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Extraction of fractal exponents via the slope of the power spectrum is common in the 
analysis of many physiological time series. The fractal structure thus characterized is a 
manifestation of long-term correlations, for which the temporal order of the sample val-
ues is crucial. However, missing data points due to artifacts and dropouts are common 
in such data sets, which can seriously disrupt the computation of fractal parameters. We 
evaluated a number of methods for replacing missing data in time series to enable reli-
able extraction of the fractal exponent and make recommendations as to the preferred 
replacement method depending on the proportion of missing values and any a priori 
estimate of the fractal exponent.
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INtRodUCtIoN

Since the brilliant and defining work of Mandelbrot on fractal mathematics (Mandelbrot, 1999) and 
the discovery of fractal structure in firing rates of auditory neurons (Teich, 1989), fractal physiology 
has become an area of great research interest (Bassingthwaighte et al., 1994). By fractal structure 
we mean, most generally, self-similarity: the repeating of patterns at different spatial or temporal 
scales. (In reference to time series, this is more properly termed self-affinity; see below.) In terms of 
time-series analysis, fractal structure is most often manifested statistically: variability or fluctuations 
change in a systematic manner with the duration of a temporal window into the data record. This was 
first found by Hurst in a study of the series of annual peak Nile River levels and quantified in terms 
of a new parameter known as the rescaled range, which is the range of the data divided by the SD 
(R/S). This was found to be proportional to the duration of the data record (T, in years), raised to a 
power: R/S ~ TH (Hurst, 1951). This reflects power-law behavior, where the variability is a power-law 
function of time scale; for values of H other than 0.5, it also means that the system has memory, such 
that future values are dependent on previous ones.

Strictly speaking, the concept of self-similarity does not apply to functions, including those repre-
sented by time series as studied here. Instead, self-affine is the correct term for fractal characteristics 
in a time series, which refers to scaling that can be different along the abscissa and the ordinate 
(behaviors along the two axes are independent). Self-similarity can only apply where both axes are 
subject to the same metric.

In more general terms, power-law scaling is often reflected in the autocorrelation function of 
the time series, which decays as a power-law function of time lag: R(τ) ~ 1/τβ. Under broad condi-
tions, the associated power spectrum (the Fourier transform of the autocorrelation function) also 
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exhibits power-law decay: S(f)  ~  1/fα (Rangarajan and Ding, 
2000), which leads to a clear interpretation: as temporal scale 
(inverse frequency) increases (frequency decreases) by a factor 
of x, the fluctuations at that scale increase by a factor of xα, over 
a broad range of temporal (frequency) scales. While the physical 
or physiological meaning of this scaling is not completely under-
stood, the finding is ubiquitous in biological and physiological 
systems (Gisiger, 2001). There are many ways to characterize 
this fractal structure; one of the most straightforward in terms 
of computation and interpretation is the scaling exponent of the 
power spectrum (α), easily obtained from a linear regression on 
a log–log plot of the periodogram, which is an estimate of the 
power spectrum S(f) (Lowen and Teich, 2005).

It is important to note that analysis of a time series for such 
fractal (power-law) scaling is based on temporal structure: the 
temporal ordering of the time points is critical. This can be 
problematic when dealing with physiological time series which 
often have artifacts that lead to missing data points (ectopic beats 
in EKG, blinks in eye-movement records, etc.). We wanted to 
determine if there are ways to replace missing data points—for 
which their times of occurrence have been corrupted—that do 
not significantly alter the computed value of the fractal exponent. 
We assume that bad (missing) data points can be identified as 
such through other means, such as altered waveform morphol-
ogy, but that their timing is not so easily identifiable. Thus, when 
reconstructing the time series and inserting the missing data, 
it is the timing of that data that is crucial. We specifically focus 
on fractal point processes, where the timing of nearly identical, 
stereotyped, events is of interest (eye blinks, QRS complexes, gait 
intervals, etc.). Thus, we are concerned with replacing missing 
data points by inserting new values in the correct place tempo-
rally with respect to the rest of the time series.

A number of approaches to this problem have been proposed. 
Most are in the area of heart-rate variability (HRV), where timing 
of R waves is critical to a variety of linear and non-linear meas-
ures. Lippman et  al. (1994) compared four methods to correct 
for ectopic beats that had been artificially inserted into human 
heartbeat data and examined their effects on measures of HRV. 
(Ectopic beats are extra or skipped beats that arise from other 
than the normal cardiac electrical conduction mechanism. These 
variations in the normal rhythm are generally benign and can 
be ignored if the “typical” cardiac timing mechanism is of inter-
est.) The methods they examined were simple deletion, linear 
interpolation, cubic spline interpolation, and pattern matching. 
They found that “deletion and non-linear predictive interpola-
tion performed superiorly to linear or cubic spline interpolation, 
which overestimated low-frequency power and underestimated 
high-frequency power.” Another group evaluated methods for 
first detecting which beats are ectopic and then ameliorating their 
effects by replacing them using a model of heart timing, which 
is an established model that relies on physiological limits in HR 
bandwidth to provide bounds on the possible change in rate from 
one beat to the next (Mateo and Laguna, 2003). In another study 
of replacement methods for missing (ectopic) beats, interpolation 
yielded better performance than did deletion, which in turn was 
better than no editing of ectopic beats, for a variety of non-linear 
measures except entropy (Tarkiainen et al., 2007). Methods for 

determining which beats are ectopic and then accurately restoring 
data integrity have been evaluated in terms of both accuracy and 
computational cost (Colak, 2008). Note that while ectopic cardiac 
beats can be determined due to the particular characteristics of 
the human heartbeat, our approach is more general.

In the case of neural spike trains, explicitly accounting for 
spike jitter can yield more robust characterizations of spike-train 
patterns. In one approach (Aldworth et  al., 2005), an iterative 
process was used to adjust timing jitter in recorded spike trains, 
in which each candidate de-jittered signal was compared via a 
distance measure to the mean of the de-jittered signals on the pre-
vious iteration, until convergence was obtained. A model-based 
approach was used to make the putative timing adjustments, 
which made reasonable assumptions about the possible jitter 
that occurs in a sequence after a stimulus. This is different from 
the approach that we pursue, where we desire to replace isolated 
samples with unknown timing, over an entire time series.

We examined a number of methods for dealing with missing 
data values, specifically in the context of how various replacement 
algorithms affect the resulting estimates of the fractal exponent. 
Recommendations for which method to use, based on the pro-
portion of data values to be replaced and the likely range of the 
fractal exponent a priori, are provided.

Methods

The algorithms described below are provided in Supplementary 
Material. The computer code includes routines for the generation 
of the simulated data. The retina, geniculate, auditory nerve, and 
saccade data sets are available on request from the authors. The 
HRV data are available as data set 16273 on the Physionet archive 
(http://physionet.org).

overview
We examined the performance (in terms of the effect on com-
puted fractal exponent) of several different data-replacement 
algorithms on simulated data with known exponents and on 
actual physiological data. Our approach for simulated data was 
to generate sets of data values (event times) with known power-
law characteristics, delete some of the values (while leaving 
adjacent values intact), and then replace those missing values 
using a variety of algorithms. We evaluated performance by 
estimating the power-law exponent of the power spectral density 
(“fractal exponent”) before and after deletion and replacement 
and comparing those exponents. We repeated this approach 
with real physiological data. (Note that some of our algorithms 
are similar to those used in previous studies. For example, in 
the Lippman investigation described above, they used deletion 
which is similar to our method RR, linear interpolation which 
is similar to our HH, and pattern matching which is similar to 
our NX and SX.)

simulation Parameters
We varied two parameters in the generation of our simulated 
data sets. First, the intended power-law exponent, α, was 0, 0.5, 
1.0, 1.5, or 2.0. Second, the probability distribution of the values 
(event times) was either exponential, Gaussian, Laplace, mixed, 
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or uniform. The mixed distribution was randomly selected: 
Gaussian with probability 3/4, and de-meaned exponential 
with probability 1/4 (both zero-mean and unit-variance). These 
distributions were chosen to span the ranges of higher moments 
seen in the real data that were analyzed. The proportions of events 
deleted and replaced, p, were 0, 1, 2, 5, 10, or 20%. Finally, 10 
repair algorithms were used (see below). This resulted in a total 
of 1,500 unique combinations of data type and repair method.

There are two ways to categorize the data in which we are 
interested. First, the data can be real or simulated. Second, the 
data can be interval-based (the values represent time between 
events) or event-based (the values represent the times of the 
events). We study all four possible combinations of data types in 
this paper. For interval-based data, when an interval is deleted, 
there is no information in the remaining data as to what the 
numerical value of that interval was; the record of that interval 
is simply removed. This applies to lists of intervals, such as 
heartbeat data or neural spike-train recordings, where there is no 
external reference stimulus associated with the events demarking 
the intervals (and hence stimulus–response latency has no mean-
ing). In contrast, in event-based recordings, events are deleted 
rather than intervals. Deleting a single event eliminates two 
intervals, but retains their sum, so that some local information 
remains regarding the pre-deletion values of those intervals. This 
applies to lists of events such as eye movements in response to 
visual targets. Here, there is an external stimulus event associ-
ated with each recorded event, and typically the time between 
stimulus and response (the latency) is recorded rather than the 
times between successive responses. (We note that the interval/
event distinction is largely one of data storage, and so heartbeat 
data stored as beat times would fall into the event-based type.) 
Deletion and repair methods necessarily differ for interval- and 
event-based data types.

Algorithms tested
For event-based data, we tested the following repair and replace-
ment algorithms:

•	 HH: replace the missing event with a value that represents 
the time midway between the previous and following events. 
This posits no change in event timing for the three consecutive 
events.

•	 RR: remove the missing event, yielding a time series two points 
shorter for each missing event. Each event forms the terminus 
for two intervals, so removing an event without replacing it 
necessitates removing the two intervals flanking it. The two 
dangling events thus created are then merged: duration of the 
double interval flanking the missing event is computed, and 
that value is subtracted from all events after the missing event. 
The new time of the first event after the missing event then 
coincides with the (untouched) value of the last event before 
the missing event.

•	 FF: throughout the entire data set, identify all legitimate 
intervals (those which have valid, non-deleted, events defining 
them). For each adjacent pair of such intervals, find the ratio 
of the earlier interval to the later interval, and select one such 
ratio at random. Insert a new event (data value) in place of the 

missing one, such that the ratio of the two new intervals thus 
created matches the target ratio. This attempts to reproduce 
any local temporal trend of increasing or decreasing rate.

•	 NX: throughout the entire data set, identify all legitimate 
intervals, as above. For each consecutive sequence of X such 
intervals in the data set, find that sequence that best matches 
the neighborhood of the missing event (produces the lowest 
mean-squared error when compared to the sequence of 
intervals surrounding the missing event), and insert the data 
from the best-fitting sequence in place of the missing value. 
The number of intervals on each side, X, is {0, 1, 2, or 3}. This 
algorithm assumes that any local trend might be repeated and 
so can serve as a template to replace missing values. (In more 
detail: take the X times between events on either side of the 
missing event, and match those 2X + 1 intervals to all possible 
sets of intervals in the rest of the data. To compare correctly, 
remove the central event in the candidate set of intervals to be 
matched. For the one that fits the best, use that central interval 
to restore the missing one in the target. As it won’t fit perfectly, 
scale the sum of the intervals around the match to that of the 
target, and then use those scaled intervals to place the missing 
event.)

•	 SX: similar to NX, but allow the entire template (sequence of 
X intervals) to be scaled by a multiplicative factor to obtain the 
best fit. Here, X is {1, 2, or 3}, as 0 permits all intervals to be 
scaled perfectly and thus is degenerate.

For interval-based data, we tested the following algorithms:

•	 HH: replace the missing interval with the average of all 
remaining intervals. This assumes that the best model of the 
data is essentially a noisy clock with a fixed rate.

•	 RR: remove the interval, yielding a time series one interval 
shorter for each missing interval. This simply allows the miss-
ing interval data to remain missing, and so invariably disrupts 
the chronology of the data points.

•	 FF: replace the missing interval with one randomly selected 
from those remaining. This is similar to HH but has a prefer-
ence for values that are prevalent in the data set.

•	 NX: throughout the data set, identify all legitimate (non-de-
leted) intervals. For all intervals which have at least X 
legitimate intervals on either side (that is, for all sequences 
of 2X  +  1 intervals), find the sequence that best matches 
the neighborhood of the missing interval, and insert that 
best-fitting interval in place of the missing one. The number of 
intervals on each side X is {0, 1, 2, or 3}. This again attempts to 
identify and reproduce local trends in timing.

•	 SX: similar to the above, but allow the entire template to be 
scaled for the best fit. Here, X is {1, 2, or 3}, as 0 permits all 
intervals to be scaled perfectly and thus is degenerate.

Procedure: simulated data
Simulated data sets were generated and analyzed with the fol-
lowing procedure, where “value” stands for either an event or an 
interval, depending on the data being generated.

For the generation of each simulated data set (time series), 
there is an intended value of fractal exponent α, chosen from 
the set described previously (0, 0.5, 1.0, 1.5, 2.0). The particular 
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tAble 2 | Properties of event-based data sets used here.

driving period (s) events skewness excess kurtosis exponent

0.56 998 0.5 2.6 0.891
0.56 999 0.2 −0.4 0.942
0.56 996 0.1 1.0 0.895
1.67 1,000 0.0 3.7 0.242
1.67 998 2.1 5.1 0.198
1.67 996 0.6 1.2 0.338

All are human saccadic eye-movement recordings. Driving periods <0.6 s yield 
predictive saccades, while those >1.6 s yield reactive saccades. Data were not 
aggregated. Higher moments of the data (skewness and excess kurtosis) were 
computed to guide the selection of distributions for simulated data.

tAble 1 | Properties of interval-based data sets used here.

Properties of original data Properties of aggregate

data type Intervals sum skewness excess 
kurtosis

exponent

Retinal ganglion firing 120,714 117 0.1 −1.6 0.860
Thalamus (LGN) firing 24,285 23 2.1 6.4 0.781
Auditory nerve fiber firing 127,505 124 1.0 1.7 0.773

90,804 88 0.9 0.7 0.791
Heartbeat (abnormal) 80,878 78 1.7 3.5 1.739
Heartbeat (normal) 88,140 86 0.2 −1.0 1.508

Data were aggregated into 1,024 non-overlapping sums, each of which consisted of 
the number of original intervals given in column 3. Higher moments of the aggregated 
data (skewness and excess kurtosis) were computed to guide the selection of 
distributions for simulated data.
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choice of probability distribution will affect the generated fractal 
exponent slightly, as may retaining only part of a longer simula-
tion in order to reduce periodicity effects. Thus, a revised target 
value, α0, was created for each intended value of α and each prob-
ability distribution, as follows:

 (1) Generate an array of 65,536 values, with a target 1/fα peri-
odogram, using the random-phase method (Theiler et al., 
1992).

 (2) Retain only the first 1,024 values to reduce periodicity 
effects.

 (3) Generate 1,024 random values with the desired probability 
distribution.

 (4) Sort the values from step 3 so that they have the same 
relative ordering as those of step 2, and discard the values 
from step 2. The result is a sequence of data values (events 
or inter-event intervals) with the desired distribution and 
which has an approximately 1/fα periodogram.

 (5) Calculate the periodogram of the new data set using a Hann 
window, and estimate the power-law exponent, α1, using a 
least-squares fit on a doubly logarithmic plot (Lowen and 
Teich, 2005).

 (6) Repeat this process 1,000 times, with different random 
seeds.

 (7) Iteratively adjust α0 until the average of α1 over all 1,000 runs 
is as close to α as possible.

With this value of α0 in hand (for a desired ultimate value of 
α), simulated data sets were generated and analyzed as follows 
(for each set of parameters α and p, each distribution, and each 
replacement algorithm):

 (1) Generate an array of 65,536 values, with a 1 0/ f α  peri-
odogram, using the random-phase method.

 (2) Retain only the first 1,024 values to reduce periodicity 
effects.

 (3) Generate 1,024 random values with the desired probability 
distribution.

 (4) Sort the values from step 3 so that they have the same 
relative ordering as those of step 2, and discard the values 
from step 2. The result is a sequence of data values (events 
or inter-event intervals) with the desired distribution and 
which has an approximately 1/fα periodogram.

 (5) Calculate the periodogram of the data set using a Hann win-
dow, and estimate the pre-deletion power-law exponent, α1, 
using a least-squares fit on a doubly logarithmic plot (Lowen 
and Teich, 2005).

 (6) Delete a proportion p of randomly selected values from the 
data set, where p is the proportion chosen for the particular 
trial. Two or more values in a row are never deleted.

 (7) Replace the missing values using the desired replacement 
algorithm.

 (8) Recalculate the periodogram and estimate the post-repair 
power-law exponent, α2.

 (9) Differences between α1 (pre-deletion) and α2 (after deletion 
and replacement) are computed, quantifying the effects of 
the deletion and replacement process.

 (10) Repeat this process 1,000 times with different random 
seeds.

 (11) For all values of p, the last periodogram calculated (from 
either step 5 or 8) is averaged over all 1,000 runs for display 
purposes.

Thus, there are four values of alpha: (a) without a subscript 
for the design value, (b) a subscript of 0 for the value used in the 
simulations, (c) a subscript of 1 for the value measured from the 
simulations (of which there are 1,000), and (d) a subscript of 2 
for the result after deletion and repair (there are 1,000 of these 
as well).

The first four steps above form a method related to the 
amplitude-adjusted Fourier transform algorithm (AAFT) for the 
generation of surrogate data sets (Theiler et al., 1992). Such a one-
pass method can yield spurious spectra (Schreiber and Schmitz, 
1996). However, our resulting spectra so closely approximated 
the design values that further iterations were not necessary (see 
Results). Note also that the power-law exponent of the average 
of the periodograms differs from the average of the power-law 
exponents of the periodograms due to the non-linearity involved 
in calculating the power-law exponent.

Procedure: Real data
The same replacement algorithms were also applied to several 
sets of real physiological data. See Table 1 for the interval data 
sets and Table  2 for the event data sets. Data sets on intervals 
between neural firings in retinal ganglion cells and in lateral 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


5

Shelhamer and Lowen Outliers in Fractal Data

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2017 | Volume 5 | Article 10

geniculate nucleus cells were recorded with single-unit elec-
trodes (Teich et al., 1997; Lowen et al., 2001), as were recordings 
from auditory-nerve firing (Lowen and Teich, 1996). Normal 
and abnormal heartbeat (R-R interval) data are from an online 
archive (Goldberger et al., 2000). Real interval-based data gener-
ally exhibit power-law behavior only for time scales several times 
longer than the average inter-event time (Lowen and Teich, 2005). 
The number of intervals was divided by 1,024, and rounded down 
to the nearest integer, yielding a block size b (b ≥ 23 in all cases). 
Adjacent, non-overlapping blocks of b intervals were summed, 
yielding 1,024 aggregated values. Remaining intervals were 
removed from further analysis.

The real event-based (as opposed to interval-based) data are 
from experiments on saccadic eye movements (Shelhamer and 
Joiner, 2003) For these data, human subjects were presented 
with two visual targets that alternated at a low rate (target jump 
every 1.67 s, a rate of 0.3 Hz), and a high rate (target jump every 
0.56 s, a rate of 0.9 Hz). The low rate generates reactive saccadic 
eye movements that take the eyes rapidly from one target to the 
other, with high latencies. The series of consecutive latencies 
forms a time series with a low fractal exponent since the values 
are not strongly correlated. At the high pacing rate, saccades are 
predictive and consecutive latencies are strongly correlated, with 
higher exponents.

For real data, steps 1–4 in the analysis above do not make 
sense and so are not performed. Furthermore, as there is only 
one realization available, only the deletion process varies across 
runs; for simulated data, the pre-deletion values vary across runs 
as well. Otherwise, the procedure follows that for simulated data.

The periodogram, an estimate of the power spectrum, is a 
second order quantity and, therefore, does not directly depend 
on higher moments of the data. Power-law exponents calculated 
from the periodogram inherit this property. However, dele-
tion and repair is a non-linear process, and so differing higher 
moments in the original data could yield different measured 
exponents of the repaired data. We, therefore, chose distributions 
for simulation that span the ranges of skewness and kurtosis seen 
in the real data analyzed. For each distribution simulated, we 
computed the sample skewness and kurtosis for 1,000 realiza-
tions and generated contour plots; all were elliptical. We, then, 
constructed the smallest ellipse that enclosed 50% of those values 
and plotted those ellipses along with the skewness and kurtosis 
of the real data sets analyzed in this paper. Figure 1 presents the 
result and indicates that these parameters of the real data are well 
represented by the simulated distributions.

ResUlts

General
Pre-deletion power-law exponents α1 were very close to the design 
values α; out of 25 α-distribution pairs, the worst-case error was 
48 × 10−6 and all but four were within 2 × 10−6. Furthermore, peri-
odograms averaged over all 1,000 runs very closely followed pure 
power-law forms. Correlation coefficients between log frequency 
and log periodogram values averaged over all 1,000 runs for the 
20 α-and-distribution pairs with α ≠ 0 ranged from 0.996562 to 

0.999800, averaging 0.998860, which thus validates our use of the 
single-pass AAFT-like algorithm.

Periodograms (averaged over all 1,000 runs) for simulated 
event-based data with parameters α  =  2, N0 method, and an 
exponential distribution are shown in Figure 2 as an example in 
doubly logarithmic format. Different lines correspond to different 
values of p, the proportion of anomalous data points replaced. 
Each fit is the linear regression of the undeleted (p = 0) plot and 
closely matches the data. Note that increasing deletion leads to a 
spurious increase of energy at high frequencies.

For each run (of simulation and replacement), the power-law 
exponent was stored, and the results used to generate histograms 
of the difference between desired and actual generated values of 
exponent α. For p = 0 (no replacements), the difference from the 
target value of the power-law exponent (α1 − α) is plotted; for 
p > 0, the difference in the power-law exponent induced by dele-
tion and replacement (α2 − α1) is displayed. An example is shown 
in Figure 3. Note that larger values of p lead to increases in both 
the bias and variance of α2.

For each set of parameters with p > 0, the root mean square 
error (RMSE) between α1 and α2 is computed as a summary 
statistic. A sample table for α = 2 and an exponential distribu-
tion is presented (Table 3). Each cell presents the RMSE for that 
parameter set, coded from white (zero) to red (worst). Note the 
steady decrease in performance as p increases (as more bad points 
are replaced), and consistent variation among the repair methods. 
(Here and throughout the text, “worst” and “worst-case” refer to 
the situation in which the RMSE between the actual exponent, α1, 
and the exponent after replacement by a particular algorithm, α2, 
is the largest, for a given parameter set or algorithm).

Generalizing from the specific case presented above (α = 2 and 
an exponential distribution), Figure  4 shows the performance 
of the various repair methods summarized over all data sets 
analyzed. Some methods (such as N0) are uniformly poor, others 
(such as S3) are good to optimum, and others (such as HH) vary 
widely even among these four grand averages. Whether deletion 
and repair are based on events or intervals changes the absolute 
and relative performance of the repair methods dramatically. 
In general, results for real intervals are much better than those 
for simulated ones, and for event data the real and simulated 
sets also yield disparate results. Figure  5 distinguishes among 
the power-law exponents, providing a means to evaluate repair 
methods when some knowledge of the power-law exponent is 
available.

The simulation and replacement parameters influence the per-
formance in different ways. Results do not vary greatly with the 
probability distribution selected for the simulated data, suggest-
ing that averaging over this parameter provides a useful summary 
of results. One exception appears to be α = 2, the largest exponent 
studied, for which the Gaussian and in particular the uniform dis-
tributions exhibited smaller errors for both event- and interval-
based data. As expected, errors increase as p, the proportion of 
events removed and replaced, increases. Performance depends 
strongly on the initial (“known”) exponent. For example, for 
simulated, event-based data (“SE”), the worst-case performance 
of the HH method is the worst of all 10 methods for α < 1 and the 
best for α > 1; the N0 method yields nearly opposite performance.
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FIGURe 2 | Averaged periodograms of simulated event-based recordings with α = 2.0 and exponential distribution, with a variety of proportions (p) 
of events deleted and repaired using the N0 method. Note that increasing p leads to increased high-frequency power and departure from the 1/fα power-law 
form.

FIGURe 1 | skewness and excess kurtosis of the real data sets and simulations employed here. Real data are represented by symbols and consist of 
predictive saccades, reactive saccades, auditory nerve-fiber firings, visual-system neuron firings, and heartbeats. Simulated data are represented by curves; for each 
distribution, the smallest ellipse that encompasses 50% of the simulated results is shown. Together, the five distributions span the higher-order moments of the real 
data sets.

6

Shelhamer and Lowen Outliers in Fractal Data

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2017 | Volume 5 | Article 10

event-based data
Replacing missing events with the midpoint of the surrounding 
intervals (method HH) essentially averages the two intervals. For 
p = 1% and any α, or for α ≥ 1 and any p, it is the best or nearly 

the best method. For p = 20% and α ≤ 1, it is the worst method, 
with intermediate results for this range of α and 1% < p < 20%. 
That this method yields some of the best and worst performance 
of all the methods arises from a number of factors. The averaging 
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tAble 3 | Root mean square error (RMse) of the power-law exponent 
for the 10 repair methods vs the proportion of events deleted, p, for 
simulated event-based data with α = 2.0 and an exponential distribution.

α = 2.0, distribution is exponential

R.M. 1% 2% 5% 10% 20% Avg

NO 0.0672 0.0905 0.1440 0.2276 0.3316 0.1722

N1 0.0358 0.0534 0.0836 0.1249 0.2069 0.1009

S1 0.0352 0.0482 0.0912 0.1465 0.2040 0.1050

N2 0.0382 0.0535 0.0854 0.1315 0.2192 0.1056

S2 0.0322 0.0461 0.0735 0.1245 0.1818 0.0916

N3 0.0375 0.0556 0.0888 0.1419 0.2323 0.1112

S3 0.0342 0.0437 0.0751 0.1153 0.1771 0.0891

FF 0.0973 0.1847 0.2659 0.3919 0.5402 0.2960

HH 0.0377 0.0488 0.0748 0.1123 0.1585 0.0864

RR 0.0578 0.0793 0.1103 0.1575 0.2244 0.1259

RMSE values are color coded, with white representing zero error and red the worst 
case.

FIGURe 3 | histograms of exponent error for simulated event-based recordings with α = 2.0 and an exponential distribution, with a variety of 
proportions (p) of events deleted and repaired using the N0 method. For p = 0, the exponent is compared with the design value α = 2.0; for p > 0, the 
exponent is compared with the pre-deletion value. Note that increasing the proportion p leads to increases in both bias and variance in the measured post-repair 
power-law exponent.
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inherent in this method removes energy at high frequencies, 
resulting in an increase in α2, the measured exponent. Examining 
the averaged periodograms and the histograms of the exponent 
error shows just this effect for α ≤ 1 and p = 20%. For α ≥ 1, the 
event time course is more slowly varying by construction, and 
so little high-frequency energy is present in the first place. Why 
this method yields the best performance at α ≤ 1 and p = 1% is 

not clear. This method has the least worst-case error of all the 
methods.

Methods that incorporate information about the neighbor-
hood surrounding missing events (N1–3 and S1–3) yield the best 
overall results, and are most useful when a  priori information 
about α is not available. Results do not vary greatly among these 
techniques: the associated RMSE averaged over α, p, and distribu-
tion lie within a range of ±4%. However, method S1 has a poor 
worst-case error, being ranked eighth out of the 10, recommend-
ing against its use. Furthermore, the methods that do not allow 
scaling between template and target event patterns (N1–N3) lead 
to significantly increased energy at high frequencies compared 
with methods that do allow scaling (S1–S3). This appears in his-
tograms of the exponent error, which show a significant negative 
bias, especially for large values of α. Incorporating a progressively 
larger neighborhood around the event improves the matches 
from which information is used to restore the missing event and, 
therefore, should improve performance. However, the larger the 
neighborhood, the more likely a missing event will render any 
particular neighborhood unusable, thus reducing the number of 
candidate neighborhoods. The two effects apparently cancel each 
other to some extent.

Basing replacement on the pair of adjacent intact intervals 
with the closest total duration (method N0) yields very poor per-
formance (except for α = 0), producing the second-worst RMSE 
averaged over α, p, and distribution. Histograms of exponent 
error show a pronounced negative bias, especially for large values 
of α. This suggests that merely knowing the duration of the two 
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FIGURe 4 | summary of performance of the 10 repair methods. The 10 repair methods lie along the vertical axis in two duplicated sets: event-based above 
and interval-based below. Results for simulated data are in blue triangles, while those for real data re in red circles. Average performance over all distributions and 
power-law exponents (simulated), data sets (real), and proportion of values removed are shown on the left, while worst-case results for these same parameters 
appear on the right. The horizontal axis displays the reciprocal of the root mean square error (hyperbolic coordinates). This aids in distinguishing among small 
near-optimal values, and also places them to the right.
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intervals surrounding a missing event is not sufficient informa-
tion for replacing the event.

Replacing the event according to the relative position of an 
event in a randomly selected pair of adjacent intact intervals 
(method FF) yields extremely poor performance in all cases, 
usually the worst of all measures, and has the worst RMSE aver-
aged over α, p, and distribution. Histograms of the exponent error 
show a strong negative bias for larger values of a. This method 
completely ignores the properties of the local neighborhood of 
the missing event.

Simply eliminating the missing events entirely rather than 
attempting to replace them (method RR) yields poor results. This 
likely arises from a mismatch in the spliced time series following 
removal of the missing events, leading to spuriously increased 
energy at high frequencies. Histograms of the exponent error 
show much lower peaks than for other methods, at all values 
of α, corresponding to significantly increased variance for this 
method.

Interval-based data
Replacing missing intervals with the average of the remaining 
intervals (method HH) introduces random shifts in the remain-
der of the data record, as well as changing the interval at hand. 
Despite this global change, it is the best or nearly the best for 
α = 0, and for α = 0.5 and small p; however, for α = 2 or large p, 
it yields the worst performance. Replacing an interval with the 
average over the entire record ignores the local structure, and 
introduces high-frequency noise. The averaged periodograms 

and histograms thus show a corresponding significant negative 
bias, which is particularly strong for large values of α.

Methods that incorporate information about the neighbor-
hood surrounding missing events (N1–3 and S1–3) again yield 
the best overall results, and are most useful when a priori infor-
mation about α is not available. For α ≥ 1, the methods that allow 
scaling between template and target interval patterns (S1–S3) 
yield better results than methods that do not (N1–N3). For α < 1 
the situation is reversed. Increasing the size of the neighborhood 
over which matching occurs improves results for methods with 
scaling (S3 superior to S1), while the opposite is true for non-
scaling methods (N3 inferior to N1). As with event-based data, 
incorporating a progressively larger neighborhood around the 
interval improves the matches from which information is used to 
restore the missing interval, but also reduces the pool of potential 
matches. With scaling, the former effect apparently dominates, 
while without scaling the latter does. The periodograms and 
histograms show that errors in exponent estimation are due to 
increased power at higher frequencies, yielding a negative bias.

With no neighborhood and no scaling (method N0), there 
is no structure for selecting a replacement interval, and so the 
method defaults to using the first valid non-deleted interval in all 
cases. This is similar to method HH as applied to intervals, which 
uses the average interval. Method N0 yields significantly poorer 
performance, especially as α increases.

Replacing missing intervals with randomly selected intact 
intervals (method FF) yields poor performance in all cases, sec-
ond only to the N0 method. Like the HH and N0 methods, this 
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FIGURe 5 | summary of performance of the 10 repair methods for simulated data, parameterized by design values of the power-law exponent α. The 
10 repair methods lie along the vertical axis in two duplicated sets: event-based above and interval-based below. Values of alpha include 0 (red circles), 1/2 (olive 
triangles), 1 (green squares), 3/2 (blue crosses), and 2 (purple boxes with X). Average performance over all distributions and proportion of values removed are shown 
on the left, while worst-case results for these same parameters appear on the right. The horizontal axis displays the reciprocal of the root mean square error 
(hyperbolic coordinates).
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approach completely ignores the properties of the local neighbor-
hood of the missing event. Selecting random intervals introduces 
more variability than does employing the average (method HH). 
This variability is independent of the local structure and so 
degrades estimation of the power-law exponent.

Simply eliminating the missing events entirely rather than 
attempting to replace them (method RR) also yields poor results. 
As with event-based data, this likely arises from a mismatch in 
the spliced time series following removal of the missing events, 
leading to spuriously increased energy at high frequencies. 
Histograms of the exponent error again show much lower peaks 
than for other methods, at all values of α, corresponding to sig-
nificantly increased variance for this method.

dIsCUssIoN

summary
Here, we investigate a number of methods for the replacement of 
missing values in data sets from which it is desired to extract fractal 
exponents via the slope of the power spectrum. The performance 
of 10 different replacement methods has been examined when 
applied to time series with a wide range of known exponents; 
real and simulated data were studied, consisting of both interval-
based and event-based data. Our findings show that the most 
appropriate replacement method [in terms of minimizing the 
root mean square (RMS) error between the computed and correct 
exponents] depends on a variety of factors. If an estimate of the 
exponent is not available a priori, then best average performance 

is achieved by the S3 and N1 methods for simulated events and 
intervals, respectively; for best worst-case performance, methods 
HH and S3 are optimal. If some information on α is available, 
then Figure 5 provides guidance.

For both event- and interval-based data, wide differences 
exist between results with real and simulated data, as shown 
in Figure  4. Some of this discrepancy is due to the ranges of 
power-law exponents evaluated. The simulated data are evenly 
spaced between α = 0 and α = 2, while the real data have power-
law exponents that lie below unity for 10 of the 12 data sets 
examined, and most are in the range 0.75–0.95. This clustering 
naturally leads to a bias toward estimated exponents in that range 
and, hence, different results than with the more evenly spaced 
simulated data. Another difference is that the real data consist of 
only one example, upon which 1,000 independent deletion and 
repair operations are performed, while for simulated data each 
example is different before deletion and repair. The latter thus 
samples much more widely from the space of possible patterns 
of events or intervals than does the former. This is likely to lead 
to poorer worst-case performance. Furthermore, simulated data 
span 25 different exponent-distribution combinations, leading to 
greater generalizability at the potential expense of less-specific 
connection to the data at hand.

A contingent approach potentially yields superior perfor-
mance. Given a time series with events to be replaced, one can 
estimate the parameters of the time series that would have existed 
had events not been deleted. The proportion of missing events, p, 
is known. The remaining (intact) intervals can yield an estimate 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


10

Shelhamer and Lowen Outliers in Fractal Data

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2017 | Volume 5 | Article 10

of the distribution of the original data; the skewness and kurtosis 
are easy to calculate and quantify distribution shape. Finally, a 
test evaluation of the fractal exponent, perhaps using method 
S3 that appears to be optimal overall or nearly so, provides an 
indication of the exponent that would have been calculated from 
the original data. Knowledge of p and estimates of α and the 
distribution then can locate the time series at hand in the broader 
parameter space and determine the optimal method for that 
data set. This contingent approach would also take into account 
potential errors induced by interpolation of p, the test evaluation 
of the fractal exponent, and estimation and interpolation of the 
distribution. The best method would not necessarily be the one 
with the least RMS error at the estimated location in parameter 
space, especially if performance of that method degraded sig-
nificantly nearby; rather, it might be the method with the best 
worst-case performance in that parameter neighborhood. Finally, 
if characterization of the data sets at hand leads to a model not 
included in this paper, then simulations can be run to determine 
the best method to repair deleted values. This is likely to be better 
than using one or a few intact real data sets, as the values for each 
simulation are different before deletion and repair and thus span 
a wider portion of the data space.

limitations and Future directions
We present two methods for augmenting the results discussed 
here. First, other methods could be employed to estimate the 
fractal exponent, including fitting power-law forms to wavelet 
transform variance using a variety of wavelets, detrended fluctua-
tion analysis, R/S, and others. Second, the algorithms could be 
expanded to encompass the deletion and repair of more than one 
event in a row.

Physiological outliers we deal with here might occur in tempo-
ral clusters (“burstiness”). In fact, this would not be unexpected 
if the outliers were due to a process with fractal properties; an 
example would be blinking (Oh et al., 2012) as an artifact in eye-
movement recordings. Our methods assume a uniform distribu-
tion for these outliers. For small rates of occurrence, this should 
not be a great concern, but modifications to our algorithms would 
be advisable if the artifact process itself is suspected to be fractal.

Our analyses have treated all data sets as monofractal: having 
a single fractal exponent that describes the scaling properties of 
the data over the entire temporal range. However, multifractal 
analyses can be applied to time-series data, and in fact many 
data sets exhibit strong evidence of multifractal behavior. Such 

data have different scaling exponents over different regimes 
of frequency and time. Thus a critical caveat is that, although 
our methods can be used directly for multifractal and non-
stationary data, they have not been validated on such data. The 
methodologies that we present here can be legitimately applied 
only to monofractal self-affine functions. Time series thus 
analyzed should be examined to verify the monofractal assump-
tion, since the effects on multifractal functions have not been 
investigated. Although an approximation, multifractal data can 
still be characterized (imperfectly) with a single scaling expo-
nent. Thus, our data-replacement methods can be carried out 
under the monofractal approximation, which does not preclude 
later characterization as a multifractal. However, this should 
be considered as no more than a very crude characterization, 
which may lead to problems with interpretation. As an example, 
it could be difficult to determine to which portion of the mul-
tifractal spectrum a missing value belongs, and thus, there is a 
risk of mischaracterizing the replacement. This is a potentially 
significant drawback for multifractal applications and great care 
is advised in attempting such an application. Alternatively, if 
it is known beforehand that a given data set is multifractal (a 
determination that might be problematic if contaminated with 
anomalous values or if the data set is short), our methods might 
be modified to address scaling separately in each region. This 
was a complication that we wished to avoid in this, our initial 
work on the matter.
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