector field from each point in space, measuring the
presence of a source (+ divergence) or sink (− divergence) at
grid point j, and

• the Laplacian (∇2sj =∇·∇sj), which is most intuitively
expressed as the divergence of the gradient of a scalar prop-
erty. When discretized, the Laplacian is a matrix, which can
be inverted to give the inverse of the operation, such that if
∇2Sj = cj then Sj =∇−2cj.
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FIGURE 1 | The fundamental “bioelectrical circuit” implemented in BETSE, shown on a simplified geometry of two triangular cells (1 and 2)
surrounded by their respective extracellular spaces (3–7). Note that in BETSE, and in contrast to the simplified image shown, cells are defined from a Voronoi
diagram and are polygonal with four or more membranes, and that a larger network of 10–1000 cells is considered in simulations. Each cell–extracellular junction has
a capacitive component (membrane capacitance Cm), a “resistive” component (cell membrane diffusion coefficients, Dm), and a variable current source (representing
the action of pumps, ip). Transfer between two cells occurs via GJ, which are represented by a “resistive” component (Dgj). Transfer between extracellular spaces and
to the environment is handled using “resistive” components (Do). Boundary conditions at the global environmental boundary are represented by grounded voltage
(V = 0) and fixed concentrations representing an open boundary with Dirichlet conditions. Self-capacitances for each cell and extracellular space are not shown.

FIGURE 2 | BETSE computations use an irregular Voronoi-based cell grid interacting with a regular square environment grid to model heterogeneous
tissues (A). The cell grid is composed of cell center (“∆”) and membrane points (“∗”) (B). Membranes that lack a neighboring cell (and, therefore, interact only with
the global environment) are identified using a boundary search algorithm. The environmental grid consists of regularly spaced points (“o”) which are tagged as being
internal or external to the cell cluster (B). The intercellular spaces of the cell grid are assumed to be connected to the extracellular environment by fluxes or gradients
(A), which use points interpolated between the cell membrane and environmental grid midpoints with a weighting function (cell membranes seen per grid square) to
properly assign the mole transfer for a mass flux between cell and environment (B).

Discrete versions of gradient, divergence, and Laplacian/inverse
Laplacian were defined, using standard finite difference and finite
volume techniques (Schafer, 2006), on the cell and environmental
grids. These core mathematical operators were then used where
required in specific differential equation expressions.

The detailed features of the cell and environmental grids,
the specific definition of the above mathematical operators on
each of the grids, and the interaction between the cell and
environmental grid models, are discussed in Supplementary
Material.
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2.4. Bio-Electrochemical Mass Transport
Ion transport in bioelectrical systems is influenced by gradients of
both concentration (∇ci) and voltage (∇V), with ions passively
moving by a process known as electrodiffusion – a combination
of regular diffusion and electrophoretic transport. In general,
electrodiffusion is described by the Nernst–Planck differential
equation, describing the rate of change in the concentration ci of
an ion i with charge zi and diffusion constant Di:

dci
dt = ∇ ·

(
Di∇ci +

Di zi q
kbT

∇V− u⃗ ci
)

(1)

here, u⃗ is a fluid flow [e.g., electroosmotic flow field (Andreev,
2013)], q is the electron charge constant, kb is the Boltzmann
constant, and T is the temperature (see Table 1).

Ions are actively transported by pumps in the cell membrane.
Both passive and active transport processes generate ion fluxes
(Φi). These combined fluxes can lead to changes in concentration
and charge density, and can generate a system-wide ionic current
density J⃗.

BETSE assumes passive electrodiffusive mass transport
in a multicellular cluster follows three distinct pathways:

(1) transmembrane, via intra- and extracellular spaces across the
plasma membrane; (2) intercellular, between cellular spaces via
gap junctions; and (3) extracellular, between extracellular spaces
and within the global environment (Figure 3). Active transport
from ion pumps is always assumed to be transmembrane.
Therefore, BETSE considers the following sources of ion flux for
an ion i:

• Transmembrane, from passive electrodiffusive transport result-
ing from gradients between the local intra- and extracellular
spaces using theGoldman–Hodgkin–Katz Flux equation (GHK
Flux equation), which is derived from the Nernst–Planck Dif-
ferential equation for the case of electrodiffusion across a cell
membrane for a non-steady-state Vmem (Bowman and Baglioni,
1984):

Φmemi =
zi Vmem FDi

RT dmem

(
ccelli − cenvi exp

(
− ziVmemF

RT
)

1− exp
(
− ziVmemF

RT
) )

(2)

here, F is the Faraday constant, R is the ideal gas constant, and
dmem is the plasma membrane thickness (see Table 1). Positive
fluxes are directing mass into cells.

FIGURE 3 | Electrodiffusive mass transport in a GJ networked cell cluster is assumed to follow three pathways (A): (1) transmembrane – between
intra- and extracellular spaces across the plasma membrane; (2) inter-cellular – between cellular spaces via GJ; and (3) environmental – between
extracellular spaces and in the global environment. The degree of movement of ions in both chemical and electrical gradients is handled using spatially varying
diffusion coefficients, which reduce from free-diffusion coefficients in the environmental space to minimal values across simulated tight junctions and plasma
membranes (A). In addition to concentration gradients, ions are assumed to move under the influence of voltage gradients [electric fields (B)]. Strong electric fields
are assumed to exist on a microscopic scale across membranes and gap junctions due to heterogeneous charge distribution at membrane interfaces separated by
tens of nanometers [(B), Microscopic fields]. Weaker, mesoscopic scale (10–100µm) electric fields are assumed to be generated by net ion currents in the intra- and
extracellular spaces [(B), Mesoscopic fields].

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2016 | Volume 4 | Article 556

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Pietak and Levin Bioelectric Simulator Platform

• Transmembrane, from active transport resulting from ion pump
activity. Details of how the dynamic ion pump rates (α) are
calculated are given in section 2.7:

Φpumpi = α(ccelli , cenvi ,Vmem, t) (3)

Positive fluxes are directing mass into cells.
• Intercellular, from passive electrodiffusive transport resulting

from gradients between neighboring, GJ networked cells:

Φ⃗celli = −Di∇ccelli −
Di zi q
kbT

ccelli ∇Vcell + u⃗cell ccelli (4)

• Extracellular, from passive electrodiffusive transport resulting
from gradients between neighboring environmental spaces:

Φ⃗envi = −Di∇cenvi −
Di zi q
kbT

cenvi ∇Venv + ûenv cenvi (5)

Changes in concentration aremade by assuming the concentra-
tion change in an ion i depends on the divergence of the net (Φtoti )
sum of all fluxes of the ion entering or changing in a particular
region of the space (i.e., cells or environment):

∂ci
∂t = −∇ · Φtoti (6)

Net ionic charge density was calculated by summing all ion
concentrations at a region of space:

ρe =
∑
i
F zi ci (7)

The dynamics of ionic charge density were calculated from the
mass flux of all ions:

∂ρe
∂t =

∑
i
F zi Φi (8)

The total current density of the environment or cell, J⃗, was
calculated using the continuity equation in combination with the
assumption of bulk electro-neutrality for electrolytes due to charge
screening. Using the Continuity equation for current, the current
density in a region follows:

∇ · J⃗o +
∂ρe
∂t = 0 (9)

As electro-neutrality (zero net charge density) must be pre-
served in the bulk electrolyte, the base current density calculated
by BETSE (⃗Jo) was corrected by assuming that an internal electric
field develops in the bulk electrolyte as a result of charge screening,
which is the negative gradient of an electric potential φint:

J⃗ = Jo −∇ψint (10)

Substituting equation (10) into equation (9) and rearranging to
solve for the internal electric potential:

ψint = ∇−2
(
∇ · J⃗o +

∂ρe
∂t

)
(11)

After obtaining φint, it is used with equation (10) to produce
the corrected current density for the system. Current density in
the environment and in cell spaces was treated as separate.

Note that as movement in both concentration and electri-
cal gradients can occur, the transport properties of bioelectri-
cal systems cannot be strictly reduced to electrical constants,
such as resistance or conductance. However, examining the
Nernst–Planck equation [equation (1)] reveals that the diffusion
coefficient D is able to serve as the constant of proportionality for
movement in both chemical and electrical terms. In the absence of
a concentration gradient, and multiplying by F z to convert mass
flux to ionic current density, the Nernst–Planck Flux equation
reduces to:

J⃗i = −FDi z2 q
kbT

ci∇V (12)

Noting that the definition of an electric field is E⃗ = −∇V,
equation (12) parallels the equation relating current density to
electric field via media conductivity 1

γ :

J⃗ =
1
γ
E⃗ (13)

Therefore, BETSE makes use of diffusion constants to charac-
terize ion transport in different regions of themulticellular cluster,
but can approximate conversions between conductivity and the
diffusion constant.

Note that for movement across a membrane with
thickness dmem, the permeability of the membrane is simply
Pmem =Dmem/dmem.

2.5. Biological Voltages
2.5.1. Bioelectric Voltage Calculations Using
a Maxwell Capacitance Matrix
The Poisson equation (V = −ρe

ε , where ρe is electronic charge
density and ε ismedium electrical permittivity) is typically used to
determine voltage from charge density. In air, a charged object will
emanate a voltage gradient (electric field) into the space around
it according to the Poisson equation. However, electrolytes are
more complex. Due to the presence of mobile, oppositely charged
ions in electrolytes, objects with steady-state voltages or bound
charges collect an opposite surface charge from the electrolyte
to form an electrical double layer approximately 1-nm thick in
biological systems, which screens the voltage/charge of the object
and a prevents long-range electrical field from developing at
macroscopic distances into the electrolyte (Bazant and Squires,
2004). Moreover, biological systems are highly heterogeneous,
with opposite-sign charge distributed at intra- and extracellu-
lar interfaces of the plasma membrane. This means opposite
sign charges are separated by the small membrane thickness
(3.5–9 nm), and that in a collective of many cells with closely
interfacing membranes, charges are present in the low-volume
extracellular space that is approximately 5–50-nm wide between
cells. Therefore, a new technique was adopted to model voltage
in the biological tissue. Voltages in the intra- and extracelluar
spaces (Vintra, Vextra), and the related Vmem =Vintra−Vextra, were
calculated from net ionic surface charge distributions using a

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2016 | Volume 4 | Article 557

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Pietak and Levin Bioelectric Simulator Platform

FIGURE 4 | A capacitor is a device commonly characterized by two metal plates (conductors) with equal and opposite charge Q on either plate,
separated by an insulating layer (A). A surface at a static negative voltage V, submerged in an aqueous electrolyte, does not produce a long-range electrical field
(voltage gradient) in the electrolyte due to charge screening and the formation of the electrical double layer (B). The ratio of screening charge Q to surface voltage V is
a self-capacitance for the system (B). Multiple insulator-separated conductors with variable amounts of charge and voltage on each conductor form a capacitive
system, with the relationship between charge and voltage on the conductors described by a Maxwell Capacitance Matrix (C). Likewise, the interface between two
cells can be reduced to a capacitive electrical system consisting of three conductive spaces with net charge and voltage (2 intracellular, 1 extracellular) separated by
two insulators (2 cell membranes, capacitance Cmem ), where each electrolyte-filled space has a self-capacitance related to electrolyte screening (D).

formulation called the Maxwell Capacitance Matrix (Clements
et al., 1975; Heinzel, 2008).

Capacitance is typically known in terms of an electrical device
characterized by two metal plates (electrical conductors) with
equal and opposite charge (±Q) on either plate, which are sepa-
rated by a layer of insulatingmaterial (Figure 4A). The capacitance
(C) is defined by the ratio of the voltage (V) between the plates in
relation to the charge Q on each plate (Figure 4A):

C =
Q
V (14)

However, arrangements of conductors can involve capaci-
tance via multiple insulator-separated conductors with variable

amounts of charge and voltage on each conductor (Figure 4B).
For the case of multiple conductors, the basic capacitance relation
shown in equation (4) must be extended to parameterize more
complex arrangements. For instance, for the three conductors
shown in Figure 4C, the charge Q on each conductor can be
related to voltages and capacitances of the system as:

QA = Cm(VA − Vo) + CsaVA

QB = Cm(VB − Vo) + CsbVB

Qo = Cm(Vo − VA) + Cm(Vo − VB) + CsoVo

(15)

here, Cm is a capacitance connecting the conductors, and Csa, Csb,
and Cso are the self-capacitances of the conducting objects.
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The self-capacitance of a conductor describes howmuch charge
is acquired on the conductor/unit voltage applied to its surface. For
electrolytes, self-capacitance is related to the ability of the elec-
trolyte to screen voltage on a submerged object (see Figure 4B).
Using Boltzmann relations for low voltages, in an electrolyte the
ionic charge density ρe forming near the surface of an object with
a surface voltage φo can be expressed as a function of distance, x,
away from the surface as:

ρe(x) = −εo εr κ2 φo exp(−κ x) (16)

where κ is the inverse Debye length for the electrolyte, which
assuming the approximation for a symmetric monovalent elec-
trolyte with total molar concentration Ctot for a typical BETSE
system is expressed:

κ =

√
2 F2 Ctot

εr εo RT = 1.2x109 1
m (17)

Integrating equation (16) with respect to x from the surface at
0 to infinity, and dividing by the surface voltage to approximate a
self-capacitance/unit surface area for surfaces in the electrolyte:

cself =
ρe
φo

= ε εr κ = 0.86 F
m2 (18)

The system of linear equations derived when considering more
complex arrangements of insulator-separated conductors can be
expressed in a matrix form (Heinzel, 2008). For the highly simpli-
fied system shown in Figure 4B, and described by equation (15),
the Maxwell Capacitance matrix (M) interrelating charge Qk and
voltage Vk on each conductor is:QA

QB
Qo

 =

Cm + Csa 0 −Cm
0 Cm + Csb −Cm
−Cm −Cm 2Cm + Cso

VA
VB
Vo


Q̄ = MV̄
V̄ = MinvQ̄

(19)

For the case where the set of charges Q̄ are known, the cor-
responding set of voltages V̄ can be found by calculating the
pseudo-inverse of the Maxwell Capacitance matrix (Minv) using
a singular-value decomposition method.

In the biological system, we propose every point of contact
between two cells represents a situation similar to the one shown
in Figure 4C. In order to calculate voltage within the closely-
spaced intra- and extracellular regions, and to thereby derive
Vmem for a cell cluster, each cell–cell interface is reduced to a
capacitive electrical system consisting of three conductors: two
intracellular spaces and one extracellular space, which are each
separated by two cell membranes with capacitance Cmem. Each
space has net ionic chargeQk and voltageVk. The self-capacitance
of each space is related by equation (18). This allows a Maxwell
Capacitance Matrix identical to the one defined in equation (19)
to be constructed for a single cell–cell junction (Figure 4D).

In BETSE, a typical cell cluster consists of many hundred to
thousand cell–cell interfaces and, therefore, has a very large M,

the pseudo-inverse of which was used to calculate voltage in
each intra- and extracellular space from net charge Qk in each
region. To complete the calculation, Vmem are calculated by taking
the difference between the intra- and extracellular voltages at a
respective membrane point.

Note that the use of the Maxwell Capacitance Matrix to derive
Vmem is only one component of the computation of bioelectrical
variables – a simplified bioelectrical “circuit” is shown in Figure 1,
and must also include electrodiffusive transport of ions via trans-
membrane, intercellular, and extracellular networks, in addition
to active transport of ions by pumps, as described in section 2.4.

2.5.2. Assumptions Regarding the Biological Electric
Field
It is important to clarify that while it is well known that the ions
of electrolytes screen voltages arising from static charge distri-
butions, thereby preventing electric field (voltage gradient) from
static charge distributions from being seen past the electrical dou-
ble layer, any net ionic current density (⃗J) arising from ion fluxes
in the biological system is known to generate a small magnitude
observable macroscopic electric field (⃗Eglobal) according to:

E⃗global = γ J⃗ (20)

where γ represents the media resistivity of approximately
0.02Ωm. These endogenous currents and related global electric
fields have been observed directly and are on the magnitude from
1 to 1000 µA

cm2 and exist in the extra- and intracellular spaces (De
Loof, 1985; Nuccitelli, 1992, 2003a,b; Altizer et al., 2001).

BETSE assumes the existence of two types of electric field
(voltage gradient) in the biological tissue (Figure 3B). At the
microscopic scale (i.e., 10 s of nanometers), very strong voltage gra-
dients are assumed to exist across membranes, gap junctions, and
between extracellular spaces (especially across tight junctions) due
to the presence of charge at interfaces separated by distances of
10 s of nanometers (Figure 3B). These electric fields, with strength
on the order of 0.01–1.0 million volts/meter, are assumed to be
the primary drivers of ion flux across membranes and junctions,
however, are very short acting due to electrolyte screening. On
mesoscopic scales (i.e., 10–100 s of micrometers) net ionic current
density is assumed to be associated with a longer range, weaker
electric field via equation (20) (Figure 3B), which is of much
lower strength on the order of 0.2 volts/meter. BETSE assumes the
current densities in the environment and in the cell networks are
separate.

2.6. Standard Equations for Voltage
Cross-Check and Validation
2.6.1. Nernst Equation
In cell physiology, two additional equations have been derived
from the Nernst–Planck equation for use in specific situations
involving transport across a membrane: the Nernst equation
(Matthews, 2013a) and the Goldman equation (alternatively
known as the GHK equation) (Matthews, 2013b).

For the case where the system consists of two compartments
separated by a semi-permeable membrane, and the system is at
steady-state with both zero ion flux and zero current across the
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membrane, the Nernst equation (21) can be used to predict the
voltage or ratio of concentrations across a membrane:

Vmem =
zR T
F ln

(
cext
cint

)
(21)

Note that the Nernst equation (21) should technically only be
used for steady-state situations with no flux or current of the ion
c. A suitable situation would be the equilibrium concentration
of a substance such as a reporter dye, which is present at low
concentrations and not subjected to active pumping bymembrane
transporters. BETSE uses the Nernst equation with internally
computed intra- and extracellular concentrations of a passively
electrodiffusing substance (i.e., modeled reporter dye) to obtain
an alternative value for Vmem, which is used as a cross-check of
BETSE-derived concentrations and Vmem calculations.

2.6.2. Goldman Equation
The Goldman equation applies for cases where there is a net flux
of ions across the membrane, however, the net current is zero,
leading to a steady-state or “resting” Vmem. Due to the action of
active ion pumping in living cells, the steady-stateVmem represents
a dynamic equilibrium with net ion flux but zero current, and can
be estimated from the Goldman equation as:

Vmem =
RT
F ln


∑
i
Pmemi c+exti+

∑
j
Pmemj c−intj∑

i
Pmemi c+inti+

∑
j
Pmemj c−extj

 (22)

In the Goldman equation (22), ions are separated into anions
(c−) and cations (c+) with concentrations inside (cint) and outside
(cext) of the cell membrane. The membrane has a specific perme-
ability Pmem for each unique ion. The Goldman equation is also
known as the Goldman–Hodgkin–Katz (GHK) equation.

Note that as the Goldman equation is derived from the
Nernst–Planck equation (Matthews, 2013b), the Goldman equa-
tion cannot be used to accurately calculate Vmem without devel-
oping a circular dependency between concentration and voltage
due to an insufficient number of degrees of freedom. Also, the
Goldman equation only supplies the transmembrane voltage dif-
ference across the membrane, and does not give absolute values
for the intra- and extracellular voltages, which are important for
calculating cluster-wide bioelectrical signals and states, such as
the TEP. However, model parameters computed in BETSE (ion
concentrations and membrane permeabilities) were used with
the Goldman equation (22) to cross-check and compare final
Vmem values obtained using BETSE’s Maxwell Capacitance Matrix
voltage solving method defined in section 2.5.

2.7. Ion Pumps
Ion pumps were modeled as enzymes using standard
Michaelis–Menten enzyme kinetic relations, with reaction
rates determined by thermodynamic arguments.

The equilibrium constant of a reaction, Keqm, can be expressed
both in terms of the reaction free energy under standard condi-
tions, △Geqm

react, and in terms of the reaction’s product concentra-
tions (index k) and those of its reactants (index j) where ak and aj

represent coefficients of stoichiometry for the reaction (Beard and
Qian, 2007; Pekar, 2015):

Keqm = exp
(
−△Geqm

react
RT

)
=
∑

cakk∑
cajj

(23)

The electrochemical potential of a substance at concentration ci
with charge zi in a region where there is a voltage V is expressed:

µi = µo + RT ln(ci) + zi FV (24)

Furthermore, the overall free-energy of a reaction is described
as the sum of the (electro)chemical potentials of its products
(index k) minus those of its reactants (index j) where ak and aj
represent coefficients of stoichiometry for the reaction:

∆Greaction =
∑

ak µk −
∑

aj µj (25)

Using the Na/K-ATPase pump as an example, the overall reac-
tion for the Na/K-ATPase pump is:

3 cinNa + 2 coutK + ATP←→ 3 coutNa + 2 cinK + ADP + P (26)

From the abovementioned fundamental chemical principals,
the overall free energy, ∆Gpump, for the Na/K-ATPase pump
reaction can be expressed (Smith and Crampin, 2004):

∆Gpump = △Go
ATP + RT ln (Ω)− FVmem

Ω =
cADP cP cNa3

out cK2
in

cATP cNa3
in cK2

out

(27)

when ∆Gpump = 0, the reaction is at equilibrium. Using equation
(23), an expression for the Na/K-ATPase pump reaction equi-
librium constant in terms of the standard free energy for ATP
hydrolysis and cell Vmem is:

Keqm
NaKATP = exp

(
−∆Go

ATP + FVmem

RT

)
(28)

Following with basic Michaelis–Menten enzyme kinetics, an
estimate for the rate of the reversible enzymatic pump reaction
follows as:

αNaKATP = αo

 cATP
KATP

cNain
KNa

cKout
KK(

1 + cATP
KATP

) (
1 + cNain

KNa

) (
1 + cKout

KK

)


×
(
1− Ω

Keqm
NaKATP

)
(29)

Values for the Michaelis constants KNa = 5.0, KK = 0.2, and
KATP = 0.15 were obtained from references (Munzer et al., 1994;
Vrbjar et al., 1994). Values of αo were roughly calibrated to Na/K-
ATPase pump rates reported for Xenopus oocytes (Costa et al.,
1989).

In addition to Na/K-ATPase pumps, BETSE can optionally
simulate Ca-ATPase, H/K-ATPase, and V-ATPase pumps using
free-energy regulated pumping rates analogous to that outlined
above for the Na/K-ATPase pump.
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2.8. Voltage-Gated Channels
A range of voltage-gated channel types have been implemented
in BETSE using Hodgkin–Huxley style differential equations to
define the state ofmembrane diffusion to a specific ion (e.g., Na+)
as a function ofVmem and time. Specific parameters and functional
relations were obtained from the online database, Channelpedia
(Ranjan et al., 2011).

The present work specifically uses a combined generic voltage-
gated sodium channel (NaV) from (Hamill et al., 1991), and a
delayed-rectifier voltage-gated potassium channel (KV1.2) from
(Sprunger et al., 1996), to generate excitable signals. A standard
Hodgkin–Huxley style model uses an electrical equivalent circuit
equation to determine changes to current and voltage across a
membrane, with a set of differential equations controlling the
conductance of the membrane (Nelson, 2004). Since conductance
is proportional to the membrane diffusion constant for a par-
ticular ion [see equations (12) and (13)], BETSE uses the same
Hodgkin–Huxley style equations developed to describe mem-
brane conductivity state to describe the membrane diffusion state
of a particular ion, updating subsequent changes to currents
and voltages using its own methods, as described in the above.
Details regarding voltage-gated channel dynamics are specified in
Supplementary Material.

2.9. Gap Junctions
Gap junctions weremodeled as (optionally) voltage-sensitive con-
duits influencing the intercellular diffusion coefficient for all ions
uniformly via a diffusion–constant scaling factor, βo

GJ. Simulated
transport through GJ used the Nernst–Planck equation [equation
(1)] to update concentration of all ionsmoving under intercellular
concentration and voltage gradients. In the absence of GJ, cells
were modeled to have an intercellular diffusion coefficient of
zero (βo

GJ = 0). Medium-high GJ connectivity corresponded to
βo
GJ = 1.0× 10−6, an intercellular diffusion coefficient of approx-

imately 1.0× 10−15m2/s. Assuming 1.0× 105 GJ per cell, and
cylindrical GJ with pore diameter of 1.5 nm and length of 26 nm,
this corresponds to individual GJ conductance of 68 pS, which is
in the mid-range of reported GJ conductances (Goodenough and
Paul, 2009).

Voltage gating of GJ was described using the kinetic model
of (Harris et al., 1983), which calculates GJ open/closed state
(βGJ) dependence on voltage difference across the gap junction
(VGJ) and time. Specific details regarding voltage gating of GJ are
described in Supplementary Material.

2.10. Tight Junctions
Multicellular organs and organisms develop very low-
permeability TJ at their exterior boundary, which are involved
in creating the important TEP voltage gradient across the
organ/organism boundary. In BETSE, the degree of movement
of ions in both chemical and electrical gradients was handled by
considering three interconnected, but distinct transport pathways
(transmembrane, intercellular, extracellular), with the possibility
for spatially varying diffusion coefficients within extracellular
regions, with low diffusion at the boundary simulating the
presence of TJ (see Figure 3).

2.11. Electroosmosis
Electroosmotic flows are a hypothesized transport mechanism in
biological systems (Andreev, 2013). BETSE assumed that elec-
troosmosis may occur through small channel structures of the
heterogeneous tissue, such as gap junctions between cells (gap
junction radius rgj ~ 5 to 8 nm) and the narrow channels (decm ~10
to 30 nm) formed by extracellular spaces.

Our simple estimate used a modified version of the
Hagen–Poiseuille equation (Gao et al., 2011) to estimate
electroosmotic fluid flows between the small channels represented
by gap junction connected cells or extracellular spaces:

u⃗o =
π r4

8µ
F⃗e (30)

where F̂e is a volume force generated by electrostatic forces result-
ing from a voltage gradient (electric field E⃗) between two cells or
extracellular spaces:

F⃗e = ρe E⃗ (31)

Asmass cannot be created or destroyed, fluid flow velocitymust
be a divergence-free field, which physically corresponds to the
development of internal pressures resisting fluid flow. The internal
pressure was estimated as:

Pint = ∇−2 (∇ · u⃗o) (32)

The gradient of the internal pressure was used to correct the
velocity calculated from equation (30), yielding the final estimate
for electroosmotic fluid velocity:

u⃗ = u⃗o −∇Pint (33)

Electroosmotic fluid velocities were treated separately in the
intra- and extracellular spaces.

2.12. Other Biophysical Phenomena
Details regarding the implementation of other biophysical phe-
nomena, such as lateral self-electrophoretic/electroosmotic trans-
port of ion pumps and channels in cell membranes, and the
development of osmotic and hydrostatic pressures, are discussed
in Supplementary Material.

3. RESULTS

3.1. Model Validation and Resting Vmem

Regulation in Isolated Cells
Simulations 1, 2, and 3were used to validate the core BETSEmodel
by determining its ability to predict resting Vmem and expected
Vmem dynamics under a series of perturbations for isolated cells
not connected by TJ or GJ (single-cell behavior). Validations
also checked that equilibrium concentration profiles of an elec-
trodiffusing charged molecule (simulated reporter dye) showed
values predicted from the Nernst equation (21). The behavior of
voltage-gated channels was explored in simulation 4.
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3.1.1. Simulation 1: Prediction of Xenopus oocyte
Vmem

The first validation step used experimentally derived input values
(membrane permeability and environmental ion concentrations),
comparing simulated output to experimentally observed parame-
ters (Vmem).

Experimentally observed membrane ion permeabilities and
extracellular ion concentrations of Na+, K+ and Cl− obtained
from Xenopus oocytes (Costa et al., 1989), were used as input
parameters (Table 2). The simulation was performed on a small
network of 35 isolated cells for 30min of simulated time. The
resulting BETSE-derived Vmem and intracellular ion concentra-
tions were compared to those observed experimentally for Xeno-
pus oocytes with the same membrane ion permeabilities and
under the same extracellular ion concentrations (Costa et al.,
1989). After 30min of simulation, steady-state Vmem and intra-
cellular ion concentrations calculated by BETSE showed <10%
difference between experimentally determined values measured
from Xenopus oocytes (Table 2).

3.1.2. Simulation 2: Resting Vmem as an Attractor
State
Simulation 2 explored restingVmem as a dynamic systems attractor
state, reaching a characteristic value even with highly divergent
initial conditions. This is an important property to understand,
in light of the significant robustness of biological pattern regu-
lation. The simulation was performed on a small cluster of 183
isolated cells, which were not connected by gap or tight junctions,
where cells in different regions were assigned to one of three
membrane ion permeability profiles (Figure 5A). Themembranes
of profile A, B, and C cells had high, medium, and low sus-
tained K+ membrane permeability, respectively (Figure 5). All
other parameters associated with cells in the three profiles were
identical.

The simulation began with a non-physiological starting state
featuring equal concentrations of ions in both the intra- and extra-
cellular environments (starting concentrations are those typical of
human plasma and are given inTable 3) andwith no voltage in any
part of the system (Vmem = 0 in all cells).

The Goldman equation [equation (22)] was used with mem-
brane permeability and ion concentration values available at each
time step to predict Vmem using conventional measures and pro-
vide an indicator of expected resting Vmem for each of the three
profiles.

The simulation shows that after 20 simulated minutes, the
BETSE-calculated Vmem closely approaches (<10% discrepancy)
the value predicted by the Goldman equation [equation (22)] for
the three cell membrane-permeability profile types (Figure 5). As
is expected from theory (Matthews, 2013b), the steady-state Vmem
value complying with the Goldman equation is reached when the
net trans-membrane current reaches zero (data not shown).

In addition to the six major ions, an electrodiffusing nega-
tively charged “reporter dye” was also included in the simulation
(“Dye−,” Table 3) and assumed to be at low concentrations and,
therefore, not influencing Vmem. The Nernst equation [equation
(21)] was used with BETSE-simulated intra- and extracellular
dye concentrations as an alternative Vmem estimate (“Vmem Dye,”

TABLE 2 | Input membrane permeabilities (Pmem_i) and simulated Vmem, and
ion concentrations in the extra- and intracellular spaces at steady-state (30
simulated minutes) for the resting membrane ion permeability profiles of
Xenopus oocytes bathed in Ringer’s solution, as reported elsewhere (Costa
et al., 1989).

Variable BETSE
(extracellular)

Experimental
(extracellular)

% Difference

Pmem_Na [nm/s] 0.537 0.537 /
Pmem_K [nm/s] 1.765 1.765 /
Pmem_Cl [nm/s] 0.138 0.138 /
Na+ [mmol/L] 9.21 (115.0) 10.1 (114.0) 8.8 (0.9)
K+[mmol/L] 100.7 (2.5) 109.5 (2.4) 8.0 (4.2)
Cl− [mmol/L] 39.95 (111.5) 37.7 (116.4) 6.0 (4.2)
Ca2+[nmol/L] 104.0 (2.0×106) N/A N/A
X− [mmol/L] 50.0 (10.0) N/A N/A
pH 7.3 (7.6) 7.3 (7.5) 0.0 (1.3)
Vmem [mV] −37.6 −39.1 3.8

For ion concentration columns, intracellular concentrations are stated with extracellular
concentrations in parentheses. Concentrations of charged proteins (and other negatively
charged macromolecules) are indicated by “X−.” Steady-state Vmem and ion concentra-
tions calculated by BETSE show <10% difference between experimentally determined
values measured from Xenopus oocytes (Costa et al., 1989).

Table 3); results are virtually identical between the direct-BETSE
and dye-estimated Vmem values.

Notably, while concentrations in intra and extracellular spaces
began equal, at steady-state (20 simulated minutes) intracellular
ion concentrations were within expected physiological ranges
(Veech et al., 1995; Lodish et al., 2000; Wright, 2004) (Table 3).

In addition to model validation, this simulation emphasizes
resting Vmem of isolated cells as stable states of dynamic equi-
librium that are attractor states with final values highly influ-
enced by cell membrane ion permeability profiles. As expected,
increased membrane permeability to K+ (simulating increased
expression of K+ leak channels) leads to higher degrees of Vmem
hyperpolarization (Lodish et al., 2000; Wright, 2004).

3.1.3. Simulation 3: Influential Factors and
Perturbation of Resting Vmem

Simulation 3 explored factors influencing resting Vmem in isolated
cells, and also demonstrated the ability for cell Vmem to return
to its resting value after a perturbation (Figure 6). As factors,
such as membrane permeability to specific ions, ion pump rates,
and the influence of environmental ion concentrations, such as
high extracellular K+ levels, are well known to affect individual
cell Vmem (Lodish et al., 2000; Wright, 2004), this simulation
(Figure 6) is also a model validation. The simulation was per-
formed on the same cluster used in Simulation 2 (see Figure 5A),
with membrane manipulations applied to, and Vmem monitored
in, a profile B cell of the cluster. Initial conditions for Simulation
3 were those of the final Simulation 2, with extra/intracellular ion
concentrations and Vmem, as listed for the 20min time point in
Table 3.

The Goldman equation [equation (22)] was used with mem-
brane permeability and ion concentration values available at each
time step to predict Vmem using conventional measures and pro-
vide an indicator of expected Vmem.

“Cytosol only” and “environmentmodeling” are two simulation
modes available in BETSE. In “cytosol only” mode, a simple
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FIGURE 5 | Resting potentials (steady-state Vmem) are states of dynamic equilibrium highly influenced by cell membrane ion permeability profiles.
Three different cell membrane ion permeability profiles are defined for cells in a cluster (A). Starting from equal concentrations of ions in the intra- and extracellular
environments (see Table 3), BETSE reaches a steady-state Vmem value closely predicted by the Goldman equation for the three cell profile types (A,B).

simulation is performed, which assumes instantaneous mixing of
fluxes into the environment, where extracellular spaces and free
diffusion in the environment are not modeled, and Vmem is calcu-
lated assuming the cell is a simple capacitor via the charge inside
the cell and the relation Vmem = 1

Cm Qcell. The “environment
modeling” mode calculates a full extracellular environment using
the Maxwell Capacitance Matrix method to solve for voltages,
as outlined in the Methods section. The Vmem data presented in
Figure 6B is from the “cytosol only” simulation mode, while that
from 6C is from the “environment modeling” simulation mode.
These two types of simulation modes were compared to illustrate
the effect of including extracellular matrix and environmental
transport in the bioelectrical model.

Various membrane permeability manipulations, in addition to
a block of theNa/K-ATPase pump, and an increase in extracellular
K+ levels, were simulated (Figure 6). Membrane permeability
manipulations effectively simulate the transient opening of an
ion channel. The first intervention temporarily increased (from
1 to 3 s) the cell’s membrane permeability to Na+ by a factor of
25, leading to a characteristic, pronounced depolarization. The
next intervention temporarily increased (from 13 to 15 s) the cell’s
membrane permeability to K+ by a factor of 10, and generated
a characteristic hyperpolarization of Vmem. Subsequent interven-
tions increased the cell’smembrane permeability toCl− by a factor
of 25 from 25 to 27 s, creating an expected depolarization, and
increased the membrane permeability to Ca2+ by 50 from 37 to
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TABLE 3 | Simulated ion concentrations in the extracellular and intracellular
spaces at time zero, and at steady-state (20 simulated minutes) for three
different membrane ion permeability profiles defined in Figure 5.

Variable Extra Intra
(0 s)

Intra A
(20min)

Intra B
(20min)

Intra C
(20min)

Na+ [mmol/L] 145.0 145.0 7.4 5.38 3.18
K+ [mmol/L] 5.0 5.0 143.3 151.1 177.2
Cl− [mmol/L] 105.0 105.0 30.8 34.7 52.5
Ca++ [nmol/L] 1.0×106 1.0×106 145.6 79.5 15.4
X− [mmol/L] 10.0 80.0 80.0 80.0 80.0
pH 7.40 7.40 7.62 7.64 7.70
Dye− [µmol/L] 1.0 1.0 0.043 0.112 0.822
Vmem Dye [mV] / 0.0 −84.1 −58.5 −5.2
Vmem Goldman [mV] / 0.0 −82.3 −54.1 + 1.1
Vmem BETSE [mV] −83.9 −58.5 −5.2

The system began (t= 0 s) with equal intra- and extracellular concentrations and Vmem = 0
(zero net charge in cell or environment). Extracellular concentrations remained fixed
throughout the simulation. Concentration of charged proteins and other negatively
charged macromolecules are indicated by “X−.” An electrodiffusing negatively charged
reporter dye was also included in the simulation (“Dye−”) and assumed to be at low
concentrations and, therefore, not influencing Vmem. The Nernst equation was used with
20-min BETSE-simulated intra- and extracellular dye concentrations as an alternative Vmem
estimate (“Vmem Dye”). Steady-state Vmem calculated by BETSE or using the GHK equation
are also listed.

39 s with the expected depolarization effect. The Na/K-ATPase
pump activity was blocked from 49 to 69 s, during which time
the Vmem for both simulation modes converged at precisely the
Goldman Vmem prediction (Figure 6). This result is expected as
the Na/K-ATPase pump activity generates an electrogenic current
that is not considered in the Goldman analysis (the Goldman
equation requires zero net current across the membrane, as dis-
cussed previously). Finally, extracellular K+ concentration was
increased by introducing 35mmol/L KCl at the global boundaries
from 79 to 89 s, which returned to 5mmol/L at the boundary
after the perturbation interval, and resulted in a characteristic,
well-known Vmem depolarization (Delamere and Duncan, 1977).

As can be seen in Figure 6, cell Vmem naturally returns to its
resting value of −63.7mV after each perturbation is complete.
While overall, Vmem responses for both the “cytosol only” and
“environmental modeling” simulation modes captured all main
features predicted by the Goldman equation, the “environmen-
tal modeling” mode, which includes simulation of extracellular
spaces and transport in the environment, showed slower andmore
complex responses than the “cytosol only” mode.

These results illustrate how physiological circuits implement
stability with respect to bioelectric state, as, for example, observed
in applications of optogenetics to developing systems (Adams
et al., 2013).

3.1.4. Simulation 4: Resting Vmem and Cell Excitability
Simulation set 4 validated the expected function of voltage-gated
Na+ and K+ channels, highlighted the ability for resting Vmem
to control cell excitability, and examined the possibility of low
voltage-gated K+ expression in relation to voltage-gated Na+
expression to effect resting Vmem. Simulations were performed
on a cluster of 35 cells, which were connected by non-voltage
sensitive GJ, and were without TJ. An initialization simulation
without voltage-gated channels was run on each cluster to bring
cells to equilibrium resting state. Each simulation shown in rows

A–C of Figure 7 features cells with different resting Vmem, which
is accomplished by altering levels of K+ leak channels (altering
non-dynamic membrane permeability to K+). In simulations A
and B of Figure 7, all cells have identical expressions of NaV and
KV1.2 channels, with a net maximum membrane permeability of
2667 nm/s and 667 nm/s for NaV and KV1.2 channels, respec-
tively. The resting Vmem of cells in simulation A was −70mV,
while those of simulation B weremuch higher at −18mV. Sim-
ulation C of Figure 7, studied cells with a resting potential of
−57mV and expressions of NaV and KV1.2 channels (homo-
geneous expressions in the cell population), with a net maxi-
mum membrane permeability of 2667 nm/s and 67 nm/s for NaV
and KV1.2 channels, respectively. This simulated a deficiency
of voltage-gated potassium channels – a phenotype occurring in
certain metastatic cancers (Djamgoz, 2014). For each simulation,
a forced depolarization is applied to one randomly selected cell of
the cluster from a time of 1–200ms to induce excitable activity.

For cells with the lowest resting potential of −70mV
(Figure 7A), the forced depolarization leads to the firing of four
action-potential-like signals, with excitable activity ceasing with
the forced depolarization after 200ms. However, for the cluster
with the low resting potential of−18mV (Figure 7B), the forced
depolarization leads to a periodic self-excitation with a period
of about 100ms, which lasts long after the forced depolarization
ceases. This demonstrates the well-known expected behavior of
cells with resting Vmem higher than the activation threshold of
NaV, such as the pacemaker cells of the heart, to enter periodic
self-excitations for an indefinite period of time (Roberts and Stir-
ling, 1971; Onganer et al., 2005; Matthews, 2013a). For hyperpo-
larized cells with resting Vmem of−57mV with expression of NaV
and simulated deficiency of voltage-gated potassium channels
(Figure 7B), our simulations indicate that the forced oscillation
creates a single action potential, with the resting potential being
altered in the long term to a much more depolarized value of
−14mV. These simulations demonstrate both the importance of
resting potential in controlling cell excitability, with more depo-
larized cells showing capacity for self-excitation (Figures 7A,B),
and also the capacity for irregular expression of excitable channels
to potentially alter the resting Vmem (Figure 7C), whichmay assist
in explaining the sustained depolarization of some cancer cells
(Djamgoz, 2014).

3.2. Impacts of Multicellular Vmem Gradients
3.2.1. Simulation 5: Effect of Heterogeneous Vmem on
Physiological Properties
Simulation 5 investigated the physiological impacts of a het-
erogeneous Vmem pattern in a cellular collective. A cluster of
794 cells with a diameter of 375µm, boundary TJ with a diffu-
sion scaling of 1.0× 10−5, and GJ connectivity with a value of
βo
GJ = 1× 10−7was utilized. Initial values for concentrations and

voltages in the simulations were those of the final simulation for
profile B cells, Table 3. Membrane permeability of cells varied
over space in the same pattern and using the same three profiles
defined in Figure 5A. The result was a stable pattern of resting
Vmem featuring a depolarized spot of cells in the lower left side
(Vmem ~−20mV) and a hyperpolarized spot of cells in the upper
right side of a circular cell cluster (Vmem ~−60mV). Each region
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FIGURE 6 | Vmem changes with perturbation to membrane permeability or external ion concentrations. (A) shows membrane permeability to specific ions,
which was altered via various forced changes during the simulation. Intervention (a) increased membrane permeability to Na+ by a factor of 25 from 1 to 3 s.
Intervention (b) increased permeability to K+ by a factor of 10 from 13 to 15 s. Intervention (c) increased permeability to Cl− by a factor of 25 from 25 to 27 s,
and intervention (d) increased permeability to Ca2+ by 50 from 37 to 39 s. In between membrane permeability perturbations, permeability returned to original values.
Intervention (e) blocked activity of the Na/K-ATPase pump from 49 to 69 s. Intervention (f ) temporarily increased the extracellular concentration of K+ by introducing
35mmol/L KCl at the global boundaries from 79 to 89 s, returning to 5mmol/L at the boundary after 26 s. (B) shows BESTE-calculated Vmem in comparison to
Goldman-derived Vmem for a single cell undergoing the applied interventions, for the situation where instantaneous mixing was assumed in the environmental space
(i.e., “cytosol only” simulation). Dashed black line in (B) indicates the value for resting Vmem (−63.7mV). (C) shows BETSE-calculated Vmem in comparison to
Goldman-derived Vmem for a single cell undergoing the same various applied interventions, for the situation where individual extracellular spaces and environmental
electrodiffusion were modeled (i.e., “environment modeling” simulation). Dashed black line in (C) indicates the value for resting Vmem (−63.7mV).

was surrounded by cells with a mean Vmem of approximately
−45mV (Figure 8A).

The presence of regional Vmem differences was found to have
various influences on the cluster as a whole. Heterogeneous Vmem
induced differences in cytosolic Ca2+ levels (Figure 8B) in a

manner inversely proportional to cell Vmem, with the most hyper-
polarized cells having cytosolic Ca2+ of over 150 nmol/L while
the most depolarized contained<60 nmol/L. By contrast, a hypo-
thetical negatively charged anionic signaling molecule develops a
cytosolic concentration profile in direct correspondence to Vmem
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FIGURE 7 | Influence of resting Vmem on cell excitability. Each simulation shown in rows (A–C) features cells with different resting Vmem (as indicated in leftmost
panels) which is induced by altering cell levels of K+ leak channels (altering non-dynamic membrane permeability to K+). In each simulation, all cells have identical
NaV and KV1.2 channels, and a forced depolarization is applied to one randomly selected cell of the cluster from a time of 1–200ms. For cells with the lowest resting
potential of −70mV [row (A)], the forced depolarization leads to the firing of four action-potential-like signals, with excitable activity ceasing with the forced
depolarization after 200ms. For the cluster with the low resting potential of −18mV [row (B)], the forced depolarization leads to a periodic self-excitation with a
period of about 100ms, which lasts long after the forced depolarization ceases. (C) shows that combined activity of dynamic channels with variable expression levels
can generate resting Vmem bi-stability, as for cells with an original resting potential of −57mV, expression of NaV channels with low expression of KV1.2 transitions
the system into a depolarized Vmem of approximately −14mV after a single forced depolarization.

values (inverse to that of cationic Ca2+), but due to the pres-
ence of TJ, which enable the formation of extracellular voltages
due to charge internalization (Figure 8F), the anionic substance
concentrates in extracellular spaces around hyperpolarized cells
(Figure 8F).

Heterogeneous Vmem was also seen to produce significant
osmotic pressure differences between cells of different rest-
ing potential, with more hyperpolarized Vmem leading to lower
osmotic pressure than more depolarized Vmem (Figure 8C). This
is consistent with expectations, as in simulation 5 more hyperpo-
larized cells have higher K+ leak channels, which means more
K+ is moving out of the cell and into extracellular spaces with
expected water movement from the cytosol to the extracellu-
lar space to compensate for movement of salt (i.e., lowering of
osmotic pressure). By contrast, depolarized cells of the simulation
have higher levels of Na+ leak permeability, which means more

Na+ is moving from the extracellular space to the cytosol with
expected water movement from the extracellular space to the
cell to compensate (increase of intracellular osmotic pressure).
Depending on the mechanical properties of cells, these osmotic
pressures may translate into cell volume changes and hydrostatic
pressures and pressure gradients (body forces).

Voltage-sensitive Gap junctions connecting cells responded to
voltage gradients created by Vmem, closing to minimum conduc-
tivity values and isolating the two regions of differential Vmem
from the remainder of the cluster (Figure 8D). The Vmem pattern
in this example generated electric fields of up to ~6.5× 105 V/m
acting (over short spatial distances of 26 nm) between interfacing
cell membranes of GJ networked cells (Figure 8G).

Heterogeneous Vmem in a GJ networked multicellular cluster
alsowas found to induce a long-range pattern of total ionic current
density up to 60µA/cm2 in magnitude (Figure 8H).
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FIGURE 8 | Differences in Vmem between different cells in a cluster have various biophysical influences on the cluster as a whole. (A) Vmem pattern
featuring a depolarized spot of cells in the lower left side and a hyperpolarized spot of cells in the upper right side of a circular cell cluster (A) results in differences in
cytosolic Ca2+ levels (B), osmotic pressure (C), patterns of voltage-sensitive gap junction conductivity [(D), where black is open and white is closed], and small
interior environmental voltage gradients (E). Patterns of Vmem also influence the cytosolic and extracellular concentration of a negatively charged anionic compound
(F), induce strong nano-scale electric fields between gap junctions (G), and generate a characteristic long-range pattern of total ionic current density and
macroscopic electric field (H).

We conclude that stable patterns of resting Vmem have numer-
ous, significant impacts on the cluster as a whole, altering concen-
tration profiles of key signaling moieties, inducing physiological
pressures and forces, and establishing long-range patterns of ion
transport and macroscopic electric field.

3.3. Factors Influencing Resting Vmem in
Networked Cells
3.3.1. Simulation 6: Gap Junction Connectivity
To understand group dynamics and the dynamics of bioelectric
states in an electrically coupled tissue, this simulation explored
the influence of GJ connectivity on cell resting Vmem for a small
group of cells (encircled in Figure 9) with 15× increased Na+
membrane permeability (simulating an increased expression of
an open Na+ ion channel). The multicellular cluster contained
794 cells, and had a diameter of 375µm. Cells were connected by
GJ at interfacing membranes. The simulation began with values
for intra/extracellular concentrations and Vmem obtained after a
20minute initialization simulation, which were similar to those
listed in Table 3’s 20min time point for profile B cells. All cells
began with identical membrane permeability profiles with values
of profile B cells as listed in Figure 5A.

Cells in a first simulation (low GJ connectivity) had an intercel-
lular (GJmediated) free-diffusion scaling ofβo

GJ = 1.0× 10−7. For
a cell with 1.0× 105 GJ in total, this corresponds to an individual
GJ conductivity of approximately 68 pS.

Cells in a second simulation (low GJ connectivity) had
an intercellular (GJ mediated) diffusion scaling constant of
βo
GJ = 1.0× 10−6. For a cell with 1.0× 105 GJ in total, this corre-

sponds to an individual GJ conductivity of approximately 6.8 pS.
For both high and low GJ connectivity simulations, at t= 1.0 s

of the simulation Na+ membrane permeability of a small patch of
cells (circled inFigures 9A,B) was increased by 15× and remained
increased for the duration of the simulation (Figure 9C). This
simulates the increased expression, or opening, of a Na+ ion
channel in this small patch of cells, but not in the remaining cells
of the cluster.

Effects on Vmem vary significantly between cells with high or
low GJ connectivity (Figure 9). For a cluster with low GJ con-
nectivity, the 15× increase in Na+ permeability leads to approx-
imately 40mV depolarization of Vmem, which remains stable as
a new resting Vmem state divergent from that of surrounding
cells (Figure 9D). However, the cluster with high GJ connectivity
shows only 10mV depolarization in Vmem with the 15× increase
in Na+ permeability (Figure 9D).
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FIGURE 9 | Gap junction connectivity has a strong affect on the ability for cells with altered properties to manifest different bioelectrical states in the
collective. A small patch of cells developing 15× increased Na+ permeability transitions those cells into a new resting Vmem for cells with low GJ connectivity (A)
but not for cells with high GJ connectivity (B). (C) shows the time dependence of Na membrane permeability for the affected patch of cells, while (D) shows the time
course of Vmem for a cell in the affected patch of cells for high and low GJ connectivity clusters.

We conclude that the characteristics of GJ connectivity in a
cluster have a significant influence in specifying resting Vmem for
cells with heterogeneous ion channel characteristics, and may,

therefore, be expected to play important roles in morphogenesis
and the development of cancer, which both require the develop-
ment of differential Vmem states from a homogeneous collective.
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3.3.2. Simulation 7: Tight Junction Connectivity
In this set of simulations, a circular cluster with limited diffusion
at the outer environmental cluster boundary was simulated to
explore the effect of tight junctions (Figures 10 and 11). Ini-
tial values for concentrations and voltages in the simulations
were those of the final simulation for profile B cells, Table 3.
Simulations investigated (1) the general effect of TJ presence,
which decreased extracellular boundary diffusion constants by
1.0× 10−5 from free diffusion values (Figures 10B and 11); (2)
the effect of no TJ by leaving extracellular boundary diffusion
constants at those of free diffusion values (Figure 10A); and (3)
the ability for the TEP to alter cluster characteristics by affecting
the permeability of voltage-sensitive gap junctions (Figure 11C),
inducing electroosmotic flows (Figure 11E), and inducing self-
electrophoresis/electroosmosis of membrane-bound ion pumps
and channels (Figure 11D) An additional simulation, whereby the
TJ barrier was broken by removal of cells during the course of a
simulation, demonstrated the role of tight junctions in creating a
characteristic bioelectric signal with wounding (Figure 10C).

The mere presence of TJ, even in the absence of inhomo-
geneous membrane channel distribution, current, or electroos-
motic flow, was seen to alter cell Vmem depending on a cell’s
location with respect to the cluster boundary (Figures 10 and
11). Simulations showed a trans-boundary voltage difference of

approximately 24mV (analogous to the TEP observed in organs
and organisms) spontaneously appeared across the inner and
outer membranes of cluster boundary clusters when ion transport
between extracellular spaces at the cluster boundary was limited
by simulated TJ (Figure 11B shows the TEP as a close-up to the
outer cell membranes). This trans-boundary voltage gradient did
not appear when ion transport in extracellular spaces was similar
to free-diffusion values for ions (Figure 10A), confirming the
well-known role of TJ in establishing the TEP. As detailed in
Figure 11A, tight junctions generate the TEP by maintaining a
transport barrier at the cluster boundary, which acts analogously
to the cellmembrane to internalize charge emitted by cells, leading
to the generation of a typically positive voltage in the extracel-
lular spaces internal to the cluster at the exterior membranes.
As the environmental space of apical cell membranes has zero
voltage, there is a voltage difference between the apical and basal
membranes of outer cells, which defines the TEP.

The wounding event transitioned the cluster into a new steady
state with characteristic bioelectrical pattern. Cells local to the
wounded area develop depolarized Vmem in addition to a char-
acteristic pattern of current flow featuring current directed out
of the wound, which returns back to the cluster at each side of
the wound (Figure 10C). This well-known pattern of endogenous
current flow and associated electric field are implicated in cellular

FIGURE 10 | A trans-boundary voltage difference (trans-epithelial potential; TEP) appears across the outer boundary of cell clusters when ion
transport between extracellular spaces at the cluster boundary is limited by simulated tight junctions (B,C). This trans-boundary voltage does not occur
when ion transport in extracellular spaces is similar to free-diffusion values for ions (A). With TJ present, wounding leads to a characteristic bioelectrical cluster state
(C) where ion current flows out of the wounded area, returning to the cluster at both sides of the wound, and establishing a long-range (100 s of micrometers) current
flow and macroscopic electric field in the cluster (C).
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FIGURE 11 | The TEP appearing across the outer boundary of cell clusters, when ion transport between extracellular spaces at the cluster boundary
is limited by simulated tight junctions, was indicated to form because of charge and voltage build up in the extracellular environment (A). The TEP
strongly polarizes individual cells in the outer layer of the cluster (B), and results in an electric field at the cluster boundary. The strong voltage gradients of the TEP
were predicted to create spatial patterns of GJ voltage gating, whereby cells in the outer layer and cluster interior form two networked groups, but cells between the
outer layer and cluster interior are separated by closed and minimally conductive GJ [(C), black represents fully open GJ, white represents fully closed GJ]. Patterns
of global ionic current density (not shown) and electroosmotic fluid flow (E) are strongest in the cluster across the TEP. The strong electric field and electroosmotic
flows at the cluster boundary are predicated to result in lateral self-electrophoresis/electroosmosis of ion pumps and channels in the membranes (D), which further
alters current, flow, TEP, and Vmem patterns of the cluster.

signaling events for wound healing and the initiation of limb
development (Borgens, 1984; Nuccitelli, 2003b; Zhao, 2009).

Finally, when TJ are present, the electric field generated by
the TEP was predicted to influence voltage-sensitive gap junction
permeability (Figure 11C) to spontaneously divide the cluster
into two networks: an outer layer of GJ connected cells around
the perimeter of the cluster, and the inner network of the cluster
bulk, with the inner and outer layers isolated by low permeability
gap junctions (Figure 11C). The TEP was also found capable of
inducing electroosmotic flowswith, on average, velocities of about
10 nm/s (Figure 11E) and to redistribute ion pump and channels
in the membranes to generate polar cell fluxes across the apical
and basal membranes (Figure 11D).

We conclude that the TEP, an important bioelectrical state char-
acteristic of multicellular clusters, can arise spontaneously in cell
clusters, simply by inhibiting diffusion from extracellular spaces
of the cluster boundary. The TEP contributes to the generation
of a characteristic cluster-wide bioelectric state upon wounding,
and creates micro-environments with differential channel activity
at the boundary and interior of the cluster.

3.3.3. Simulation 8: Spontaneous Vmem Patterning
Akey question in this field is the origin of bioelectric pre-patterns.
Turing and others (Turing, 1952; Cross and Hohenberg, 1993)

showed that pattern can spontaneously self-organize from sym-
metry breaking in initially homogeneousmedia. Could bioelectric
dynamics enable voltage pre-patterns to emerge spontaneously
in physiologically homogeneous tissue? Simulation 8 explored
spontaneous Vmem patterning (symmetry breaking) created by a
positive feedbackmechanism in the networked cell cluster. Awide
range of feedback mechanisms exist in bioelectrical tissue systems
on account of the chemical and Vmem sensitivity of ion channels
and GJ, the non-linear relationship between channel/GJ activity
and Vmem, and the ability for voltage gradients to alter concen-
tration profiles of ion channel gating ligands via electrodiffusive
transport. Thus, we reasoned that positive feedback loops could
amplify small physiological differences (noise) to result in macro-
scopic distributions that could underlie the origin of bioelectric
pre-patterns. An example feedbackmechanismwas found capable
of generating a strong, dipolar axial Vmem gradient in a cluster
of voltage-sensitive GJ networked cells with TJ (Figure 12). In its
initial state, the cluster had a small Vmem asymmetry of <10mV,
due to a small increase in K+ leak channels for a small number
of cells in the upper right side (Figure 12A). This small asym-
metrical expression of K+ leak channels also corresponded to
small related asymmetries in environmental voltage (Figure 12B)
and anionic ligand concentration (Figure 12C). No changes to
voltage-sensitive GJ open/closed state were noted in the initial
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FIGURE 12 | Example feedback mechanism generating Vmem patterning in a cluster of voltage-sensitive, GJ networked cells with TJ, which occurs
due to the presence of a charged channel gating ligand. In its initial state, a cell cluster has a small Vmem asymmetry due to increase in K+ leak channels for a
small cluster of cells in the upper right side, leading to a minor resting Vmem difference of approximately 10mV [Initial State (A)]. This initial state also corresponds to
small related asymmetries in environmental voltage [Initial State (B)], anionic ligand concentration [Initial State (C)], and no changes to GJ open/closed state [Initial
State (D), where blue=open, white= closed]. However, the presence of an electrodiffusing cationic gating ligand capable of opening a sodium channel based on its
extracellular concentration (analogous to acetylcholine), in combination with TJ and GJ activity, generates a strong axial Vmem polarity on account of the positive
feedback mechanism outlined in (E).

state (Figure 12D, where blue= open, white= closed). However,
the presence of an electrodiffusing cationic gating ligand, which
opens a Na+ channel based on its extracellular concentration
(a situation analogous to that of acetylcholine), in combination
with TJ and GJ activity, generated a strong axial Vmem gradient
(Figure 12).

The positive feedback loop is outlined in Figure 12E. TJ main-
tain an environment that internalizes charge, allowing a voltage to
develop in extracellular spaces (Figure 12B), while cells withmore
depolarized Vmem exclude the cationic ligand to the extracellular
spaces (Figure 12C). As voltage in the extracellular space is the
inverse of that of intracellular spaces, the gating ligand also travels

extracellularly from cells withmore hyperpolarized tomore depo-
larized cells (see currents in Figure 12B), leading to further build
up of gating ligand around positive cells. Positive feedback results,
as the positively charged gating ligand acts to open a Na+ ion
channel, leading to cell Vmem becoming more depolarized. As
voltage gradients develop between cells, GJ close, further reinforc-
ing the development of two regions of highly distinguished Vmem
(Figure 12B).

We conclude that it is possible for positive feedback mech-
anisms to generate strong Vmem gradients a cell collective, and
that this may be one mechanism through which bioelectric pre-
patterns may be generated and manipulated.
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4. DISCUSSION

Overall, BETSE enables highly detailed and accurate modeling
of complex bioelectrical signals and states. A basic validation,
using experimentally derived parameters, and comparing results
with experimentally obtained observations for the same system
(Xenopus oocytes), showed high correspondence (<10% dis-
crepancy) between BETSE-calculated and experimental observ-
ables (Table 2). In addition, using the Nernst equation [equa-
tion (21)] to calculate Vmem on the basis of simulated electrod-
iffusing “reporter dye” intra- and extracellular concentrations,
showed remarkable correspondence to BETSE direct-calculated
Vmem. Likewise, comparison between BETSE direct-calculated
and Goldman-derived Vmem also showed excellent agreement.
Multicellular simulations with TJ (Figure 10) also showed the
characteristic TEP across the exterior cluster boundary, with typi-
cally observed polarity (inside positive) andmagnitudes (~25mV)
close to those observed experimentally (Hay and Geddes, 1985).
BETSE also correctly predicted the characteristic bioelectric signal
occurring with wounding (Zhao, 2009) (Figure 10D). Simulated
endogenous current flows withmagnitudes from 1 to 200µA/cm2

were within the range of typically observed experimental currents
1–500µA/cm2, Nuccitelli (1992).

Dynamical system theory maintains the concept of an attractor
as a parameter (or set of parameters) toward which a system
tends to spontaneously evolve, even under a wide range of starting
conditions (Milnor, 1985). An attractor state is also characterized
by the system’s return to the attractor state after perturbation.
Simulations 2 and 3 from our validation study emphasize how a
cell’s resting Vmem is an attractor state that can be reached even
with remarkably variable initial conditions, such as intracellular
ion concentrations being equal to those of the extracellular envi-
ronment, and starting voltages being zero (Figure 5;Table 3). Also
consistent with the concept of an attractor state, even with tran-
sient perturbations, such as the introduction of a high K+ concen-
tration to the environment, cell Vmem returns to its original resting
value once the perturbation ceases (Figure 6). These properties are
a powerful feature of bioelectric circuits, which implement robust
and stable control elements during pattern formation under awide
range of conditions (McCaig et al., 2005; Levin, 2012).

Our validation simulations also demonstrate the expected tim-
ing and shape for excitable signals, which may become possible
when cells express voltage-gatedNa+ andK+ channels (Figure 7).
Simulations with excitable channels also highlight the impor-
tant influence resting Vmem has on cell excitability, with more
depolarized resting potentials being able to induce periodic self-
excitations (Figure 7), which is consistent with the mechanism of
pacemaker cells of the heart. Some “somatic” cells, such as embry-
onic amphibian epithelium and some cancer cells, are known
to express voltage-gated Na+ and K+ channels; due to their
lower resting potential, action-potential-like signals, including
self-excitations, are predicted by our model, and have also been
observed experimentally (Roberts and Stirling, 1971; Onganer
et al., 2005). Moreover, some aggressive metastatic cancers exhibit
a depolarized resting Vmem with abnormal, high expression of
voltage-gated Na+ and a deficient expression of voltage-gated
K+ channels (Onganer et al., 2005; Djamgoz, 2014). Our results

(Figure 7C) also indicate that low expression of voltage-gated
K+, in combination with expression of voltage-gated Na+, may
permanently alter resting Vmem from a hyperpolarized (−57mV)
to depolarized restingVmem state (−14mV) after a single transient
depolarization event, which is consistent with the abnormal rest-
ingVmem observed in some cancers (−20 to−5mV) (Binggeli and
Weinstein, 1986; Djamgoz, 2014). A similar form of resting Vmem
bistability, also developing with the action of voltage-gated chan-
nels, has been described in the bioelectrical models of Cervera
et al. (2014) and Law and Levin (2015).

Our studies also highlight the significant physiological impacts
that resting Vmem can exert. One-way Vmem can exert an influence
on downstream patterning mechanisms is by altering the spatial
distribution of important chemical signaling molecules (such as
Ca2+, serotonin, or glutamate) in relation to cell Vmem, even
when the compound is present at a homogeneous concentration
in the extracellular bathing medium. This non-intuitive process
happens because in an electrolyte medium where voltage gradi-
ents are present, ions are influenced, not only by concentration
gradients (regular diffusion), but also by voltage gradients; under
the right conditions they can passively move up concentration
gradients. Thus, differences in Vmem alone can influence the
cytosolic concentration of important signaling molecules, leading
to differences in critical process, such as gene expression and
enzyme function (Levin et al., 2006; Tseng et al., 2011). Our
results indicate that the presence of regional Vmem differences can
passively induce differences in cytosolic Ca2+ levels (Figure 8B)
in amanner inversely related to cell Vmem. AsCa2+ is an important
secondarymessenger, and intracellular Ca2+ levels are involved in
calcium-induced-calcium-release (CICR) and ion channel gating
(e.g., Ca2+ gated K+ channels), these differences in the cytosolic
Ca2+ concentration with Vmem may produce significant down-
stream effects on cell state (including enzyme function, gene
expression, and apoptosis) and further evolution of bioelectric
pattern (via effects on Ca2+ gated ion channels). Similarly, effects
on the concentration profile of a negatively charged signaling
molecule were in direct correspondence to Vmem values (inverse
to that of cationic Ca2+), which further illustrates how cell state
can be influenced in divergent ways as by simply exhibiting
different values of resting Vmem signaling molecules with dif-
ferent charge have opposite changes to their concentration pro-
files. Further Vmem related physiological changes, such as osmotic
pressure gradients (Figure 8), can lead to differential changes
in cell volume and the development of physical forces in the
collective.

Due to the well demonstrated importance of cell resting Vmem
states (McCaig et al., 2005; Tseng and Levin, 2013; Levin, 2014),
clear comprehension of the factors involved in specifying cell
resting Vmem is an essential first-step for understanding themech-
anisms underlying bioelectricallymediated pattern formation and
regulation. In single or isolated cells populating clusters without
GJ or TJ, resting Vmem is primarily determined by the plasma
membrane’s permeability to specific ions, to levels of extracellular
ion concentration, and to the presence and activity of different
ion pumps, such as H/K-ATPase (Veech et al., 1995; Lodish et al.,
2000;Wright, 2004). BETSE accurately reproduces expected Vmem
changes corresponding to these well-known factors of influence
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(Figures 5 and 6), with isolated cells showing strong depolariza-
tions with increased Na+ membrane permeability, hyperpolar-
ization with increased K+ permeability, depolarization with Cl−
membrane permeability, depolarization with increased extracel-
lular K+, and hyperpolarization with H/K-ATPase pumps and
moderate to high K+ membrane permeabilities (data not shown).

However, our studies also indicate that in cell clusters where
bioelectric circuits are created via the presence of GJ (enabling
intercellular communication) and TJ (blocking extracellular
transport at the external boundary), factors influencing the resting
Vmem attractor state can be quite different from those for isolated
cells. Gap junction conductivity, TJ restriction at the boundary,
and the overall geometry of the cluster are additional influences
of the resting Vmem state that are unique to multicellular clus-
ters. Simulations indicate that the degree of GJ connectivity has
a strong affect on the ability for cells with altered membrane
permeability properties (e.g., cells with a different ion channel
expression profile or open ion channel state) to manifest different
resting Vmem states in the collective (Figure 9). Since research
indicates that resting Vmem is a key instructive signal (Levin and
Stephenson, 2012; Pai et al., 2012), GJ are indicated as impor-
tant elements determining how potent differential membrane ion
channel states will be in affecting physiological outcomes. Our
results are consistent with recent reports of Cervera et al. (2016)
andCervera et al. (2015), whose equivalent electrical circuitmodel
of GJ connected cells demonstrates the wide range of cell Vmem
that can result from differing GJ connectivity in a collective. It
is also apparent that TJ (in conjunction with GJ) are responsible
for the spontaneous emergence of a TEP, whereby cells at the
outer boundary of a cell cluster acquire a depolarization compared
with interior cells, thereby naturally forming a spatially dependent
Vmem pattern.

The involvement of GJ- and TJ-related factors in the specifi-
cation of multicellular Vmem attractor states sheds light on the
importance of GJ and TJ in embryonic development, and help
explain why loss of GJ permeability (Leithe et al., 2006) and
increase in TJ permeability (Soler et al., 1999) are associated with
cancer progression. With regard to embryonic development, our
results suggest functional GJ and TJ play important roles in estab-
lishing primary patterns of Vmem and asymmetry in developing
clusters (Figures 9 and 10). In cancer, which is characterized by
cells with depolarized Vmem, loss of GJ communication would
allow cells with different membrane channel states to express
dramatically altered Vmem compared to cells with high GJ connec-
tivity (Figure 9), a conclusion that is also clearly shown byCervera
et al. (2016). Likewise, an increase in TJ permeability is predicted
to result in decrease of the TEP with consequential depolarization
of interior cells and atypical channel functions for cells on the
boundary and interior (Figure 10). For the first time, BETSE
allows quantitative study of tissue-level electric fields interacting
with resting potential gradients – two key areas of developmental
bioelectricity that have heretofore been studied separately.

Bioelectric circuits are rich with opportunities for feedback
cycles, implying complex dynamics can exist in networks of con-
nected cells, forming a layer of control with its own intrinsic
behavior and self-organizing capabilities. Feedbacks exist because
of non-linearities in the bioelectric system on a hierarchy of scales.

On a fundamental level, voltages are created by net imbalances in
ionic charge density; however, ionic concentrations are influenced
by voltage gradients, thereby creating a primary non-linearity in
the electrolytic system. Moving to the cellular and multicellu-
lar scale, the function of ion pumps and channels alters Vmem,
which in turn can affect voltage-sensitive channels and electrical
synapses. Furthermore, the presence of ionic messengers, includ-
ingCa2+ or anionic serotonin or glutamate, are chargedmolecules
subject to movement in electrochemical gradients, but can also
alter Vmem directly via their effect on specific ion channels as
gating ligands (Levin et al., 2006; Berridge, 2014). An example
of a feedback mechanism capable of inducing a strong, axial
Vmem gradient in a cell cluster was demonstrated by implementing
dynamics similar to those of acetylcholine (Figure 12). It will be
crucial to perform quantitative simulations of specific systems to
understand the origin of the instructive bioelectric pre-patterns
that regulate, for example, the formation of the vertebrate face
(Vandenberg et al., 2011), and anterior–posterior polarity in pla-
naria (Beane et al., 2013). As channelopathies are increasingly
observed to be an important cause of birth defects (Bendahhou
et al., 2003; Barel et al., 2008; Adams et al., 2016), such models
will provide not only mechanistic explanations of the origin and
progression of bioelectric pre-patterns but could also be used to
test prospective interventions in silico for biomedical applications.
Beyond embryogenesis, such quantitative models will reveal the
conditions under which aberrant physiological states become nor-
malized or established as tumors, and help formulate strategies
for suppressing and perhaps reprograming established oncogenic
states (Arcangeli et al., 2009; Chernet et al., 2015).

This first version of the BETSE platform has several limita-
tions. First, BETSE currently considers a fixed number of cell
grid points and does not compute cell division. Future work will
extend the BETSE model to include the ability to model cell pro-
liferation and apoptosis, as can occur downstream of bioelectric
signaling in development, regeneration, and cancer. Similarly,
cell mobility, including galvanotaxic movement of cells and gal-
vanotropism in response to endogenous, global electric fields, is
another key component of bioelectric pattern regulation. BETSE
currently considers a fixed lattice of cells, which cannot move
with respect to the environment. Cell and cluster shape changes
in response to endogenous signals, such as the global current
and field density are planned for future work. Besides the plasma
membrane, intracellular organelles, such as the mitochondria,
endoplasmic reticulum, and nucleus (Mazzanti et al., 2001), have
their own bioelectic control mechanisms (subcellular membrane
ion pumps and channels, as well as transmembrane voltages)
which may interface with cell- and tissue-level bioelectric mech-
anisms. Models of these intracellular components are currently
being developed for BETSE, in order to assist in understanding the
hierarchy of interacting systems and sub-systems and their role
in developmental/regenerative pattern and cancer development
and regulation. Finally, we are working to add transcriptional
readouts of bioelectric state change, to allow BETSE to model
the control of gene expression by Vmem change and to integrate
these models with existing in silico gene regulatory networks that
underlie pattern regulation (Geard andWilladsen, 2009; Lobo and
Levin, 2015).
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Due to the complexity of bioelectric tissue systems, suitable
and realistic models, such as BETSE are essential for exploring
the properties and feedback mechanisms involved in bioelectri-
cal circuits, and to elucidate the mechanisms involved in creat-
ing and regulating pattern. These tools represent an important
enabling step for exploiting bioelectrical signaling in synthetic
bioengineering approaches that harness self-organizing and con-
trol capabilities of voltage gradients for guided self-assembly of
patterning tissues in vitro; moreover, they are a core compo-
nent of forthcoming modeling tools that will identify specific
manipulations of biophysical state that are predicted to achieve
desired system-level outcomes (anatomical and physiological
state). Future work will use BETSE to explore details of complex
feedback loops involved in pattern emergence and dysregulation,
with a focus on developing bioelectric interventions for rational
control of morphogenesis (pattern emergence), regeneration (pat-
tern after perturbation), and cancer development and suppression
(pattern dysregulation).
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