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Contraction-level invariant surface electromyography pattern recognition introduces the 
decrease of training time and decreases the limitation of clinical prostheses. This study 
intended to examine whether a signal pre-processing method named frequency division 
technique (FDT) for online myoelectric pattern recognition classification is robust against 
contraction-level variation, and whether this pre-processing method has an advantage 
over traditional time-domain pattern recognition techniques even in the absence of 
muscle contraction-level variation. Eight healthy and naïve subjects performed wrist 
contractions during two degrees of freedom goal-oriented tasks, divided in three groups 
of type I, type II, and type III. The performance of these tasks, when the two different 
methods were used, was quantified by completion rate, completion time, throughput, 
efficiency, and overshoot. The traditional and the FDT method were compared in four 
runs, using combinations of normal or high muscle contraction level, and the traditional 
method or FDT. The results indicated that FDT had an advantage over traditional 
methods in the tested real-time myoelectric control tasks. FDT had a much better median 
completion rate of tasks (95%) compared to the traditional method (77.5%) among non-
perfect runs, and the variability in FDT was strikingly smaller than the traditional method 
(p < 0.001). Moreover, the FDT method outperformed the traditional method in case of 
contraction-level variation between the training and online control phases (p = 0. 005 for 
throughput in type I tasks with normal contraction level, p = 0.006 for throughput in type 
II tasks, and p = 0.001 for efficiency with normal contraction level of all task types). This 
study shows that FDT provides advantages in online myoelectric control as it introduces 
robustness over contraction-level variations.

Keywords: electromyography, robustness, online performance, myoelectric control, muscle contraction level

Abbreviations: Γ, path efficiency; CR, completion rate; NM, near miss; T2R, time to reach; TP, throughput; ADL, activities of 
daily living; ANN, artificial neural networks; ANOVA, analysis of variance; DoF, degree of freedom; EMG, electromyography; 
FDT, frequency division technique; LDA, linear discriminant analysis; LR, linear regression; NMF, non-negative matrix fac-
torization; PCA, principal component analysis; PR-based, pattern recognition-based;  PSDF, power spectrum density function; 
sEMG, surface electromyography.
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1. INtRodUCtIoN

Surface electromyography (sEMG) signals, the muscles’ electrical 
activities recorded at the skin surface, are used for the control 
of multifunction upper-limb prostheses (Parker et  al., 2006). 
Currently, with one recently emerged exception, the techniques 
used in commercial prostheses provide very limited functionali-
ties which can only be operated over no more than two degrees of 
freedom (DoF) in a sequential manner with unintuitive switching 
commands, such as a strong contraction over all EMG channels. 
One of the techniques used to improve the performance of 
prosthetic control over the past decades is pattern recognition 
(Scheme and Englehart, 2011), which is the basis of a recently 
commercial product, COAPT’s complete control system.1

For one-to-one mapping of EMG signals to specific contrac-
tion types, the pattern of surface electromyography (sEMG) 
elicited during specific movements are stored and analyzed by 
the pattern recognition algorithm in the training phase; then, the 
trained classifier is used to classify the EMG signal during the 
control phase into the intended movement (Li et al., 2010). To 
achieve low classification error, the signals or features extracted 
from the signals, in the control phase should be stationary, or 
similar to those in the training phase. Currently in the literature, 
various factors that can induce non-stationary change to EMG 
and EMG features between the training and control phases 
have been identified. Consequently, these non-stationarities can 
significantly affect the performance of pattern recognition-based 
(PR-based) algorithms in activities of daily living (ADL). This 
lack of robustness is indeed one of the major obstacles for the 
pattern recognition algorithms to be implemented in commercial 
products (Jiang et al., 2012). These non-stationary factors include, 
but are not limited to, arm and trunk positions (Fougner et al., 
2011), electrode shifts (Young et  al., 2012), subject learning 
(He et  al., 2015a), and contract levels (Kaufmann et  al., 2010). 
Specifically, muscle contraction level was shown to be one of the 
factors inducing non-stationarity between the training phase and 
the actual control phase (Kaufmann et  al., 2010). The authors 
showed that when the contraction level between the training 
and control phases differed, the performance of a large number 
of classifiers, which had been previously reported in myoelectric 
control, dropped significantly. In order to address this type of 
degradation, these classifiers have to be trained with a large range 
of contraction levels. However, this approach can be impractical 
in real-world applications, particularly when there are a large 
number of classes. Alternatively, features of sEMG or specific por-
tions of sEMG signal that do not change (or have limited change) 
at different contraction levels is preferable as they can lead to an 
elegant control scheme that is inherently robust against varying 
contraction levels between the training and control phases. In He 
et al. (2015b), a frequency-based feature set is proposed as the first 
attempt to realize a contraction-level independent myoelectric 
pattern recognition classification. It was shown that with this new 
feature set, the classification performance was significantly better 
than a classic pattern recognition algorithm when presented with 

1 https://coaptengineering.com.

contraction levels not seen in the training phase. More recently, 
Al-Timemy et  al. (2015) also proposed a feature set based on 
spectral moment descriptors to improve the robustness of myoe-
lectric control with the presence of contraction-level variation. 
However, both of these studies (Al-Timemy et al., 2015; He et al., 
2015b) were offline studies, where the advantage may or may 
not be able to translate to online controllability of the prostheses 
(Jiang et  al., 2014c). Lock et  al. (2005) showed that the offline 
performance of PR-based algorithms was not correlated with its 
online performance. By comparing three simultaneous and pro-
portional myoelectric control algorithms of non-negative matrix 
factorization (NMF), linear regression (LR), and artificial neural 
networks (ANN), Jiang et  al. (2014c) showed that the offline 
performance of the algorithms is weakly correlated to the online 
performance control. In this sense, the advantage of a feature 
set, or a signal pre-processing technique for online myoelectric 
control, is not known from the offline study until it is examined 
in an online myoelectric control scheme.

More importantly, neither of these two studies (Al-Timemy 
et al., 2015; He et al., 2015b) explicitly exploited the advantage of 
the fundamental properties of motor units involved in the genera-
tion of sEMG signals. Based on the Henneman’s size principle, the 
recruitment of motor units at different levels is ordered such that 
smaller units with lower firing rates are recruited at low contrac-
tion levels, and larger units with higher firing rates are recruited 
progressively at higher contraction levels (Henneman et  al., 
1965). Indeed, the differences of firing rates of active motor units 
at different contraction levels can lead to different characteristics 
among different frequency bands of sEMG. In addition, not only 
does the power spectrum density function (PSDF) of EMG not 
change uniformly over all the frequency bands in the case of vary-
ing muscle contraction levels but also some frequency bands have 
less dependency on contraction level (Roman-Liu and Konarska, 
2009). As such, extracting frequency band-specific information is 
beneficial in identifying the changes at different frequency bands 
and in increasing the robustness of the algorithm against chang-
ing contraction levels.

The purpose of this study was to investigate the effect of 
FDT in an online myoelectric control scheme as the applied 
contraction level varies in the training and control phases. 
The online control phase was achieved through goal-oriented 
tasks. The current study explored the normal and high muscle 
contraction levels, as they are more likely to be used during wrist 
contractions.

2. Methods

2.1. subjects
This study was conducted with eight healthy subjects (4 males, 
4 females, 18–54  years old), denoted by SUB01–SUB08. None 
of the subjects had prior experience with EMG or myoelectric 
control systems before the experiment.

2.2. Algorithm
The sEMG signals captured from the subjects were processed 
with the following steps. First, in order to remove the background 
noise, particularly 60  Hz line interferences, in the acquired 
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sEMG signals, the method of Common Averaging was used. 
In this method, the mean of the signal from all seven channels 
was calculated and subtracted from each individual channel. 
Following the common average step, two filtering methods 
were used, namely bandpass and frequency division technique 
(FDT). For bandpass, the sEMG signals were bandpass filtered 
(second order, Butterworth) from 20 to 450 Hz. In the literature, 
this is the most commonly used filtering method for myoelectric 
control (Scheme and Englehart, 2011). For FDT, the aim was 
to divide the signals into several channels containing specific 
frequency bands in order to achieve the advantage of sub-bands, 
which have low dependency on contraction level. In this method, 
the signals were filtered by a bank of filters (second order, 
Butterworth) with frequency bands of 20–92, 92–163, 163–235, 
235–307, 307–378, and 378–450 Hz; these ranges of frequencies 
were chosen from He et al. (2015b). Hence, the output of FDT 
had a dimension of 42, as opposed to the 7-dimension bandpass 
filter output.

Following the filtering operation, the classic time-domain 
features (Hudgins et al., 1993) were extracted from the output of 
the two filtering schemes. Principal component analysis (PCA) 
was used to reduce the dimension of the feature space: compo-
nents containing 95% of the variance of the overall features were 
retained. In this step, the bandpass and FDT method could result 
in a different number of PCA components. Subsequently, linear 
discriminant analysis (LDA) was used for classification. The 
choice to combine time-domain features and LDA classifier was 
shown to be the optimal processing method in PR-based myoe-
lectric control literature, particularly in real-time control studies 
(Scheme and Englehart, 2011). The online myoelectric control 
experiment of the current study is described in detail next.

2.3. experiment Protocol
During the experiment sessions, the subject placed his/her domi-
nant arm at the side of the body in the neutral position and seated 
comfortably at a chair. A computer screen was placed in front 
of the subject at a distance of approximately 1 m. Seven surface 
electrodes (H124SG, Foam Hydrogel, Covidien) were placed 
equidistantly along the forearm at approximately 2/3 of the fore-
arm length from the wrist. A high-accuracy bio-signal amplifier 
(g.USBamp, g.Tec Medical Engineering, Austria) at the sampling 
rate of 1200 Hz with 24 bit A/D was used for the data acquisition 
of sEMG signals. For each subject, the experiment protocol con-
sisted of two sessions. The sessions were similar and took place at 
least two days, approximately three days apart. The first session 
was a familiarization session because all subjects were naïve to 
EMG and myoelectric control. This familiarization session was 
also used to minimize the failure rate of tasks in all the runs, so 
as to minimize the bias in subsequent statistical analysis. Each 
session consisted of two phases: a training phase and a control 
phase, as described in detail in Sections 2.3.1 and 2.3.2. During 
the control phase, the subject would perform goal-oriented tasks 
(as described in Section 2.3.2).

2.3.1. Training Phase
Following on-screen instructions, the subject performed a 
series of wrist contractions that would activate two wrist 

DoF: wrist flexion/extension and wrist pronation/supina-
tion. Two sets of data were collected for algorithm training/
calibration purposes: one for wrist movements with normal 
contraction level of the forearm muscles, at the comfort of 
the subject (labeled as train-normal data); another one for 
wrist movements with high contraction level of the forearm 
muscles, for which the subject intended to exert as much 
effort as possible (labeled as train-high data). Train-normal or 
train-high data were used for training/calibration of the LDA 
algorithm (see Section 2.2) depending on the run in the control  
phase.

2.3.2. Control Phase
This phase would start immediately after the two LDA classi-
fiers were trained: one for bandpass and one for FDT. In this 
phase, four experimental runs were performed. For each run, 
one of the two filtering techniques, bandpass or FDT, was 
used to filter the raw sEMG data, which were acquired when 
the subject performed wrist contractions (flexion/extension 
or supination/pronation). The real-time EMG processing 
window was 150  ms, and the LDA produced a classification 
decision every 50 ms. No majority vote was implemented. The 
classification outcome of the LDA, i.e., one of the five classes 
of flexion, extension, supination, pronation, and no-action, 
was used to control the following movements of an on-screen 
arrow: left, right, clockwise rotation, counter-clockwise rota-
tion, and no-movement, respectively (for left-handed subjects, 
the directions of movements in the two DoFs were reversed). 
Thus, by performing wrist contractions, the subject was able 
to control the movement of the arrow in real time. The tasks 
for the subject were to move the arrow so that the tip of the 
arrow could hit various circular targets with relative area of 
1.4% with respect to the working space (see Figure 1). For the 
task to be counted as successful, the tip of the arrow must stay 
inside the target for at least 300 ms within a 20-s interval. The 
task was labeled as a failure if the subject did not reach the goal 
within 20  s. Hence, the subjects were instructed to complete 
the tasks as fast as they can. Four runs of this phase were 
combinations of the filtering methods (see Section 2.2) and 
the training conditions (see Section 2.3.1). Normal-bandpass 
was the run where the algorithm was trained with train-normal 
data, and the bandpass filtering method was used on the sEMG 
signals. In the normal-FDT run, the algorithm was trained with 
train-normal data, and the FDT filtering method was used. In 
the high-bandpass and high-FDT runs, the control algorithm 
was trained with train-high data, and the filtering method of 
bandpass and FDT were used, respectively. The order of the 
runs was randomly chosen for each subject. In each run, 60 
targets located at different places on the screen were presented 
to the subject. Three types of targets, each containing 20 targets, 
were shown to the subjects. For type I targets, ideally the subject 
would only need to perform wrist supination or pronation 
to reach the target. For type II targets, either wrist flexion or 
extension was needed to reach the target. For type III targets, 
the subject should perform both type I and type II functions 
to reach the target. For all the subjects, the targets were shown 
with the order of type I, type II, and type III targets.
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FIgURe 1 | goal-oriented tasks performed by the subjects. The black arrow shows its position at the beginning of each task. The gray arrows represent the 
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2.4. Performance Analysis
To analyze real-time control performance in the goal-oriented 
tasks, the time taken to reach the goal successfully and the trajec-
tory of the tip of the arrow were recorded. Using the recorded 
measures, five performance indices were calculated: time to reach 
(T2R), throughput (TP), path efficiency (Γ), near miss (NM), and 
completion rate (CR) as defined in Jiang et al. (2014c).

2.4.1. Time to Reach [T2R (s)]
T2R was the time taken by the subject to reach the goal. T2R 
would be 20  s if the subject was not able to complete the task 
within 20 s.

2.4.2. Throughput [TP (bit/s)]
The performance index of TP quantified how much information 
could be delivered by the subject through the control movements 
within the duration the task. This index was calculated as in Jiang 
et al. (2014c), by the ratio of the task difficulty and extitT2R.

2.4.3. Path Efficiency [Γ (%)]
The length of the optimal path from the zero position to the 
position of the target was compared to the length of the path 
covered by the subject in each task. The ratio of these two was 
labeled as Γ.

2.4.4. Near Miss [NM (k)]
Near miss performance index was an overshoot factor which 
measured the number of times the tip entered the circle of target 
but exited the circle in less than 300 ms.

2.4.5. Completion Rate [CR (%)]
CR was the ratio between the number of successful tasks and 
performed tasks. 20 trials performed by each subject in a specific 

scenario were used to calculate the completion rate for that spe-
cific subject in the scenario.

2.5. statistics
The main hypothesis of the study is that compared to bandpass, 
FDT provides a more accurate online performance with the 
PR-based myoelectric control paradigm, and the secondary 
hypothesis is that FDT is more robust against the contraction 
level, with which the algorithm is trained. In order to test these 
hypotheses, Kruskal–Wallis and Levene tests were performed 
to investigate if the CR of the process methods (bandpass, 
FDT) were on average different, and if the variability of the 
CR was different, respectively. To avoid the entire dataset being 
dominated by runs with 100%, only non-perfect runs (CR lower 
than 100%) were analyzed. Following these non-parametric 
tests, repeated-measure analysis of variance (ANOVA) tests 
were performed for the first four performance indices from 
successful trials, with subject (SUB01–SUB08) as the factor 
measures were repeated on. The two-way interactions of the 
other three factors: target type (type I, type II, type III), train-
ing method (train-normal, train-high), and process method 
(bandpass, FDT), were included in the initial ANOVA. For 
cases where there was no significant two-way interaction, the 
interactions were removed from the analysis. In case of signifi-
cant two-way interactions, the level of one of the interacting 
factors was fixed, and the focused ANOVA was performed. As 
the process method of FDT was the interest of this study, the 
target type and training method was fixed whenever possible. 
For the analysis of each performance metric, the trials with 
standardized residuals equal or larger than four were removed 
from the analysis. In case of significance on the main factors, 
the Tukey comparison was conducted. For all the tests, the level 
of significance was 0.05.
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FIgURe 2 | Representative trajectories of the goal-oriented task (type III target) for normal-bandpass, normal-FDT, high-bandpass, and high-FDT. 
The trajectory data were from SUB07. For (A), the subject was not able to complete the task successfully within 20 s. For (B), the T2R, TP, Γ, and NM were 
16.40 s, 0.41 bit/s, 7.36%, and 6, respectively. For (C), the T2R, TP, Γ, and NM were 15.39 s, 0.29 bit/s, 8.03%, and 3, respectively. For (d), the T2R, TP, Γ, and 
NM were 9.90 s, 0.45 bit/s, 17.9%, and 2, respectively. Arbitrary units for all axes.
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3. ResULts

The trajectories of goal-oriented tasks, from one subject for the 
combinations of process and training methods, are presented in 
Figure 2. As shown in the figure, the performance of the runs 
using FDT was better than the performance of the runs with the 
bandpass method. The median CR of runs with the FDT method 
was 95% across all non-perfect runs and was 77.5% with the 
bandpass method. More importantly, the variability in CR for 
FDT was 3.45%, which was strikingly smaller than the bandpass 
method with the variability of 12.87% (p <  0.001). In fact, the 
CR of 50% of the FDT runs lies between 90 and 95%, whereas 
for bandpass it lies between 66.25 and 85%. Subsequent statistical 
analysis supported this observation, indicating FDT provided a 
clear advantage in real-time control over bandpass such that the 
participants were able to complete the tasks more successfully. 
Figure 3 clearly presents that the CR of the non-perfect runs are 
higher with lower variability when the FDT method was used. 
For the successful trials, in case of found significance, the other 
performance indices are summarized below. For type II targets, 

when train-high data were used, the T2R of the FDT method 
was 3.26 s, which was lower than the bandpass method with a 
T2R of 4.16 s. The mean of TP for type II targets with the FDT 
method was 1.64 bit/s, while with the bandpass method it was 
only 1.41  bit/s. The FDT method outperformed the bandpass 
method in throughput (TP = 2.10 vs. 1.73 bit/s) for type I targets 
in train-normal runs. In train-normal runs, the Γ with FDT and 
bandpass were 58.23 and 51.46%, respectively.

There were significant two-way interactions between the 
target type and training method for T2R, TP, and NM with 
corresponding p-values of 0.002, 0.016, and 0.014, respectively, 
and also between the process and training methods with p-value 
of 0.003 for Γ. Therefore, a series of focused ANOVA were per-
formed, which are summarized in Table 1. For T2R, a focused 
ANOVA was performed with fixed target type. Only for type II 
targets with train-high runs, the T2R of FDT was found to be 
statistically better than the T2R of bandpass (p = 0.003). For type 
I and type III targets, no significance between the two process 
methods (p  =  0.681 and p  =  0.085, respectively) was found. 
For TP, the focused ANOVA with only type I targets found 
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tABLe 1 | summary of the statistical analysis for the comparison of Fdt and bandpass in performance indices.

Performance index t2R tP Γ NM

Focused two-way ANOVA Target type

I         p = 0.681
Normal

p = 0.005 
FDT > BP

  N/A

p = 0.996

High p = 0.695

II

Normal p = 0.517
p = 0.006  
FDT > BP

p = 0.841
High

p = 0.003 
FDT < BP

III p = 0.085 p = 0.469 p = 0.195

Focused one-way ANOVA Training method
Normal

N/A N/A

p = 0.001 
FDT > BP N/A

High p = 0.666

In case of found significance, the table presents which process method was better.
BP = bandpass.

FIgURe 3 | Completion rate of all non-perfect runs.
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significant interaction in train-low runs between the two main 
factors of process and training methods (p = 0.005). In this case, 
no significance between the two process methods (p = 0.695) was 
found using train-high data. For type II targets, FDT was found 
to be statistically better than bandpass (p  =  0.006). The TP of 
runs with FDT and bandpass was not found to be statistically 
different for type III targets (p = 0.469). For Γ, a focused ANOVA 
was performed, and the test found that FDT and bandpass were 
statistically different in all train-normal runs. In this case, a Tukey 
comparison revealed that FDT resulted in significantly higher 
path efficiency than bandpass with a p-value of 0.001. For NM, in 

neither of the target types (type I, type II, and type III), was signifi-
cance found (p = 0.996, p = 0.841, and p = 0.195, respectively). 
Figure 4 presents the result of the statistical analysis for the first 
four performance indices.

In summary, for the key performance indices of TP, T2R, 
and Γ, FDT outperformed for at least one of the target types. 
For train-normal runs, FDT resulted in higher TP for type I and 
type II targets, and it performed with higher Γ for all target types. 
In other words, the advantage of FDT was more pronounced 
when the contraction level of the training data differed from the 
contraction level of the real-time control tasks; for train-normal 
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C D

FIgURe 4 | summary of the performance indices of T2R, TP, Γ, and NM. The 95% confidence interval for mean is shown here. The outliers are removed from 
the analysis. (A) Time to reach. (B) Throughput. (C) Path efficiency. (d) Near miss.
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runs, FDT had a tendency to have better performance than band-
pass. This result was due to the high muscle contraction that the 
subjects applied during the runs as they were asked to complete 
the trials as fast as they can. Consequently, the muscle contrac-
tion level used during the real-time trials was closer to train-high 
trials than train-normal trials. The outperformance of FDT over 
bandpass, while the contraction level of the training data and 
real-time control were different, clearly highlights the robustness 
of the FDT method against the contraction level; and this result 
is in agreement with the secondary hypothesis. The comparison 
of the process methods revealed that FDT has advantage over 
bandpass. Also, this advantage was supported by the significantly 
lower CR variability that FDT had with respect to bandpass. This 
low variability in CR for FDT supported the main hypothesis of 
this experiment, which was that FDT provides better online per-
formance compared to bandpass. It is important to note that these 
comparisons were performed only with successful trials (failure 
trials were only used for performance index of CR). These analy-
ses implicitly penalized FDT, which had a significantly higher CR. 
Because if the maximal allowed task completion time was set at 

a longer time, more trials with bandpass with longer completion 
time, worse path efficiency, and more overshoot would have been 
included.

4. dIsCUssIoN

In this study, two sEMG signal pre-processing methods, namely 
bandpass and FDT, were compared to investigate their robustness 
against varying contraction levels and consequently the accuracy 
of PR-based myoelectric control algorithms in the presence of 
varying contraction levels. A goal-directed motor task involving 
wrist contractions were used, similar to several previous stud-
ies (Ameri et  al., 2014a,b; Jiang et  al., 2014a,b,c) of multi-DoF 
real-time myoelectric control. Five performance indices of a 
goal-oriented online control tasks, time to reach (T2R), through-
put (TP), path efficiency (Γ), near miss (NM), and completion 
rate (CR), were used in this study. It was previously reported 
that the performance of pattern recognition algorithms is seri-
ously affected by varying muscle contraction levels (Kaufmann 
et al., 2010; He et al., 2015b). This was confirmed by our results: 
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significantly lower accuracy was observed when the contraction 
level between the training and control phases was different. 
Therefore, a more robust signal processing technique that does 
not lead to online performance degradation with the presence of 
variation in muscle contraction is highly desirable. In particular, 
it would be practically appealing to perform the training phase for 
as few contraction levels as possible.

One of the important outcomes in this study is demonstrating 
that in an online control scheme, FDT provides a more robust 
prosthetic control against changing contraction levels than band-
pass. Indeed, FDT increases the robustness against contraction 
level without significantly increasing the computational cost, as 
only time-domain features are used in the method. The experi-
ment protocol designed for this study intentionally allowed the 
subjects to have freedom in terms of muscle contraction level in 
the control phase, as they would in ADLs. This design allowed 
the subjects to exert high contraction levels during the control 
phase. As such, the advantage of FDT over bandpass was more 
pronounced in the train-normal runs where the control phase and 
the training phase data had the most discrepancy in contraction 
levels. Another reason for this design was to minimize the cor-
relation between the performances of the subjects in the training 
and control phases. In fact, the subjects were asked to maintain a 
constant muscle contraction level in the training phases (normal 
contraction in the normal runs and high contraction in the high 
runs), and they had no such restriction on the contraction level 
during the control phases.

Another important outcome of this study is that the perfor-
mance of PR-based myoelectric control was higher in general 
when FDT was used in data processing than bandpass. This con-
clusion comes from the fact that FDT resulted in lower variability 
in CR and also higher CR even though the statistical analyses were 
biased toward the bandpass method by excluding failed trials (as 
discussed in Section 3).

In this study, similar to Jiang et  al. (2014b), the process 
methods were measured in terms of relative advantage with the 
performance indices and the control parameters of the tasks 
(relative area of circular targets, the minimum acceptable time 
of being inside the circle for success, and the maximum time 
allowed). To monitor the relative differences, all the subjects’ runs 
had similar control parameters. Hence, in this paper, although the 
absolute values of the performance indices were provided, only 
the statistical difference of the performance indices between the 
process methods were emphasized.

Considering that all the subjects attended in the study were 
naïve, the experiment protocol had two sessions for each subject. 
The first session helped the subjects to become familiar with the 
protocol of the experiment as well as with using myoelectric 
control to achieve the goal-oriented tasks.

The main limitation of this study is that the change of feature 
space is not investigated in the performances. In He et al. (2015b), 
changes of feature space were studied whenever normalization of 
data was possible. However, such systematic analysis in feature 
space change for online performances cannot be conducted as 
standardization of online data is not possible as in offline analysis.

The current study is only limited to intact-limb subjects. 
Based on Jiang et al. (2014b), the online performance of PR-based 

myoelectric control in upper-limb amputees is similar to the 
performance of intact-limb subjects. Hence, in presence of the 
amputee subject limitation, it is reasonable to expect a similar 
advantage of FDT over bandpass in trans-radial amputee subjects. 
However, this needs to be validated with further experiments.

5. CoNCLUsIoN

In this paper, we analyzed two signal pre-processing techniques 
for PR-based myoelectric control, aiming at improving system 
robustness against variation of muscle contraction levels. We 
investigated the performance of the FDT and bandpass methods 
in presence of muscle contraction variations between the train-
ing and control phases, and we found that FDT significantly 
outperformed bandpass for PR-based prosthetic myoelectric 
control, with higher online control performance in general, and 
a significantly smaller inter-subject variability. More importantly, 
the online control is significantly more robust against changing 
contraction levels with the FDT method. FDT can increase the 
freedom of the subject to vary the muscle contraction level used 
for control, which provides comfort for the user. To emphasize 
the advantage of FDT over bandpass, future work would include 
force/torque measurement, as well as standardized trials in the 
control phase to systematically study the feature space change 
with the presence of contraction-level change, as well as valida-
tion with trans-radial amputees.
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