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Wound healing is an intricate process that requires complex coordination between 
many cell types and an appropriate extracellular microenvironment. Chronic wounds 
often suffer from high protease activity, persistent infection, excess inflammation, and 
hypoxia. While there has been intense investigation to find new methods to improve 
cutaneous wound care, the management of chronic wounds, burns, and skin wound 
infection remain challenging clinical problems. Ideally, advanced wound dressings can 
provide enhanced healing and bridge the gaps in the healing processes that prevent 
chronic wounds from healing. These technologies have great potential for improving out-
comes in patients with poorly healing wounds but face significant barriers in addressing 
the heterogeneity and clinical complexity of chronic or severe wounds. Active wound 
dressings aim to enhance the natural healing process and work to counter many aspects 
that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, 
and wound infection. This review paper discusses recent advances in the development 
of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, 
this review focuses on the novel cutaneous wound treatments that have undergone 
significant preclinical development or are currently used in clinical practice.

Keywords: biomaterials, nanoparticles, nanotherapeutics, regenerative medicine, wound care, wound healing, 
wound dressings, wounds

iNTRODUCTiON

Cutaneous injuries are a universal aspect of medical care, with approximately 300 million chronic 
and 100 million traumatic wound patients worldwide. Wounds have an immense financial burden 
on health-care systems worldwide, accounting for over $25 billion every year in the US alone 
(Sen et  al., 2009). In addition, the incidence of chronic wounds has rapidly increased due to 
the rising prevalence of type 2 diabetes, peripheral vascular disease, and metabolic syndrome. 
Although treatments for acute and small area traumatic wounds are effective, problems arise in 
the long-term care for patients with large area burns, infected wounds, and chronic wounds. 
Figure  1 provides a summary of the standard wound care procedures present in many wound 
care clinics and advanced wound care centers, which are present only in specialized wound care 
units. Clearly, the need for postsurgical and emergency wound care is on the rise, with new 
treatments being added to the advanced wound care. However, many mechanistic aspects of wound 
repair remain poorly understood, we direct the reader to other reviews for further information 
about detailed mechanisms of wound healing (Martin, 1997; Gurtner et al., 2008; Eming et al., 
2014). In addition, we refer the reader to reviews of gene and stem cell therapies for wound 
healing (Branski et al., 2009; Heublein et al., 2015), role of mechanical forces in wound healing 
(Agha et  al., 2011; Wong et  al., 2011a, 2012), and immune response to biomaterial implants 
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FiGURe 1 | Clinical wound care. Schematic diagram showing the differences between standard wound care that is available at any clinic and advanced wound 
care that is available only in special wound care units across the country.
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(Franz et  al.,  2011) for further information on those topics. 
In this review, we will focus on biomaterial- and nanoparticle 
(NP)-based wound therapeutics, in particular, those that have 
significant preclinical development or are in clinical trials/clini-
cal use. To provide perspective for these therapies, we will first 
discuss important aspects of healing infection wounds, burn 
wounds, and chronic wounds, as these types of wounds would 
benefit most from improved therapies for wound healing.

The prevalence of chronic wounds has increased rapidly in the 
past decades, creating a major escalation in health-care costs and 
patient morbidity (Sen et al., 2009). The chronic wounds are het-
erogeneous in their presentation and etiology. Many times there 
is high protease activity, large-scale infection and biofilm forma-
tion, ischemia or hypoxia in the tissue, recurrent injury due to 
neuropathy, or cellular failure leading to gangrene associated with 
chronic wounds. Chronic wounds most often occur as venous leg 
ulcers, pressure ulcers, or foot ulcers and are found at elevated 
rates in patients with diabetes and obesity. The prevalence of type 
2 diabetes has increased dramatically in the past years and further 
drives the problem of chronic wound development (American 
Diabetes, 2013; Futrega et al., 2014). In addition, neuropathy and 
microvascular angiopathy are common complications of diabetes 
and contribute to a 12–25% lifetime risk of developing diabetic 
ulcers (Singh et  al., 2005). Specifically, diabetic foot ulcers are 
responsible for 25–50% of the total cost of diabetes treatment 
(Armstrong et al., 2013) and are the most common cause for limb 
amputations in the US (Larsson et  al., 1998). Diabetic ulcer is 
a complex clinical problem requiring a multifaceted treatment 
plan with standard therapeutic components, including debride-
ment of necrotic tissue, offloading, infection control, surgical 
revascularization, and limb elevation/compression (Ayello, 2005; 

Alexiadou and Doupis, 2012; Andrews et al., 2015). Skin grafts, 
including bioengineered or artificial skin, autografts, allografts, 
or xenografts from animal tissue, have produced promising 
results in clinical trials for diabetic foot ulceration (Santema et al., 
2016). While many bioactive approaches have been explored to 
improve wound care in diabetic patients (Calderini et al., 2014), 
many of these have been found to be ineffective in clinical trials, 
and these non-healing wounds remain a major clinical challenge 
(Steed et al., 1992; Richard et al., 1995; Wieman et al., 1998; Steed, 
2006; Uchi et al., 2009; Marti-Carvajal et al., 2015).

Infection control is extremely important due to rising inci-
dence of multidrug-resistant microbes all over the world. The 
widespread use of antibiotics over the past 20 years has led to the 
development of antibiotic resistance in bacteria and fungi (Bell 
et  al., 2014). The situation is particularly severe in developing 
countries where there is little control over the sale and usage 
of antibiotics. Rampant use of antibiotics has selected for the 
introduction of bacterial genes from the soil “resistome” into 
human pathogens, as demonstrated by the presence of the same 
genes in soil bacteria and human bacteria (Blair et  al., 2015). 
Staphylococcus is the most common infection found in burns 
and wounds (Dhanalakshmi et  al., 2016). Methicillin-resistant 
Staphylococcus aureus (MRSA) is the most common hospital-
borne infection affecting millions of patients daily (Dantes et al., 
2013). Interestingly, the microbes affecting patients with chronic 
infected wounds are dependent on the geographic location as 
well (Banu et  al., 2015; Uckay et  al., 2015). In May 2015, the 
World Health Assembly, a subset of World Health Organization 
adopted a Global Action Plan against antimicrobial resistance, 
which shows the urgency of this problem (Assembly, 2015). In 
December 2015, the US congress has approved a $303 million 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


FiGURe 2 | wound healing phases. Schematic diagram elucidating the four distinct stages of normal wound healing, including hemostasis, inflammation, 
proliferation, and remodeling, along with the time scale of each phase.
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increase in funding to fight this global epidemic of antimicro-
bial resistance. Antibiotic-resistant organisms present a major 
problem in infected wounds, and there is an immense need for 
engineering new therapies using nanotechnology and advanced 
biomaterial science to address this problem. The development 
of efficient antimicrobial drugs against the multidrug-resistant 
microbes that delay wound healing would provide a substantial 
benefit to patients with chronic wounds from infection.

Burn injuries also present significant challenges in restoring 
patient functionality and cosmetic repair. Acute burns result in 
a sudden influx of inflammatory cytokines and growth factors 
(Evers et al., 2010). Large area burns often lead to complications, 
including hypertrophic scarring, facial disfigurement, and loss of 
muscle and function. Tissue perfusion is of paramount impor-
tance to improve wound healing by bringing more nutrients and 
creating hyperoxyic conditions suitable for healing (Ramasastry, 
2005). Current therapeutic regimes for burns are painstakingly 
long and often still result in scarring and contraction that must be 
addressed through further therapies and long-term care. Effective 
wound dressings that induce functional reconstruction following 
burn injury would have a profound impact on patients with large 
area burns.

The ideal advanced wound dressing would maintain the wound 
microenvironment and address the limitations of wound healing 
specific to the type of wound and patient’s accompanying disease 
or injury state. It is generally advantageous for wound dressings to 
be breathable, allowing optimal gaseous exchange and thus pro-
tect the periwound skin from maceration and assist in autolytic 
debridement in removing debris and necrotic tissues. The dress-
ing must also maintain the balanced moist wound environment 
by donating moisture to the dry wounds and absorbing moisture 
and exudates from wet wounds. It must act as a barrier to protect 
against infections and provide thermal insulation to the wound. 

Finally, advanced wound dressings should aim to enhance aspects 
of the natural wound healing processes. These could include 
the promotion of angiogenesis in wounds with poor perfusion, 
modulation of the immune cells within the wound, enhancement 
of the invasion and migration of fibroblasts and keratinocytes in 
the healing wound, and prevention or treatment of infection.

In this review, we focus specifically on the current biomaterial 
or NP-based therapies that have significant preclinical develop-
ment or have entered into clinical usage or trials. We discuss 
the Section “Fundamental Aspects of Wound Healing” briefly 
followed by sections devoted to “Biomaterial-Based Therapies” 
and “Nanoparticle-Based Wound Therapies.” We chose to focus 
on both biomaterials- and NPs-based therapies because with the 
advent of new and advanced technologies, the fields have become 
interdependent. In our opinion, we need to be cognizant of the 
advances in both the fields to be able to develop new therapies to 
tackle the myriad challenges in the field of wound healing.

FUNDAMeNTAL ASPeCTS OF wOUND 
HeALiNG

There are four relatively distinct phases in wound healing process 
that include hemostasis, inflammation, proliferation, and remod-
eling (Figure 2). To understand the process better, let us draw 
analogy with a kingdom at war. The first step during war is to 
close the gates of the castle that is equivalent to the hemostasis 
phase of wound healing, which entails clotting of blood mediated 
by platelets. The next step is to mount a massive attack against 
the enemy, which is similar to the inflammation phase of wound 
healing, mediated by macrophages and neutrophils. Then a huge 
number of repair people like plumbers, roofers, framers, and 
laborers are recruited to fix the damage done to the castle, which 
is similar to the proliferation phase of wound healing, mediated 
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by macrophages, lymphocytes, fibroblasts, and keratinocytes. 
Finally, the renovation of the castle is handled by interior design-
ers for the final redecoration similar to the remodeling phase 
of wound healing mediated primarily by fibroblasts. Wound 
healing phases are in delicate balance with each other, especially 
the inflammation and proliferation phases. If there is too much 
inflammation during healing, it leads to chronic non-healing 
wounds that are common in many peripheral vascular diseases 
and type 2 diabetes patients. On the contrary, too much prolifera-
tion during healing leads to scar formation that is not esthetically 
pleasing and reduces the quality of life. In addition, if there is 
damage to the underlying muscle tissue, the satellite cells are 
activated to form myoblasts to initiate the muscle healing process, 
which generally takes even longer than skin wound healing.

Hemostasis Phase
Following the initial wounding, there is the potential for bleeding 
and requiring hemostasis (Figure 2). On the battlefield, blood loss 
or hemorrhage from acute injury is the leading cause of deaths for 
soldiers (Clifford, 2004). Even though tourniquets are still used in 
the field to stop blood flow temporarily in large wounds, it may 
lead to ischemia and reperfusion injury in the tissue (Percival 
and Rasmussen, 2012). Thus, products to enhance hemostasis 
are of paramount importance in preventing exsanguination 
and hemorrhagic shock in people with extensive wounds. The 
most commonly used methods to facilitate hemostasis are direct 
pressure on the wound and application of hemostatic materials. 
Hemostatics can be of three different types including clotting 
facilitators (e.g., kaolin) and mucoadhesive agents (e.g., chitosan) 
(Kozen et al., 2008).

inflammation Phase
The natural response of the immune system to any bodily injury 
is to monitor the condition and illicit inflammatory reaction to 
tackle the foreign particles (Figure 2). The classic signs of inflam-
mation have been described since first century AD in Rome and 
are referred to as dolor (pain), calor (heat), rubor (redness), and 
tumor (swelling) (Karimbux, 2014). The inflammatory response 
is mediated by the neutrophils and monocytes (that differentiate 
into macrophages) (Broughton et al., 2006). The neutrophils are 
involved in infection control, and macrophages remove cellular 
debris and provide soluble signals that activate fibroblasts and 
myofibroblasts in the proliferation phase of wound healing by 
releasing various kinds of cytokines, proteases, and growth 
factors in the wound. For patients with chronic conditions, the 
wounds often acquire a highly inflammatory state, necessitating 
the use of non-steroidal anti-inflammatory drugs (salicylates, 
arylalkanoic acids, 2-arylpropionic acids, N-arylanthranilic 
acids, pyrazolidines, oxicams, and COX-2 inhibitors) (Su et al., 
2010) and antibiotics (polymyxins, macrolides, tetracyclines, 
aminoglycosides, lincosamides, streptogramins, and pleuromu-
tilins) (Martin, 1997).

Proliferation Phase
This is the rebuilding phase of the wound healing process 
(Figure  2). During the inflammatory phase, the macrophages 
and neutrophils release various cytokines and chemokines that 

attract cells into the wound microenvironment, including other 
lymphocytes, endothelial cells, fibroblasts, myofibroblasts, and 
keratinocytes (DiPietro, 1995). The keratinocytes migrate from 
the wound edge, cover the wound bed, and restore barrier func-
tion in the skin. The fibroblasts proliferate and secrete various 
extracellular matrix (ECM) proteins including fibrin, fibronectin, 
collagen and other ECM proteins that provide a provisional 
matrix for tissue remodeling and angiogenesis. This forms the 
granulation tissue of the wound, which is imperative for the 
proper wound healing (Mayet et  al., 2014). Lymphocytes and 
other immune cells provide additional responses to infectious 
agents, continuing the processes initiated by the early influx of 
neutrophils. The endothelial cells under the stimulation of soluble 
factors released by platelets, macrophages, and other cells initiate 
neovascularization in the wound bed to improve nutrient and 
oxygen exchange. The new vessels also aid in the transport of 
other cells into the affected area facilitating the wound healing 
process. This step can last anywhere from 4 days to 3 weeks.

Remodeling Phase
The final phase of the wound healing process is the remodeling of 
the wound and surrounding tissue by the fibroblasts, which start 
in about 3 weeks after injury and can continue until as long as 
2 years (Figure 2). The fibroblasts and myofibroblasts put down a 
network of collagen fibers and other ECM proteins in an orderly 
manner while using proteases to degrade existing disordered 
tissue. The granulation tissue formed during proliferation phase 
is made up of immature type III collagen and is relatively weak. 
During remodeling, the fibroblasts gradually replace the type III 
collagen with mature type I collagen (Hantash et al., 2008). The 
final goal is to restore the tissue to pre-injury conditions during 
which the wound becomes gradually less vascularized.

Animal Models for wound Healing
To study wound healing effectively by mimicking the human 
wound healing process, a number of wound healing animal 
models (Kim et al., 2015) have been developed in mouse (Wong 
et  al., 2011b), rat (Dorsett-Martin and Wysocki, 2008), rabbit 
(Chien, 2007; Aksoy et  al., 2009; Pelizzo et  al., 2015), and pig 
(Sullivan et  al., 2001). Small mammals such as rats, mice, and 
rabbits are relatively inexpensive, require fewer resources, have 
multiple mutant models for delayed wound healing, and thus 
are easily obtainable. Furthermore, the wound healing process 
in small mammals is completed in 1–2 weeks instead of weeks or 
months in human clinical studies. However, a major limitation of 
these models is the differences in the mechanisms of wound heal-
ing in comparison to human wound healing and, in particular, 
the complexities of a chronic non-healing wound (Ansell et al., 
2012). The human skin anatomy is significantly different from 
that of rats, mice, or rabbits (Ansell et al., 2012). Therefore, the 
wound healing process is vastly different and hence difficult to 
compare. In addition, rodents primarily use wound contraction 
using the underlying thin muscle layer, panniculus carnosus to 
heal wound, while humans heal wounds by granulation tissue 
formation (Dunn et  al., 2013). Among large animal models, 
porcine skin has a close structural resemblance to human skin in 
terms of epidermal thickness and dermal-to-epidermal thickness 
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ratio (Sullivan et al., 2001). They also share similar patterns of hair 
follicles and vasculature in the skin. Moreover, the dermal col-
lagen and dermal elastic content in porcine skin is more similar 
to humans than other commonly used mammals (Sullivan et al., 
2001). However, a major limitation of wound healing models in 
pigs is the significant costs of housing and care of the animals, 
variable wound contraction in pigs depending on the location, 
and the high rate of growth of pigs that can skew the wound 
healing process.

BiOMATeRiAL-BASeD wOUND 
THeRAPieS

Biomaterials have been used to enhance wound healing since 
the earliest medicine-related writings. Ancient writings from 
the Egyptians include references to the usage of honey, grease, 
and vegetable fiber for enhancing wound healing (Shah, 2011). 
Biomaterials have become an integral part of the medical indus-
try since twentieth century. The global biomaterials industry 
is estimated to be $150 billion and has been growing steadily 
(Ratner, 2007). After World War II, restricted classes of new 
polymers were released to the public and were adopted into 
medical devices. These materials included polyesters, silicones, 
fluoropolymers, polyurethanes, nylons, and methacrylates 
(Ratner, 2007). These polymers were then used for biomedical 
applications, such as vascular grafts, intraocular lenses, hip 
prostheses, hydrocephalus shunts, kidney dialysis systems, and 
other medical devices. Currently, the biomaterials used in the 
medical industry can be broadly classified into three categories: 
metals (stents, dental implants, etc.), ceramics (orthopedic and 
dental implants), and polymers (sutures, vascular grafts, joint 
tissue, soft tissue in general) (Ratner, 1993). Biomaterials have 
been tremendously important in the wound care industry specifi-
cally for wound dressings, cell encapsulation therapies, and NP 
encapsulation therapies. We will discuss the role of biomaterials 
in the wound healing applications in this section.

Biomaterials Currently in Development
A summary of the biomaterials currently in development is 
shown in Table 1.

Standalone Biomaterials
There has been significant rise in engineering biomaterials for 
the wound care industry (Salamone et al., 2016). An advanced 
liquid adhesive bandage has been developed that provides a 
liquid, amphiphilic, siloxysilane polymer-containing coating 
material, with or without an antimicrobial agent, that can act as 
a bandage or coating on skin, on a device or on a dressing to 
prevent damage to wounds, skin, or mucosal tissue resulting from 
applied pressure, friction, and shear forces (Salamone et al., 2016). 
Dextran-based hydrogels have been used in third-degree porcine 
burn wound model and showed enhanced wound closure, reepi-
thelialization, and nerve reinnervation compared to the control 
group (Sun et al., 2011; Shen et al., 2015). The most promising 
feature of dextran-based hydrogels for burn wounds is the effi-
cient nerve regeneration compared to the non-adhesive Curity 
dressing treatment (Figure  3). Biomaterials that are selectively 

degraded by reactive oxygen species (ROS) have been used to 
create wound healing scaffolds with matched rates of tissue in 
growth- and cell-mediated scaffold biodegradation (Martin et al., 
2014). These poly-thioketal urethane-based scaffolds were stable 
for 25 weeks in aqueous conditions but were degraded by tissue 
ROS in 7 weeks resulting in enhanced wound closure compared 
to polyester urethane dressings (Martin et al., 2014). Biomaterials 
based on bioglasses have recently also shown potential in enhanc-
ing wound healing and angiogenesis in animal model of wound 
healing (Mao et al., 2015; Xu et al., 2015; Zhao et al., 2015; Yu 
et al., 2016; Zhou et al., 2016). For instance, copper-doped borate 
bioactive glass microfibers were shown to increase both the rate 
of collagen deposition and angiogenesis in full-thickness wounds 
in rats (Zhao et al., 2015). In addition, artificial dermal constructs 
are also important in healing wound defects. Previous methods 
of preparation resulted in residual aldehydes left over from the 
manufacturing process. UV cross-linking has been used to create 
efficient artificial dermal constructs of collagen and glycosamino-
glycan mixed in a hydrogel for wound healing applications (Lew 
et al., 2007). They tested it in vitro with human keratinocytes and 
found higher cell proliferation and biocompatibility compared 
to chemically cross-linked constructs. Synthetic hydrogels with 
variable lengths of polypeptides linked to polyethylene glycol 
(PEG) have been shown to have both antibacterial and cell 
adhesive properties (Song et al., 2012). Standalone hydrogels for 
wound healing is a promising approach and provide a starting 
point for delivering bioactive agents through direct conjugation 
or encapsulation as discussed below.

Biomaterials Encapsulating Bioactive Components
In the past decades, growth factors were tested as topical 
treatments to enhance wound healing. However, these growth 
factor therapies have met with only limited success in clinical 
trials, and the majority of studies are small- to mid-sized 
clinical trials that often track only complete wound closure 
but not percent closure or time to closure, often leaving the 
clinical recommendation for these therapies unclear. The 
only approved clinical growth factor treatment for chronic 
wounds is recombinant platelet-derived growth factor-BB 
(PDGF-BB) (Becaplermin), and, while approved by the FDA, 
it has shown mixed results in clinical trials on chronic ulcers 
and has only seen limited clinical adoption (Fang and Galiano, 
2008; Papanas and Maltezos, 2008; Buchberger et  al., 2011). 
Other growth factors, including FGF-2 and epidermal growth 
factor (EGF), have either shown no improvement or shown 
only moderate benefits in small clinical trials (Richard et al., 
1995; Acosta et al., 2006; Fernandez-Montequin et al., 2009). 
A structural domain in placenta growth factor-2 (PlGF-2) 
has been shown to bind strongly to ECM proteins, including 
fibronectin, vitronectin, tenascin, osteopontin, fibrinogen, and 
collagen I. By fusing this domain to other growth factors like 
vascular endothelial growth factor-A (VEGF-A), PDGF-BB, 
and bone morphogenetic protein-2 (BMP-2), super-affinity 
growth factors were created (Martino et  al., 2014). These 
engineered growth factors were shown to significantly enhance 
diabetic wound healing in mice compared to native growth 
factors. A  recent study delivered amniotic fluid-derived 
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TABLe 1 | Biomaterial-based dressings in development.

Type Constituent Therapeutic benefit Reference

Standalone Siloxysilane Non-stinging, spray-on liquid bandages to protect skin from moisture thus preventing maceration Salamone et al. (2016)
Dextran Complete skin and nerve regeneration in porcine burn wound model Shen et al. (2015), Sun 

et al. (2011)
Urethane Porous tissue scaffold selectively degraded by ROS in the wound site in rat model Martin et al. (2014)
Collagen UV cross-linked collagen–glycosaminoglycan matrices have reduced toxicity compared to 

glutaraldehyde-based dermal substitutes
Lew et al. (2007) 

Synthetic Synthetic cell adhesive polypeptide hydrogel with antibacterial activity against Escherichia coli JM109 
and Staphylococcus aureus ATCC25923

Song et al. (2012)

With bioactive 
components

Fibrin Engineered ECM super-affinity growth factors induced repair in chronic wounds and bone defects 
using a diabetic model

Martino et al. (2014)

Hyaluronic 
acid

Hydrogel encapsulating AFS cells that could store and release growth factors and cytokines secreted 
from those cells after the cells were long gone

Skardal et al. (2016)

Hyaluronic 
acid

Thin films of polysaccharide-decorated nanoparticles loaded with vitamin E result in controlled 
release of the vitamin and a reduction in water loss

Pereira et al. (2016)

Cell 
encapsulating

Poly β amino 
ester

Genetically edited MSCs, encapsulated in scaffolds, implanted in ischemic mouse model showed 
enhanced angiogenesis and limb salvage while reducing muscle degeneration and tissue fibrosis

Yang et al. (2010)

Fibrin and PEG ASCs embedded in FPEG gels showed enhanced wound healing and angiogenesis in a rat 
excisional wound model

Zamora et al. (2013)

PEG + RGD Injectable, microporous, cell adhesive scaffolds that lead to rapid cutaneous-tissue regeneration in 
mouse model

Griffin et al. (2015)

Nucleic acid 
delivering

Collagen PDGF DNA gene delivery using collagen hydrogels accelerated wound healing in ischemic dermal 
ulcers in rabbit model

Tyrone et al. (2000)

Hyaluronic 
acid

Hyaluronic acid hydrogels that are MMP degradable for localized delivery in the wounds are 
embedded with VEGF plasmids that enhance wound healing in diabetic mouse model

Tokatlian et al. (2015)

Polyurethane siRNA-loaded nanoparticles, embedded in a pH-responsive and biodegradable scaffold that protects 
siRNA from degradation and leads to local silencing of genes in mouse excisional wound model

Nelson et al. (2013)

Chitosan, 
dextran 
sulfate, and 
poly 2

Ultrathin polymer coating delivering siRNA targeting MMP-9 gene for 2 weeks enhances wound 
healing in diabetic mouse model

Castleberry et al. 
(2015)

Animal 
product-based

Small intestine 
submucosa

Prospective, randomized, controlled multicenter clinical trial with SIS demonstrated 55% of wounds 
heal compared to 34% in standard care

Mostow et al. (2005)

Amniotic 
membrane

Bovine lyophilized amniotic membrane extract tested on rabbit ear wound model demonstrating 
increased epidermal and dermal regeneration compared to control

Kang et al. (2013)

Fibroin Silk fibroin and gelatin-based layered wound dressing in a randomized clinical trial of split thickness 
skin graft model showed significantly less pain and more rapid skin functional barrier recovery

Hasatsri et al. (2015)

Marine 
collagen

Composite film of collagen showed significant wound regeneration in a full-thickness wound in the 
rat dorsal region resulted in enhanced the formation of blood capillaries

Shen et al. (2015)

Drug or 
antibiotic 
loaded

Chitosan and 
PEG

Chitosan microspheres loaded with silver sulfadiazine impregnated in PEGylated fibrin gels exhibit 
microbicidal activity against Staphylococcus aureus and Pseudomonas aeruginosa

Seetharaman et al. 
(2011)

Carrageenan, 
polyox, HPMC

Optimized polyox and carrageenan film dressings loaded with streptomycin and diclofenac that 
targets bacterial infection and inflammatory phase of wound healing

Pawar et al. (2013), 
Boateng et al. (2013)

Polyurethane 
and dextran

PU–dextran–ciprofloxacin loaded nano fibers showing good bactericidal activity against both of 
Gram +ve and Gram −ve bacteria

Unnithan et al. (2012)

PEG and 
chitosan

Ciprofloxacin loaded PEG–chitosan scaffold for quicker and regulated wound healing in a mouse 
model

Sinha et al. (2012)

PEG Prolyl hydroxylase inhibitor loaded in an injectable hydrogel, tested in ear hole punch injury in MRL 
mice showing enhanced wound healing via drug-induced stabilization of hypoxia-inducible factor-1α 
(HIF-1α) protein

Zhang et al. (2015b)
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stem (AFS) cells, which are known to secrete cytokines and 
growth factors, in full-thickness skin wounds in a nu/nu 
murine model (Skardal et al., 2016). The AFS cells have only 
a limited lifetime in vivo, but a photo-crosslinkable heparin-
conjugated hyaluronic acid hydrogel preserved the growth 
factors and cytokines produced by the cells, allowing these 
paracrine factors to be released into the wound. The treat-
ment improved wound closure with enhanced reepithelializa-
tion and increased vascularization and production of ECM 

(Skardal et al., 2016). Hyaluronic acid-based wound dressings 
that release α-tocopherols (vitamin E) have been shown to 
improve wound healing (Pereira et al., 2016). Since the tissue 
microenvironment has a plethora of chemical cues, delivering 
of one bioactive component may not be enough to address all 
the issues of impaired wound healing. In addition, temporal 
control in release of factors, correlating with the different 
phases of wound healing, would likely be an important aspect 
for promoting healing in complex wounds.
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FiGURe 3 | Nerve regeneration in porcine wound model. (A) The custom-made device with pressure unit to create the burn wounds on the dorsal region of 
porcine skin. (B) The surgeon creating the burn wounds on the thoracic paravertebral region using the custom device. (C,D) Immunostaining of the wound tissue at 
day 40 treated with non-adhesive Curity dressing (Covidien) and dextran hydrogel, respectively. Upper panel shows the tissue edge, and lower panel shows the 
middle of the tissue. White arrows show the neuronal fibers. Staining for neurons (PGP9.5) is shown in green, blood vessels (α-smooth muscle actin) in red, and 
nuclei (DAPI) in blue. Bar = 100 μm. Reproduced with permission from Shen et al. (2015).
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Biomaterials Encapsulating Cell Therapies
Stem cells or progenitor cells have great regenerative potential 
especially during injury to the body. In order to target chronic 
wounds, mesenchymal stem cells (MSCs) were engineered to 
overexpress the vascular endothelial growth factor (VEGF) gene 
and encapsulated in a poly(β-amino ester) hydrogel (Yang et al., 
2010). Fibrin and PEG gels encapsulating adipose-derived stem 
cells (ASCs) from discarded burn skin samples were tested in 
a rat excisional wound model (Zamora et al., 2013). The ASCs 
significantly improved wound healing outcomes by day 16 com-
pared to the controls. Stem cell therapies delivered in biomateri-
als have also shown promise for burn wound healing (Ozturk 
and Karagoz, 2015), diabetic ulcers (Heublein et al., 2015), and 
cutaneous wound healing (Branski et  al., 2009). Microporous 
annealed particle (MAP) gels were created by mixing pre-gel 

mixture including a PEG-VS containing an RGD peptide region 
and matrix metalloproteinase (MMP) substrate with MMP 
crosslinker solution in a microfluidic channel to make gels that 
were annealed using FXIIIa into a final microporous scaffold 
(Griffin et  al., 2015). The gels were loaded with dermal fibro-
blasts and MSCs during in vitro studies and found to have robust 
tubular network formation within 48 h. MAP gels combine the 
important wound dressing properties of injectability and micr-
oporosity that provide mechanical support for rapid cell migra-
tion, molecular cues to direct cell adhesion, and resorption after 
tissue regeneration (Griffin et al., 2015). MAP gels have shown to 
be effective in wound healing in both in vitro and mouse model 
of excisional wound healing. Encapsulation of newly developed 
induced pluripotent stem cells (Li and Li, 2014), reprogrammed 
adult cells, and other stem cells in hydrogels will be interesting 
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while modulating the hydrogel properties to mimic the tissue 
microenvironment.

Nuclei Acid Delivering Biomaterials
A comprehensive genetic study mapping the gene expression 
profiles during the cutaneous wound healing has motivated the 
development of gene delivery strategies in facilitating wound 
healing (Deonarine et al., 2007). Biomaterial-based nucleic acid 
delivery systems reduce degradation, enhance uptake, and control 
the treatment dose. Such gene delivery systems can be formulated 
from biocompatible, biodegradable, and FDA-approved polymers 
such as poly-l-lactic acid and poly-d,l-lactide-co-glycolide (Kim 
et  al., 2005). Collagen hydrogels encapsulating DNA encoding 
the PDGF-BB gene is effective in accelerating wound healing in 
ischemic dermal ulcers in New Zealand white rabbits (Tyrone 
et al., 2000). Hyaluronic acid-based porous hydrogels containing 
an MMP-degradable linker that encapsulates the VEGF plasmid 
DNA results in pro-angiogenic effects and improved diabetic 
wound healing in mice compared to non-porous hydrogels 
(Tokatlian et al., 2015). Since PDGF-BB is the only FDA-approved 
growth factor for diabetic foot ulcers, there have been numerous 
attempts in enhancing the gene delivery methods for PDGF 
(Petrie et al., 2005).

The skin microenvironment is teeming with proteases includ-
ing MMPs, which are significantly upregulated during the wound 
healing process (Madlener et  al., 1998; Steffensen et  al., 2001; 
Rohani and Parks, 2015). These proteases degrade therapeutic 
proteins like growth factors, cytokines, and chemokines; and 
ECM proteins including collagen, fibronectin, and vitronectin. 
Therefore, silencing these proteases has become an important 
goal in wound healing research. Small interfering RNA (siRNA) 
can provide gene-specific silencing and present a safe and effec-
tive route for knockdown of inflammatory or other target proteins 
in chronic skin wounds. To modulate the release kinetics and 
injectability, pH-responsive smart polymer nanoparticles (SPN) 
are loaded with an injectable polyurethane scaffold (Nelson 
et  al., 2013). The SPNs feature electrostatic loading, nuclease 
protection of siRNA, and pH-dependent membrane disruptive 
activity. Polyurethane formulations can be directly injected into 
a wound or defect where they cure into mechanically robust, 
biodegradable scaffolds that conform precisely to the shape and 
size of the wound. In this study, they delivered siRNA against 
GAPDH along with PDGF-BB encapsulated in the scaffold and 
showed enhanced excisional wound healing mice (Nelson et al., 
2013). Another family of self-assembled wound dressings silence 
MMP-9 and improve wound healing in diabetic mice (Castleberry 
et  al., 2015). Cationic star-shaped polymers have been used as 
siRNA carrier for reducing MMP-9 expression in skin fibroblast 
cells and promoting wound healing in diabetic rats (Li et  al., 
2014). There are many appealing aspects of delivering RNA-based 
therapeutics including those using miRNA, lncRNA, piRNA, or 
shRNA; however, delivering these in an effective manner remains 
a major objective in the field.

Animal Product-Based Biomaterials
Biomaterials derived from natural products can provide materials 
with greater complexity and composition. In order to mimic the 

ECM conditions of the wound and to provide a scaffold for the 
fibroblasts for collagen deposition, ECM-based therapies have 
gained popularity. The porcine small intestine submucosa that 
has been lyophilized and sterilized has been recently shown to 
provide similar benefits to those provided by fish skin-based 
products for enhancing healing dermal wounds (Mostow et al., 
2005). Similarly, lyophilized bovine amniotic membrane has been 
effective in wound healing applications (Kang et al., 2013). The 
silk protein, fibroin, is an effective scaffolding material providing 
a fine mesh for the cells to grow and enhance wound healing 
(Hasatsri et  al., 2015). A phase I clinical trial using fibroin to 
enhance wound healing is currently underway. Finally, there have 
been numerous marine polysaccharide hydrogels like marine col-
lagen from Stomolophus nomurai meleagris, Oncorhynchus keta, 
Lates calcarifer, Stichopus japonicas, and Salmo salar, alginate 
from Macrocystis pyrifera, chitosan from crabs and shrimps, 
which are bioactive and increase wound healing rates in mice 
(Chandika et al., 2015). There is rising need for quality control 
to prevent transmission of diseases and pathogens from animal 
products. Lyophilization, pasteurization, and sterilization are 
important techniques to reduce cross contamination. The major 
concerns with natural products include batch-to-batch variabil-
ity, long-term immunogenicity, and safety (Pashuck and Stevens, 
2012; Prestwich et al., 2012). Animal product-based biomaterials 
have been explored only in a limited manner until for chronic 
wounds, leaving tremendous potential for the development of 
new therapies in future studies.

Antibacterial and Drug-Loaded Biomaterials
A better understanding of the molecular mechanisms underly-
ing the antibiotic resistance will help engineer efficient drugs 
to target these resistant organisms (Blair et al., 2015). Potential 
modes of resistance include reduced permeability to antibiot-
ics, increased efflux of antibiotics, alterations in antibiotic tar-
gets through mutations, modification or protection of targets, 
and direct chemical modifications of the antibiotics. Bacterial 
resistance to antibiotics is inversely correlated with the rate 
of metabolism, with lower metabolism leading to higher 
resistance and vice  versa (Bryan and Van Den Elzen, 1977; 
Kohanski et al., 2007; Allison et al., 2011; Martinez and Rojo, 
2011). Recently, it has been shown that both Gram-negative 
bacteria and Gram-positive bacteria were killed by kanamycin 
when the microbes were pretreated with alanine or glucose that 
promotes the TCA cycle by substrate activation (Peng et  al., 
2015). Finally, increasing the microbial ROS production makes 
the Escherichia coli susceptible to antibiotics (Brynildsen et al., 
2013).

Biomaterial-based wound dressings are ideal for loading 
drugs or antibiotics due to their tunable properties and release 
kinetics. Chitosan microspheres loaded with silver sulfadiazine 
encapsulated in PEG fibrin gels showed robust antimicrobial 
activity against S. aureus and Pseudomonas aeruginosa 
(Seetharaman et al., 2011). Streptomycin has been loaded into 
polyethylene oxide (PEO) polymer composite films (Pawar 
et  al., 2013), PEO with carrageenan composite films (Boateng 
et al., 2013), and PEO with alginate composite films (Pawar et al., 
2014) for improving wound healing. Similarly, ciprofloxacin has 
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TABLe 2 | Biomaterial-based dressings in clinical usage.

Type Constituent examples indications

Films Polyurethane Tegaderm, Blisterfilm, 
ClearSite, Comfeel film, 
Suresite, Procyte, OpSite, 
Dermaview

Minor burns, 
pressure areas, 
donor sites, 
postoperative 
wounds, and various 
minor injuries 
including abrasions 
and lacerations

Hydrogels Glycerin BIolex, elastogel, Curasol 
gel, Elasto-Gel, flexigel, 
IntraSite gel, Restore Gel, 
Hypergel, tenderwet, 
SoloSite, Vigilon

Necrotic or dry 
ulcers

Wafers Hydrocolloids DuoDERM, Restore plus, 
RepliCare, Exuderm, 
Tegasorb, DuoFilm, 
Cutinova Hydro, nuderm

Mildly exuding ulcers

Foams Polyurethane Lyofoam, PolyMem, 
COPA, Optifoam, 
Gentleheal, Allevyn

Heavily exuding 
ulcers, granulating 
ulcers, painful ulcers

Hydrogels Alginate Calcicare, nuderm, 
SeaSorb, Sorbsan, 
alginate, Kaltostat, 
Maxorb, Mesalt comes 
with sodium chloride, 
Medi-honey with honey

Heavily exuding 
ulcer, hemorrhagic 
ulcer

Hemostatic Collagen Cellerate, Fibracol, Prisma, 
Promogran, puracoll

Traumatic injury, 
hemorrhagic ulcers

Hydrofibers Cellulose Silvercel, Prisma, Aquacel, 
Promogran, Tegaderm 
matrix, Dermafill Xylinum 
Cellulose, Xcell (bacterial 
cellulose)

Heavily exuding 
ulcers and infected 
wounds

Sealants Dimethicone Benzoin, Cavilon Barrier 
Film, Skin-prep, No sting 
barrier

Puncture wounds, 
organ wounds

Composite Multiple types CombiDERM, Island, Telfa 
Island, Covaderm plus, 
Alldress, Dermadress, 
Adaptic, Adaptic touch, 
wound veil, Restore, 
Mepilex, Telfa, CarboFlex, 
Melolin, Clinisorb, Versiva, 
Mepitel

Complex wounds 
needing multiple 
layers of different 
dressings
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been loaded into electrospun polyurethane and dextran dress-
ings (Unnithan et al., 2012) and PEG–chitosan scaffold (Sinha 
et  al., 2012). Many other antibiotic agents have been loaded 
into various natural, synthetic, or composite wound dressings. 
There is a revived interest, and recent academic and industrial 
research spending has increased with the goal of developing 
efficient and targeted antimicrobial drugs that have enhanced 
uptake, reduced degradation, and metabolic mimicry to increase 
uptake. Apart from antimicrobials, many small molecule drugs 
and intermediates have been delivered using biomaterial-based 
systems (Hubbell, 1996). The drug 1,4-dihydrophenonthrolin-
4-one-3-carboxylic acid (1,4-DPCA), which is a prolyl hydroxy-
lase (PHD) inhibitor was loaded in a locally injectable hydrogel 
to achieve controlled delivery of the drug over 4–10 days (Zhang 
et  al., 2015b). This stabilized the constitutive expression of 
hypoxia-inducible factor-1α (HIF-1α) protein, an important 
factor in wound healing and angiogenesis.

Biomaterials in Clinical Usage
A summary of the biomaterials currently in clinical usage is 
shown in Table 2.

Thin Films, Foams, and Wafers
The most commonly used wound dressings are thin flexible 
sheets of transparent polyurethane with adhesive backing. 
These dressings are transparent, allowing clinicians to visualize 
the skin and are also permeable to water vapor, O2, CO2, but 
impermeable to bacteria and water. Thus apart from wound 
healing, they are widely used in sealing the vascular access 
devices, especially in catheters and saline drip since they are 
highly elastic and conform to the body contours. The widespread 
usage of these thin films, impregnated with chlorhexidine, has 
reduced the incidence of central line infections significantly 
(Jeanes and Bitmead, 2015). They are also used in superficial 
wounds, partial-thickness wounds, sutured wounds, donor 
graft sites, granular wounds, slough-covered wounds with 
minimal drainage and lacerations or abrasions (Stashak et al., 
2004). However, these dressings are ineffective in wounds with 
high moisture and exudate content since they have minimum 
absorptive capacity and thus can cause tissue maceration. They 
should not be used in highly infected wounds and places where 
the skin is sensitive or fragile because the skin might tear while 
removing the dressing.

In many cases, excessive exudate secretion is detrimental 
to the wound healing process. Polyurethane absorptive foam 
dressings have been developed with a hydrophilic surface to 
interface with the wound, while the hydrophobic surface faced 
outside environment. These dressings are permeable to gas, but 
not to bacteria and other pathogens. Unlike the films, these 
dressings are highly absorptive and are used in wounds with 
minimal to heavy exudates, granulating or slough-covered 
partial-thickness wounds, donor sites, minor burns, diabetic 
ulcers, and venous insufficiency ulcers (Banks et al., 1997). Foam 
dressings impregnated with methylene blue have also been used 
for a bacteriostatic effect (Coutts et  al., 2014). The advantages 
of foam dressings are their ease of use, remarkable absorptive 
capacity, and availability in various degrees of adhesivity and 

occlusivity. However, the absorptive aspect of polyurethane 
foams makes them inappropriate for dry or eschar-covered 
wounds and arterial ulcers.

Hydrocolloids such as pectin, gelatin, and carboxymethyl 
cellulose along with adhesives and polymers are used to prepare 
wafers in thin dressings. These dressings contain hydrophilic 
colloidal particles with a strong adhesive backing that only need 
a small area of intact skin to secure, eliminating the need for tap-
ing over the dressing (Hutchinson and McGuckin, 1990). These 
dressings have moderate absorptive capacity but are highly occlu-
sive and are effective barrier against urine, stool, and microbes. 
Thus, they are used in partial and full-thickness wounds, granular 
and necrotic wounds, sacral and coccygeal pressure ulcers, minor 
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burns, and venous insufficiency ulcers. However, the hydrocol-
loidal dressings are contraindicated for heavily draining wounds, 
infected wounds, arterial ulcers, third-degree burns, and exposed 
tendons/fascia (Kannon and Garrett, 1995).

Glycerin and Alginate Hydrogels
Hydrogels are extensively used in preparing wound dressings. 
There are many hydrogels in clinical use both in wet and dry 
(lyophilized) forms. Glycerin-based wound dressings with high 
water content are available in sheets, gels, or impregnated gauzes 
(Baum and Busuito, 1998). These are highly moistened and thus 
absorb minimal amount of fluid but donate moisture to dry 
wounds. These dressings are permeable to gas and water and are 
almost always non-adhesive and require secondary bandages. 
Therefore, these are mainly used for minimally draining wounds, 
superficial and partial-thickness wounds, softening eschared 
wounds by moisture and provide padding to decrease shear forces 
on the wounds (Kirsner, 2016). However, the glycerin dressings 
are contraindicated in heavily draining wounds and infected 
wounds.

Another class of hydrogel wound dressings that are widely 
used is the alginate-based dressings. Alginic acid is extracted 
from seaweed, converted into sodium salts, and cross-linked 
with calcium. These dressings are hydrophilic to provide a moist 
wound environment and are highly absorptive if delivered in 
a lyophilized form. Since these dressings are highly permeable 
and non-occlusive, a secondary dressing is needed to keep them 
in place (Gu et al., 2014). Alginate hydrogels can be fashioned 
as both sheets for the surface wounds and ropes for the deep 
wounds. They also are versatile in providing a delivery platform 
and can be impregnated with silver, honey, and sodium chloride 
for additional antimicrobial and hyperosmotic properties. Thus, 
these dressings are used in moderate to highly draining wounds, 
partial- and full-thickness draining wounds, and infected 
wounds (Kirsner, 2016). However, they are contraindicated in 
dry or minimally draining or eschar-covered wounds, arterial 
ulcers, and exposed deeper structures tendon, joint capsule, 
or bone.

Hemostatics
The most common structural protein in the animal world, colla-
gen, has been used extensively to create hemostatic biosynthetic 
dressings. The collagen fragments in the dressings induce cell 
proliferation and chemotaxis while reducing matrix MMP activ-
ity (Ruszczak, 2003). MMPs are tissue proteases or endopepti-
dases that are zinc containing, calcium dependent, and are crucial 
for wound remodeling phase because they preferentially break 
down ECM components in the skin (Birkedal-Hansen et  al., 
1993). Despite the limited studies, and the need for improved 
study designs and increased number of randomized controlled 
trials, wound dressings containing collagen appear to have some 
benefit in the treatment of diabetic foot ulcers and should be 
carefully considered by clinicians that manage wounds (Holmes 
et  al., 2013). Carboxymethyl cellulose or oxidized regenerated 
cellulose (ORC) combined with collagen leads to decreased 
MMP activity, increased cell proliferation, and chemotaxis 
(Cullen et al., 2002).

Composites
To combine the benefits of different kinds of biomaterial dress-
ings, composite dressings have been designed with multiple 
layers of different biomaterials (Pillay et al., 2015). The bottom or 
innermost layer is generally composed of a semi or non-adhesive 
material that allows the wound exudate to flow to the next layer, 
and it also conforms to the wound’s granulation tissue. This layer 
is thin, non-adherent/adherent, and non-toxic woven/non-woven 
mesh. They are often made of polyurethane or polyester, PTFE, 
and sometimes contain  silicone and petroleum complements. 
They are applied directly to the wound bed and allow the drainage 
to pass through. The middle layer comprises of highly absorptive 
material that pulls the wound exudate away from the wound but 
keeps the environment moist. This reduces skin maceration due 
to excess moisture and reduces bacterial growth and improves 
autolytic debridement. The top most or outermost layer is highly 
occlusive in nature and protects the wound from infection 
(Wittaya-areekul and Prahsarn, 2006; Elsner et al., 2010). These 
multilayer dressings can be used as both primary and secondary 
dressings.

Other Biomaterial-Based Wound Dressings
Apart from standard wound dressings, biomaterials have been 
used to develop skin protectants (Hoggarth et  al., 2005), skin 
sealants (Kemp, 1994), moisture barriers (Zehrer et  al., 2005), 
and keratolytics (Zehrer et  al., 2005) that can be delivered as 
a cream. Skin protectants are often applied to the wound and 
periwound skin. They prevent maceration of the periwound skin 
by wound fluid and also prevent rashes and skin breakdown in 
areas of leakage (Hoggarth et al., 2005). Skin sealants are liquid-
based poly-vinyl-methyl (PVM) polymers that form a protective 
waterproof, breathable, transparent layer on the skin on drying 
(Kemp, 1994). This protects the periwound skin from moisture, 
adhesives, and shear stress. Skin sealants work well with adhesive 
dressing application. The moisture barriers comprise of creams 
or ointments containing petrolatum, dimethicone, and zinc 
oxide. Some also contain antifungal miconazole especially use-
ful in treating intertrigo (inflammation of skin folds) (Zehrer 
et al., 2005). Moisturizers are more hydrophilic creams, lotions, 
or gels that donate moisture to the wound or periwound skin. 
Keratolytics soften the hard scales and calluses and hyperkeratotic 
lesions and include salicylic acid, urea, ammonium lactate creams 
(Zehrer et al., 2005). However, these keratolytics can cause skin 
maceration if overused.

NANOPARTiCLe-BASeD wOUND 
THeRAPieS

The global nanotechnology industry reached over $1.5 trillion in 
2014, becoming a major economic force (Sahoo et al., 2007; Zhou 
et al., 2014). A central constituent of the nanotechnology industry 
is engineered NPs. The number of consumer products containing 
NPs is growing at a rapid pace and is expected to reach 10,000 by 
the year 2020. NPs have emerged as a new class of therapeutics in 
the last couple of decades due to their ability to be targeted and 
low toxicity. NPs are generally defined as particles ranging from 
1 to 100  nm in size. These small particles often have different 
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TABLe 3 | Nanoparticle-based therapies in development.

Type Constituent Therapeutic benefit Reference

Metal Silver Silver nanoparticles enhance wound healing in a full-thickness excisional wound model in mice 
through the promotion of proliferation and migration of keratinocytes, differentiation of fibroblasts 
into myofibroblasts

Liu et al. (2010)

MgF2 MgF2 nanoparticles effectively restricted biofilm formation of E. coli and S. aureus by inducing 
membrane lipid peroxidation and interacting with chromosomal DNA

Lellouche et al. (2009)

Cerium oxide Cerium oxide nanoparticles accelerates the healing of full-thickness dermal wounds in mice via 
enhancement of the proliferation and migration of fibroblasts, keratinocytes, and VECs

Chigurupati et al. 
(2013)

Copper Copper nanoparticles-based ointment were twice as good as ointment without copper in healing 
wounds in mice

Rakhmetova et al. 
(2010)

Iron oxide Thrombin conjugated to iron oxide nanoparticles stabilizes thrombin, increases half-life in body, 
and enhances wound healing in a rat incisional wound model compared to free thrombin

Ziv-Polat et al. (2010)

Gold Spherical nucleic acid gold nanoparticle conjugates efficiently downregulate gene targets in 
full-thickness wounds in diet-induced obese diabetic mice and fully heals wounds within 12 days 
whereas control wounds are only 50% closed

Randeria et al. (2015)

Antibiotic  
loaded

Polyacrylate N-thiolated beta-lactam antibiotic covalently conjugated onto the polymer framework exhibits 
potent antibacterial properties against methicillin-resistant Staphylococcus aureus and have 
improved bioactivity relative to free antibiotic

Turos et al. (2007)

Poly (butyl 
acrylate–styrene)

Incorporation of a N-thiolated beta-lactam antibiotic onto the nanoparticle matrix endowed the 
emulsion with antibiotic properties against methicillin-resistant Staphylococcus aureus

Garay-Jimenez et al. 
(2009)

Chitosan, gelatin, and 
epigallocatechin gallate

Dressing accelerated mouse wound healing process via activated carbon fibers with gentamicin 
that prevented bacterial infection and nanoparticles that prevented inflammation and facilitated 
reepithelialization

Lin et al. (2015)

Folic acid-tagged 
chitosan

Biocompatible and biodegradable semisynthetic polymer nanoparticles enhance the transport of 
vancomycin across epithelial surfaces and show its efficient drug action

Chakraborty et al. 
(2010)

Nitric oxide 
releasing

Tetramethylorthosilicate, 
PEG, and chitosan

Nanoparticles increased wound healing by modifying leukocyte migration and increasing tumor 
growth factor-β production in the wound area, which subsequently promoted angiogenesis

Han et al. (2012)

Silica Silica nanoparticles exhibit a 99.999% kill rate against P. aeruginosa and E. coli and inhibited 
fibroblast proliferation to a lesser extent than antiseptics like chlorhexidine with proven wound-
healing benefits

Hetrick et al. (2009)

Natural  
Product

Genipin, chitosan, PEG, 
and silver

Genipin (from Penicillium nigricans) cross-linked chitosan, PEG, and silver nanoparticles show 
high antimicrobial activity against E. coli

Liu et al. (2012)

Silver Gold and silver nanoparticles synthesized using Coleus forskohlii are effective in excisional wound 
model in albino Wistar male rats

Naraginti et al. (2016)

Silver Silver nanocomposite synthesized using Homalomena aromatica inhibited the growth of 
antibiotic-resistant microbes, such as Staphylococcus aureus, Escherichia coli, and Candida 
albicans, and fostered wound healing in Wistar rat

Barua et al. (2015)

Lipid based Proteoliposomes in 
alginate hydrogel

Improved excisional wound healing and ischemic revascularization via enhanced angiogenesis, 
macrophage modulation, and keratinocyte migration in a diabetic obese mouse model

Das et al. (2016a,b), 
Monteforte et al. 
(2016), Tu et al. (2015)

Solid lipid nanoparticles Silver sulfadiazine loaded in solid lipid nanoparticles with platelet lysate embedded in chitosan-
based dressings showed enhanced wound healing and antimicrobial activity

Gokce et al. (2012), 
Sandri et al. (2013)

Exosomes Human umbilical cord derived MSC exosomes treated wounds exhibited significantly accelerated 
reepithelialization, with increased expression of CK19, PCNA, and collagen I

Zhang et al. (2015a)

Polymer  
based

Chitosan, pectin, and 
titanium dioxide

TiO2 nanoparticles loaded in chitosan–pectin scaffolds tested in excisional wound model in albino 
rats exhibited good antibacterial ability, high swelling properties, excellent hydrophilic nature, 
biocompatibility, and improved wound closure rate

Archana et al. (2013)

Hyaluronan Hyaluronan-based porous nanoparticles encapsulating PDGF-BB was tested in excisional wound 
healing in rats and showed improved wound healing compared to control

Zavan et al. (2009)
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physical and chemical properties from bulk materials. These 
properties may include alterations in melting points, specific 
surface areas, specific optical properties, mechanical strengths, 
and specific magnetizations. These unique properties make them 
attractive for various industrial and medical applications.

Nanoparticles have become significant in the regenerative 
medicine field in the last two decades (McLaughlin et  al., 
2016). Many biological processes happen at through mecha-
nisms that fundamentally act at the nanometer scale. Thus, 
materials such as NPs can be used as unique tools for drug 
delivery, imaging, sensing, and probing biological processes 

(Wang and Wang, 2014). In the context of wound healing, 
the special properties of NPs like electric conductivity, anti-
microbial activity, high surface to volume ratio, swelling, and 
contraction make NPs versatile resources. In the following 
sections, we will specifically talk about various NP-based 
therapeutics that are either undergoing preclinical develop-
ment or in current clinical use.

Nanoparticles Currently in Development
The NP-based wound therapies under development are sum-
marized in Table 3.
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Metal Nanoparticles
Silver nanoparticles (AgNPs) are the most widely studied 
among metal NPs. These NPs have been shown to enhance 
healing in a full-thickness excisional wound model in mice 
(Liu et al., 2010). Dressings impregnated with AgNPs have also 
been shown to be effective in wound healing in normal and 
diabetic mice (Tian et al., 2007). The antimicrobial properties 
of silver have been exploited in toxicity evaluation in human 
ASCs (Samberg et  al., 2012), human cancer lines (Arora 
et al., 2008), human keratinocytes (Samberg et al., 2010), and 
other human cell lines (AshaRani et  al., 2009). In addition, 
AgNPs have also been shown to be anti-inflammatory in a 
peritoneal adhesion model (Wong et  al., 2009). Recently, the 
safety and efficacy of collagen-coated AgNPs encapsulated 
in collagen hydrogels was shown in primary human skin 
fibroblasts and keratinocytes; while antimicrobial properties 
were shown against S. aureus, Staphylococcus epidermidis, 
E. coli, and P. aeruginosa (Alarcon et  al., 2015). To gain 
insight on the health and environmental impact of AgNPs, 
they were tested on zebrafish models (Asharani et  al., 2008) 
and found that the NPs induce a dose-dependent toxicity in 
embryos. This may support a non-specific action of AgNPs 
on all cell types including the wounded host cells. Magnesium 
fluoride (MgF2) NPs (Lellouche et  al., 2009) made using the 
standard microwave method (Jacob et  al., 2006) are highly 
effective against nosocomial microbes including E.  coli and 
S. aureus. Topical application of water-soluble cerium oxide NPs 
(Nanoceria) accelerates the healing of full-thickness dermal 
wounds in mice (Chigurupati et  al., 2013). The mechanism 
of action is thought to be the strong antioxidant properties 
of cerium oxide NPs. Similarly, copper NPs have also been 
shown to enhance wound healing in excisional wounds of 
mice (Rakhmetova et al., 2010). Iron oxide NPs conjugated to 
thrombin have been used to enhance wound healing compared 
to free thrombin (Ziv-Polat et  al., 2010). This was achieved 
by increasing the stability of thrombin via conjugation to the 
iron oxide. Gold NPs co-delivered with epigallocatechin gallate 
and α-lipoic acid significantly accelerated mouse cutaneous 
wound healing through anti-inflammatory and anti-oxidation 
effects (Leu et al., 2012). Gold NPs conjugated to siRNA-based 
spherical nucleic acids (SNAs) have been used for diabetic 
wounds with ganglioside–monosialic acid 3 synthase (GM3S) 
knockdown (Randeria et al., 2015). GM3S is an enzyme that is 
overexpressed in diabetic mice and may cause insulin resistance 
and reduced wound healing. In vivo studies with diet-induced 
obese diabetic mice showed decreases in local GM3S expression 
by >80% at the wound edge through an siRNA pathway and 
fully heals wounds clinically and histologically within 12 days, 
whereas the control-treated wounds were only about half of 
the wounds were closed (Figure 4). Gold NPs have also been 
used with de-cellularized porcine diaphragm as a scaffold for 
migrating wound cells (Cozad et al., 2011). Among all the metal 
NPs, we think that the most promising therapeutic options 
are the gold and silver NPs because of their versatility. While 
silver is antimicrobial and anti-inflammatory, gold can be easily 
functionalized for precise delivery of drug or cargo.

Antibiotic-Loaded Nanoparticles
There has been a recent surge in advanced therapeutics targeting 
the multidrug-resistant microbes using antibiotics linked to NPs, 
commonly referred to as nanobiotics. New classes of polyacrylate 
NPs that are conjugated to antibiotics were created to treat MRSA 
(Turos et al., 2007). They consist of water-insoluble N-thiolated 
beta-lactam antibiotics covalently conjugated to the nanopolymer. 
These nanobiotics significantly increased antimicrobial activity of 
the antibiotics in comparison to the non-conjugated antibiotic 
formulation. Similarly, poly(butyl acrylate-styrene) NPs conju-
gated to N-thiolated beta-lactam antibiotic have been prepared 
with conventional and polymerizable surfactants have showed 
higher antimicrobial activity while maintaining low toxicity 
(Garay-Jimenez et al., 2009). Gelatin, chitosan, and epigallocat-
echin gallate NPs have also been incorporated in a polyglutamic 
acid and gelatin hydrogels containing activated carbon fibers with 
gentamicin, to create a wound dressing to enhance regeneration 
and inhibit microbial growth (Lin et  al., 2015). Vancomycin-
modified NPs produced by magnetic confinement are also highly 
effective against both Gram-positive and Gram-negative bacteria 
(Kell et  al., 2008). In addition, folic acid-tagged chitosan NPs 
have been used as “Trojan horses” to deliver vancomycin into 
bacterial cells and efficiently kill them (Chakraborty et al., 2010). 
With the rise in antibiotic-resistant bugs, the need for therapies 
targeting Gram-negative bacteria has become urgent matter, and 
NP delivery systems may provide a means to enhance the activity 
of conventional antibiotics in the wound environment.

Nitric Oxide Releasing Nanoparticles
Nitric oxide (NO) plays numerous roles in wound healing and 
can regulate deposition of ECM proteins, cell proliferation, 
and endothelial function. Incorporation of a functional group 
of diazeniumdiolate into materials results in the release of bio-
logically active NO when exposed to an aqueous environment 
(DeRosa et al., 2007). There have been several studies showing the 
increased wound healing rate due to delivery of NO in a wound 
microenvironment (Blecher et al., 2012; Han et al., 2012). Biofilms 
of P. aeruginosa, E. coli, S. aureus, S. epidermidis, and Candida 
albicans were formed in vitro and exposed to NO-releasing silica 
NPs, which showed greater than 99% kill rate (Hetrick et al., 2009). 
It is interesting to note that endogenous NO may actually protect 
bacteria against antibiotics and other microorganisms (Gusarov 
et al., 2009). NO-mediated resistance is achieved through both 
the chemical modification of toxic compounds and the alleviation 
of the oxidative stress imposed by many antibiotics. Thus, inhibi-
tion of bacterial NO synthase might be a suitable future target to 
enhance antimicrobial therapy.

Green Synthesized Nanoparticles
Green synthesis of NPs involves using plant products or extracts 
that are less expensive and less harmful to the environment than 
the standard physicochemical methods that are generally used 
(Makarov et  al., 2014). Genipin is prepared from geniposide 
by using the enzyme β-glucosidase, which is extracted from 
Penicillium nigricans. Genipin cross-linked with chitosan along 
with PEG and silver NPs are blended into a nanocomposite 
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FiGURe 4 | Overcoming insulin resistance to efficiently heal wounds in a diabetic mouse model. (A) Schematic representation of the gold nanoparticles 
conjugated to ganglioside–monosialic acid 3 synthase (GM3S) siRNA called the spherical nucleic acid (SNA). The SNA surface is passivated with oligoethylene 
glycol for colloidal stability. GM3S is a known target that is overexpressed in diabetic mice and responsible for causing insulin resistance and impeding wound 
healing. (B) Confocal images show elimination of GM3 in keratinocytes treated with GM3S SNA (lower) relative to no treatment NT (upper). Green stained GM3; red 
stained nuclei. Bar = 50 μm. (C) Macroscopic clinical images of the wounds in a diabetic diet-induced obesity mouse model over the course of 2 weeks with three 
different treatments. (D) Representative histologic images of the treated wounds at day 12. D, dermis; E, epidermis; EG, epidermal gap; GT, granulation tissue. 
Bar = 500 μm. NS, non-sense; NT, non-treated. Reproduced with permission from Randeria et al. (2015).

for enhanced wound healing and high antimicrobial activity 
(Liu et  al., 2012). The formulated silver NPs using Coleus fors-
kohlii root extract has been shown to be effective in healing full-
thickness excision wounds in albino Wistar male rats (Naraginti 
et  al., 2016). Silver NPs were produced in octadecylamine-
modified montmorillonite clay that was mixed with extracts from 
Homalomena aromatica then mixed with hyper branched epoxy 
to create silver nanocomposite for wound healing applications 
(Barua et  al., 2015). This nanocomposite served as an efficient 
wound healing scaffold with inherent antimicrobial properties.

Lipid Nanoparticles
Lipid-based NPs have given rise to an entire subfield of lipid 
nanotechnology (Mashaghi et al., 2013). Liposomes are versatile 

drug delivery system due to their ease of protein delivery, bio-
compatibility, intracellular delivery, modulation of size, charge, 
and surface properties (Safinya and Ewert, 2012). It has been 
shown that the loss of growth factor co-receptors in diabetic 
diseased state leads to growth factor resistance (Das et  al., 
2014), which may prevent the effectiveness of growth factor 
treatments to induce angiogenesis and wound healing. One 
method to overcome this resistance is to deliver co-receptors 
in a proteoliposome along with the growth factors. This was 
tested in a diabetic mouse model and showed improved diabetic 
wound healing (Das et  al., 2016a,c) and enhanced ischemic 
revascularization (Jang et  al., 2012; Das et  al., 2014, 2016b; 
Monteforte et al., 2016)(Figure 5). There are various other lipid 
NPs, which have shown promise for treating peripheral vascular 
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disease and critical limb ischemia, reviewed elsewhere (Tu et al., 
2015). Solid lipid nanoparticles (SLN) are a new pharmaceutical 
delivery system with a solid lipid core stabilized by surfactants, 
which can solubilize lipophilic molecules. These SLNs have been 
tested for delivering bioactive molecules such as opioids like 
morphine (Kuchler et al., 2010b), resveratrol (Gokce et al., 2012), 
and silver sulfadiazine (Sandri et al., 2013) for wound healing 
(Kuchler et al., 2009, 2010a). Exosomes are another form of lipid 
NPs produced by cells and have been shown to be effective for 
wound healing (Rani and Ritter, 2015).

Polymer Nanoparticles
Wound dressings loaded with titanium dioxide NPs that are 
coated with chitosan and pectin are antimicrobial and have 
been shown to have great wound healing properties (Archana 

et  al., 2013). The synergistic effects with the dressing such as 
antibacterial activity, high swelling properties, high moisture 
vapor transmission rate, hydrophilic nature, biocompatibility, 
wound appearance, and enhanced wound closure rate make 
titanium NPs a suitable candidate for wound healing applica-
tions. Growth factors are important in ensuring healthy wound 
healing. However, the half-life of the growth factors in the wound 
microenvironment is significantly reduced because of the pres-
ence of various proteolytic enzymes including MMPs (Murphy 
and Nagase, 2008). Encapsulation of growth factors in polymer 
NPs increased stability, preserved bioactivity, and promoted sus-
tained release of the growth factors. Currently, PDGF-BB is the 
only growth factor that is FDA approved for diabetic foot ulcers, 
which makes PDGF-based therapies even more translational. 
Hyaluronan-based porous NPs enriched with PDGF-BB have 

FiGURe 5 | Delivery of co-receptors with growth factors in a lipid nanoliposome to enhance diabetic wound healing. (A) Protein expression of 
syndecan-4 in diabetic and non-diabetic human tissue. Bar = 25 μm. (B) Macroscopic image of the dorsal surface of the mouse with excisional wounds treated for 
2 weeks with the treatments. (C) Quantification of the open wound area over the course of 2 weeks after surgery with the different treatments. (D) Schematic 
representation of the co-delivery of syndecan-4 in a nanoliposome with FGF-2 encapsulated in alginate wound dressings and the findings of the study. (A–D) are 
reproduced with permission from Das et al. (2016a). (e) Histological sections of wounds with various treatments stained with Hematoxylin and Eosin stain. (F) 
Quantification of the open wound area over the course of 2 weeks after surgery with the different treatments. (G) Immunofluorescent images of sections of the 
wound bed stained with alpha smooth muscle actin (green), PECAM (red), and DAPI (blue). (e–G) are reproduced with permission from Das et al. (2016c).
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been shown to be highly effective for the treatment of ulcers in 
a placebo-controlled study in rats (Zavan et al., 2009). Fibroblast 
growth factor-2 (FGF-2) has been successfully microencapsu-
lated in gelatin preserving biological activity and thus allows for 
their use in tissue engineering, therapeutic angiogenesis, gene 
therapy, and drug delivery applications (Young et al., 2005). EGF 
is a potent mitogen for keratinocytes, which has been shown to 
be effective in healing gastric ulcers when delivered through a 
poly-l-lactic acid-based wound dressing (Han et al., 2001).

Nanoparticles in Clinical Usage
Silver Nanoparticles
Nanoparticle-based therapies in wound care are relatively new 
compared to conventional biomaterials that have been used for 
decades now. Silver has been used since ancient Roman times 
and now used in biomedical devices (de Alwis Weerasekera 
et  al., 2015). Silver NP-based ointments/creams are perhaps the 
most widely used primarily because of the antimicrobial proper-
ties of nanocrystalline silver (Griffith et al., 2015). Silver NPs or 
nanocrystals in a topical gel have been used for moist wound 
care and promote cosmetic healing, have effective antibacterial 
properties, and play a role in cytokine modulation and suppress 
inflammation (Tian et al., 2007; Jain et al., 2009; Rigo et al., 2013). 
They are generally indicated for minor cuts, abrasions, lacerations, 
skin irritations, and first- or second-degree burns. Although the 
mechanisms underlying the antibacterial actions of silver are still 
not fully understood, several previous reports showed that the 
interaction between silver and the constituents of the bacterial 
membrane caused structural changes and damage to the mem-
branes and intracellular metabolic activity, which might be the 
cause or consequence of cell death (McDonnell and Russell, 1999; 
Sondi and Salopek-Sondi, 2004; Pal et al., 2007; Eckhardt et al., 
2013). However, prolonged exposure to colloidal silver can result 
in argyria where the skin attains blue gray color from accumulated 
silver (Rice, 2009). There are several variations of silver contain-
ing creams or gels or ointments that are available from different 
companies. Silver NP-based treatments are inexpensive, have 
low systemic toxicity, and are effective against viral and bacterial 
infections but have limited effects on enhancing the wound healing 
process in chronic wound environment (Gunasekaran et al., 2011).

CONCLUSiON

Biomaterials have been used in wound healing since the rise 
of Egyptian civilization, but NPs have become tremendously 
important in engineering an effective treatment strategy, only in 
the last two decades. Biomaterials have been successfully used 
in manufacturing clinically approved products for aiding wound 
healing like films, foams, wafers, hydrogels, hemostatics, sealants, 
and composite dressings. However, there are no biomaterials 

currently approved that release bioactive components (like growth 
factors, cytokines, chemokines, plasmids, recombinant proteins, 
small molecules, cellular therapy, etc.) that directly influence the 
wound healing cascade. Here, we reviewed biomaterials used 
in the clinic and those under preclinical development. We are 
excited about the potential of the biomaterials undergoing devel-
opment, specifically those that encapsulate bioactive compounds 
or cell therapies. NP therapies on the other hand have not been 
used widely in clinic barring silver NPs. However, there is a lot 
of compelling NP therapies that have shown great potential in 
animal models as we discussed in the paper.

With the advent of CRISPR-Cas9 technology, it would be 
interesting to see how scientists apply this remarkable gene edit-
ing technology to engineer the wound microenvironment (Jinek 
et al., 2012; Cho et al., 2013; Cong et al., 2013; Mali et al., 2013; 
Sander and Joung, 2014). There are many genes that are involved 
in the regulation of the wound healing process, and wound 
healing models have been tested only on a few mutant mouse 
models. CRISPR-Cas9 technology reduces the time to create a 
knockout mouse from several months to few weeks, thus enabling 
researchers to ask various questions. The overall goal would be to 
achieve fetal wound healing properties in adult wound healing 
with complete regeneration of hairs and glands, without delay 
and scarring.

Wound care is a significant economic and social burden on 
both the patient population and the health-care system at large. 
In this review, we have discussed the different biomaterial and 
NP-based wound therapies, which are either in current clinical 
usage or in preclinical development. Since there is significant 
variability of presentation of symptoms in the patients, effective 
wound care therapies need to have a multipronged approach to 
tackle the complex problems of pain, inflammation, infection 
caused by resistant bacteria, delayed healing, and associated costs 
to health systems and populations worldwide. The precipitous 
rise in multidrug-resistant bacteria is going to be the biggest 
challenge for wound care professionals all over the world in this 
decade. Emerging treatments using biomaterials or NPs to target 
multiple aspects have great promise for enhancing wound care 
and will add to the clinical armamentarium to address poorly 
healing wounds.
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