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There is increasing research interest in technologies that can detect grasping, to encour-
age functional use of the hand as part of daily living, and thus promote upper-extremity 
motor recovery in individuals with stroke. Force myography (FMG) has been shown 
to be effective for providing biofeedback to improve fine motor function in structured 
rehabilitation settings, involving isolated repetitions of a single grasp type, elicited at a 
predictable time, without upper-extremity movements. The use of FMG, with machine 
learning techniques, to detect and distinguish between grasping and no grasping, 
continues to be an active area of research, in healthy individuals. The feasibility of clas-
sifying FMG for grasp detection in populations with upper-extremity impairments, in the 
presence of upper-extremity movements, as would be expected in daily living, has yet 
to be established. We explore the feasibility of FMG for this application by establishing 
and comparing (1) FMG-based grasp detection accuracy and (2) the amount of training 
data necessary for accurate grasp classification, in individuals with stroke and healthy 
individuals. FMG data were collected using a flexible forearm band, embedded with six 
force-sensitive resistors (FSRs). Eight participants with stroke, with mild to moderate 
upper-extremity impairments, and eight healthy participants performed 20 repetitions of 
three tasks that involved reaching, grasping, and moving an object in different planes of 
movement. A validation sensor was placed on the object to label data as correspond-
ing to a grasp or no grasp. Grasp detection performance was evaluated using linear 
and non-linear classifiers. The effect of training set size on classification accuracy was 
also determined. FMG-based grasp detection demonstrated high accuracy of 92.2% 

Abbreviations: ADL, activities of daily living; FMG, force myography; FN, false negative; FP, false positive; FSR, force-sensitive 
resistor; LDA, linear discriminant analysis; MMG, mechanomyography; RBF, radial basis function; SVM, support vector 
machine; TN, true negative; TP, true positive.
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(σ  =  3.5%) for participants with stroke and 96.0% (σ  =  1.6%) for healthy volunteers 
using a support vector machine (SVM). The use of a training set that was 50% the size 
of the testing set resulted in 91.7% (σ = 3.9%) accuracy for participants with stroke and 
95.6% (σ = 1.6%) for healthy participants. These promising results indicate that FMG 
may be feasible for monitoring grasping, in the presence of upper-extremity movements, 
in individuals with stroke with mild to moderate upper-extremity impairments.

Keywords: activity monitoring, force myography, stroke rehabilitation, grasp detection, wearable sensors

inTrODUcTiOn

Stroke is one of the most prevalent causes of adult disability 
(Gresham et  al., 2004; World Health Organization, 2006). 
Individuals with stroke often experience impairments in the 
upper extremity, including a reduction in fine motor control, 
that contribute to difficulties in completing activities of daily 
living (ADL), such as dressing, feeding, and home management 
(Gresham et  al., 2004). There is increasing evidence that it is 
necessary to practice hundreds, if not thousands, of grasp and 
release motions to optimize hand motor recovery after stroke 
(Nudo et  al., 1996; Murata et  al., 2008). As it is unlikely that 
traditional stroke rehabilitation services can accommodate one-
on-one therapies for many hours of practice, this has resulted 
in increased demand for the creation of wearable sensors to 
assist therapists and patients in monitoring the large number of 
repetitions needed to promote motor recovery. Such wearable 
sensing technologies could be used outside of the clinic to moni-
tor “homework,” as task practice outside of structured therapy 
sessions can improve neurological recovery and functional abili-
ties (Dobkin, 2004; Harris et al., 2009). Wearable sensors could 
also be used to encourage individuals with stroke to continue to 
use their affected limb as part of ADL and therefore avoid the 
“learned non-use” phenomenon (Taub et al., 2006).

Several types of wearable solutions have been proposed for 
upper-extremity activity monitoring. One type of sensing system 
utilizes wrist-worn accelerometers. With appropriate signal 
processing, accelerometer-based devices have been shown to 
provide metrics that correlate to the amount of upper-extremity 
movement achieved by individuals with stroke (Uswatte et  al., 
2000, 2005, 2006) and the amount of hand use in older adults 
(Rand and Eng, 2010). However, such devices are unable to 
determine if the user has successfully grasped an object and are 
thus unable to distinguish functional use of the upper extremity 
from non-functional movements, such as shaking or swinging 
of the arm. Given that the ultimate goal of the rehabilitation 
process is to restore, enhance, and maintain functional ability 
(Granger, 1998), it is desirable for rehabilitation sensing devices 
to be able to distinguish between functional and non-functional 
movement. To detect functional movement, an activity monitor 
would need to be able to detect both upper-extremity movement 
and functional use of the hand.

The use of magnetic sensing systems for detecting wrist and 
hand movements has also been proposed (Friedman et al., 2014). 
Such devices use a wrist-worn magnetometer to detect relative 
movement of a magnetic object donned on a different body part, 
such as a finger. Friedman et al. have successfully demonstrated 

the feasibility of such devices at detecting the joint movements 
associated with the wrist and finger (Rowe et al., 2013; Friedman 
et al., 2014). However, magnetic sensing systems are susceptible 
to magnetic interference from other ferromagnetic materials, 
such as household electronics and hence may have difficulty 
accurately monitoring functional activity in the home environ-
ment (Friedman et  al., 2014). Several gloves embedded with 
sensors for tracking hand postures have also been developed 
and successfully evaluated (Dipetro et al., 2008). However, such 
devices can be challenging to don on individuals with limited 
range of motion and spasticity. In addition, the donning of gloves 
results in a reduction in palmar sensation and may hamper the 
completion of fine-motor tasks.

Surface electromyography (sEMG) has been successfully used 
to detect hand activities in individuals with stroke (Lee et  al., 
2011; Zhang and Zhou, 2012; Li et  al., 2014). Lee et  al. (2011) 
used sEMG data from individuals with stroke to identify six 
different hand postures. Despite these promising results, chal-
lenges remain in the use of sEMG for unobtrusive monitoring 
of hand motion. sEMG requires the use of bulky electrodes 
with complex signal acquisition and amplification hardware, 
and a high signal sampling rate. In addition, given that sEMG 
is measuring the electrical activity of muscles, its signal-to-noise 
ratio is sensitive to the positioning of electrodes as well as the 
skin impedance (Merletti et al., 2001), which can be affected by 
the presence of hair, sweat, and skin creams. Mechanomyography 
(MMG) is a complimentary sensing technology, which involves 
transducing the mechanical oscillations of muscle fibers as they 
are recruited (Islam et  al., 2013). MMG senses the mechanical 
analog of the motor unit electrical activity measured by sEMG 
(Islam et al., 2013) and has been shown to be capable of detecting 
the functional state of the hand using pattern recognition and 
classification techniques (Islam et al., 2013). However, the per-
formance of MMG is similarly sensitive to sensor placement, and 
sensor pressure (i.e., adherence) on the surface of the skin (Islam 
et  al., 2013), and requires similarly complex signal-processing 
methodologies, as those used in sEMG classification.

Force myography (FMG) is an alternative technique that 
involves monitoring the force, or pressure, at the surface of the 
limb, as a means to characterize the state of the underlying mus-
culotendinous complex (Wininger et al., 2008). FMG provides a 
simple-to-use, inexpensive, and unobtrusive method for sensing 
muscle activity. In contrast to electromyography, the FMG signal 
can be extracted using off-the-shelf force-sensing elements and 
does not require complex signal-processing circuitry (Dementyev 
and Paradiso, 2014). In addition, FMG does not require the sen-
sors to be placed at specific anatomical points on the body to 
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ensure adequate signal acquisition (Castellini et al., 2014), as is 
required in sEMG (Merletti et al., 2001) and MMG (Islam et al., 
2013). Given these considerations, a growing amount of research 
is exploring the use of FMG for activity-tracking, gesture-
recognition, and the detection of functional tasks. FMG systems 
have been used to predict grip strength (Wininger et al., 2008) 
and single-finger forces (Castellini and Ravindra, 2014). More 
recently, FMG has been combined with machine learning and 
pattern recognition techniques to create systems that can detect 
upper-extremity postures (Xiao and Menon, 2014), hand gestures 
(Dementyev and Paradiso, 2014), and repetitions of grasp and 
move tasks in healthy participants (Sadarangani and Menon, 
2015). Dementyev et al. demonstrated classification accuracy in 
excess of 80% when classifying six different grasp types using an 
FMG band with healthy participants (Dementyev and Paradiso, 
2014). Li et  al. (2012) demonstrated classification accuracy of 
99% at classifying 17 different grasp types using a high-density 
FMG array with healthy participants. The results of these studies 
give credence to the concept of classifying the FMG signal to 
detect grasping.

Despite these promising results, little work has been done 
to establish the feasibility of using FMG for detecting grasping 
in populations with upper-extremity impairments, who might 
ultimately benefit from this technology. Yungher and Craelius 
(2012) have shown that FMG is an effective method for providing 
biofeedback to improve fine motor function, as part of struc tu red  
upper-extremity rehabilitation for individuals with upper-
extremity impairment, including individuals with stroke and 
individuals with traumatic brain injury. In their study, the authors 
requested participants to pinch at predetermined intervals and 
used the difference between FMG signatures for the requested 
pinch gesture and a template pinch gesture to provide biofeed-
back to participants. Experimental results indicate that gesture 
recognition-based biofeedback improved the outcomes of repeti-
tive task training. While the results of this study give credence to 
the concept of using FMG sensing for providing biofeedback in 
rehabilitation applications, the study did not evaluate the utility 
of FMG for monitoring and distinguishing between grasping and 
no grasping, in the presence of other upper-extremity movement 
which the FMG signal has also been shown to be sensitive to Xiao 
and Menon (2014). Instead, the proposed system involved moni-
toring the FMG signature of a single grasp type, which was elicited 
at a known time, in the absence of any other upper-extremity 
movement. To be suitable for monitoring functional use of the 
hand in daily living, for rehabilitation applications, FMG sensing 
systems will need to be able to detect grasping in individuals with 
stroke, without knowing when the grasp may be elicited, despite 
the presence of other confounding upper-extremity movement.

Several characteristics associated with individuals with stroke 
may impact the feasibility of using FMG for detecting grasping 
in this population. Individuals with stroke have reduced mus-
cular strength (Bohannona, 1987) and greater muscle spasticity 
(Watkins et al., 2002) which may affect the magnitude and qual-
ity of the FMG signal. In addition, movements completed with 
the stroke-affected limb have reduced range of motion, are less 
smooth, and involve variations in speed and acceleration when 
compared to the less affected limb (Kamper et al., 2002). Given 

that the FMG signal is sensitive to postures of the hand, wrist, 
forearm, and elbow (Xiao and Menon, 2014), the movement 
features of the stroke-affected limb, and the associated compen-
satory mechanisms employed, could introduce challenges when 
detecting grasping in the presence of movement in the three-
dimensional workspace. Furthermore, for FMG to be feasible in 
busy clinical settings, the initial setup of the device (i.e., number 
of grasp repetitions required to train the grasp detection classi-
fier) would need to be minimal in time and in repetitions.

This study explores the feasibility of using FMG, with machine 
learning techniques, for grasp detection in the presence of upper-
extremity movements, for individuals with stroke who have arm 
and hand impairments. As noted, the use of FMG classification 
for grasp detection continues to be an active area of research 
in healthy volunteers. However, given that the FMG signal also 
captures information related to upper-extremity movements 
and postures other than grasping, the use of FMG classification 
for grasp detection in individuals with stroke, who may have 
altered muscular characteristics and movement patterns, has 
yet to be established. Feasibility was assessed by (1) establishing 
and comparing the accuracies of FMG-based grasp detection for 
individuals with stroke and healthy individuals, with FMG data 
corresponding to grasping, releasing, moving while grasping, and 
moving without grasping, using linear and non-linear classifiers 
and (2) determining and comparing the amount of training data 
necessary to accurately classify a grasp with participants with 
stroke and healthy participants. We considered the device to be 
feasible if the grasp detection accuracy was at least 90%, and if the 
training data required for the classifier were at most 50% of the 
size of the testing data. We hypothesized that (1) the use of FMG 
for grasp detection in individuals with stroke would be feasible, 
yielding an accuracy of at least 90% with training data that are at 
most 50% of the size of testing data, in a controlled environment, 
(2) classification accuracy would be lower for participants with 
stroke when compared to healthy participants, and (3) more data 
would be required for accurate grasp detection for participants 
with stroke when compared to healthy participants.

MaTerials anD MeThODs

Participants
Eight participants with stroke and eight healthy participants were 
recruited for this study. Inclusion criteria for the participants with 
stroke were as follows: (1) cerebrovascular accident confirmed 
by MRI or CT scan and (2) mild to moderate impairment of the 
paretic hand, confirmed by Chedoke Hand Score >5 (Gowland 
et  al., 1993), and poorer performance on the Box and Blocks 
test (Mathiowetz et  al., 1985) for the paretic hand compared 
to the non-paretic hand. Healthy participants were a sample of 
convenience of right-dominant adults with no history of injuries 
or impairments to their upper limbs.

Participants with stroke and healthy participants had a mean 
age of 69 years (σ = 6 years) and 27 years (σ = 7 years), respec-
tively. All participants with stroke were chronic stroke survivors 
(>12 months poststroke). The Chedoke Arm Score was a mean 
of 6.75 (σ  =  0.71), and the Chedoke Hand Score was a mean 
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of 6.38 (σ = 0.75), both with a range of 5–7 for all participants 
with stroke. Paretic side performance was 62.1% (σ = 22.3%) of 
the non-paretic side performance for the Box and Blocks Test 
(Mathiowetz et al., 1985).

experimental setup
Six commercial off-the-shelf force-sensitive resistors (FSRs) 
(model number FSR 402) manufactured by Interlink Electronics 
(2015) were embedded into a 40 cm flexible foam band, to form 
a force-sensing band to collect FMG data from participants 
(Figure  1A). Foam was chosen as the material for the band 
due to its conformability and flexibility, which would ensure 
adherence of the band to the working limb of the participant, 
and would be comfortable to don. The number of sensors was 
chosen as a trade-off between collecting more channels of data, 
and limiting the stiffness of the band, as each sensing element 
contributed to the stiffness of the band. The number of sensors 
selected for this study is similar to the quantity of sensors that 
have been shown to be sufficient for accurate FMG acquisition, 
from healthy volunteers, in other studies (three to eight sensors) 
(Wininger et al., 2008; Xiao and Menon, 2014; Sadarangani and 
Menon, 2015). The sensors were placed 4  cm apart from each 
other, to create a total sensing area of approximately 20 cm. An 
additional 4 cm of space was left on either side of the sensor array. 
The remaining 12 cm of the band was covered with Velcro®, to 
enable fastening of the band. The band was positioned around 
the participant’s working forearm, approximately 8 cm from the 
olecranon, to detect FMG signals associated with the functional 
state of the participant’s working hand (Figure 1B). The band was 
fastened with the aforementioned Velcro® such that the band was 
tight, and could not slip or rotate, but was still comfortable for 
each participant. None of the participants reported discomfort 

due to band tightness. This method of controlling for tightness 
was adopted from the literature, as it has been shown to produce 
high FMG classification accuracies in healthy volunteers (Li et al., 
2012; Xiao and Menon, 2014). To emulate the intended use condi-
tion, only the distance from the olecranon was specified, and the 
rotational placement of the band on forearm musculature (e.g., 
anterior or posterior) was not specified. The device was donned 
on the impaired side (paretic side) for participants with stroke 
and donned on the dominant side for healthy individuals.

The FMG signal was quantified from the FSRs using a voltage 
divider circuit (Figure 1C). The sense resistor, Rsense, in the voltage 
divider circuit controls the sensitivity of the FSR and represents 
a trade-off between the force-sensing range (i.e., maximum force 
the can be measured before saturation), and full scale output range 
(i.e., maximum output signal at maximum sensing range) of the 
sensing circuit (Interlink Electronics, 2015). The sense resistor 
was empirically chosen to be 12 kΩ for the selected donning posi-
tion. The voltage across the sense resistors was sampled between 
the 0 and 5 V range, with a 12-bit resolution, at 20 Hz, using a 
National Instruments DAQ Device (National Instruments, 2016) 
interfaced with custom LabVIEW software. The 20 Hz sampling 
rate was selected as it has been shown to be sufficient to achieve 
high FMG classification accuracies in the literature (Radmand 
et al., 2016). The resulting data acquisition system is schemati-
cally depicted in Figure 1C.

A coffee cup, weighing 530 g, was selected as the object for 
all grasp and move tasks in the experimental protocol. The cup 
was instrumented with a validation sensor (Figure 1D) to detect 
when the cup had been grasped. The validation sensor comprised 
of a pressure-sensitive conductive sheet (3M, 2017b) attached 
to conductive copper tape (3M, 2017a). The pressure-sensitive 
conductive sheet, which demonstrates a reduction in resistance 
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as the applied force increases, was wrapped around the inside of 
the cup handle. Copper tape was attached to the two ends of the 
sheet and interfaced to the data acquisition system, to quantify 
the resistance displayed by the pressure-sensitive conductive 
sheet. The pressure-sensitive conductive sheet and copper tape 
on the cup handle were wrapped in insulation tape to ensure no 
other source of conductance or resistance was electrically con-
nected to the copper tape. Data from this sensor were acquired 
using the same data acquisition system that was used for FMG 
data (Figure  1C). Data from this sensor were used to label 
FMG data as corresponding to a grasp or neutral hand posture 
and to calculate grasp detection accuracy. If the signal from the 
validation sensor was above a configurable voltage, the sensor was 
considered to have detected a grasp. The experimenter visually 
confirmed that the validation sensor was accurately detecting 
grasping throughout the data collection session using readouts on 
the custom LabVIEW software. The experimenter also observed 
the study to ensure that no objects other than the instrumented 
cup were grasped by the participant throughout the duration of 
the experimental protocol and that the participants always picked 
up the cup using the instrumented handle. The validation sensor, 
with the insulation tape peeled away to reveal the copper tape and 
pressure-sensitive conductive sheet, is depicted in Figure 1D.

experimental Protocol
Participants were seated comfortably in an armless chair with 
their working hand resting on the table in front of them. They 
were asked to reach for, grasp (i.e., pick up) and move a cup 
across three different planes of movement, resulting in three 
different tasks (Figure 2). For each task, participants were asked 
to reach for the cup at the start position, grasp the cup, lift it 
off the table, move it to the end position, place the cup down 
on the table at the end position, and completely release the cup. 
Subsequently, they were asked to reach for the cup at the end 
position, grasp the cup, lift it off the table, move it to the start 
position, place the cup down on the table at the start position, 
and completely release the cup before returning their hands to 
rest on the table in front of them. In Task 1, the end position was 
to the left of the start position, such that participants moved the 
cup laterally. In Task 2, the end position was the top of a custom 
shelf, above the start position, such that participants lifted the 
cup upwards. In Task 3, the end position was ahead of the start 
position, such that participants moved the cup forward. The 
target distance for each task was set to approximately 90% of the 
maximum active range of motion each participant was comfort-
ably able to achieve. The participants were asked to repeat each 
task, by first moving the cup from the start position to the end 

position, and subsequently moving the cup from the end posi-
tion back to the start position, 10 times at a comfortable pace. 
This resulted in 20 grasp and move actions per task.

The objective of this study was to evaluate the feasibility of 
using FMG classification for detecting grasping, despite the 
variety of hand positions and upper-extremity movements that 
individuals may use when completing tasks in daily living. Hence, 
participants were free to move their shoulder, elbow, and wrist 
positions in whichever manner they found suitable while moving 
the cup to and from the target locations. In addition, participants 
were asked to grasp the cup using the instrumented handle, but 
were free to use any grasp type that would allow them to do so, 
such as the medium wrap or abducted thumb grasps (Cutkosky, 
1989). Furthermore, participants were free to determine the 
specific orientation of their fingers around the cup’s handle. 
FMG-based grasp detection with grasp and move tasks was tested 
as these tasks are a common activity used for upper limb training 
post stroke (Pollock et al., 2013). In addition, the described pro-
tocol enabled evaluating FMG classification accuracy for grasp 
vs. neutral hand posture (i.e., no grasp), with data correspond-
ing to grasping, releasing, moving while grasping, and moving 
without grasping, in the three planes of movement within which 
we perform our daily activities. Thus, to achieve accurate grasp 
detection, the FMG classifier would need to be able to detect the 
FMG signal patterns associated with a grasp despite variations 
in grasp types used, and despite the presence of confounding 
upper-extremity movements, and hand positions, that also affect 
FMG signal patterns.

FMg grasp Detection (classification) 
accuracy analysis
Feasibility of FMG grasp detection among individuals with stroke 
was assessed by examining and comparing grasp classification 
accuracy and the amount of training data necessary for accurate 
grasp classification for participants with stroke and healthy par-
ticipants. As noted previously, we considered FMG-based grasp 
detection to be feasible if the grasp detection accuracy was at least 
90%, and if the training data required for the classifier were at 
most 50% of the size of the testing data.

Data were first temporally segmented into repetitions, 
based on the onset of grasps derived from the validation sensor 
output, to allow for evaluation of the effect of training set size 
on classification accuracy. Data from the start of a grasp to the 
start of the next grasp were assigned to one repetition, based on 
amplitude threshold crossings from the validation sensor. Hence, 
each repetition comprised of FMG data (from all six FSRs) cor-
responding to the grasp and move action required to move the 
cup, and the subsequent hand and arm activity corresponding to 
reaching and other preparatory movement leading up to the next 
grasp and move action. Data corresponding to the reaching and 
other preparatory movement in-between grasps were included to 
establish the classifiers robustness to false-positives (i.e., incor-
rectly predicting a grasp when the participant had a neutral hand 
posture). The repetition division scheme is depicted in Figure 3, 
where points of time labeled as grasp (grasp and move action) by 
the validation sensor are shaded in gray, points of time labeled 
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as neutral hand posture (reaching and other preparatory move-
ment) are not shaded. The FMG data in the figure are divided 
into repetitions (red arrows) based on the labels of the validation 
sensor (gray shading).

A two-fold cross-validation scheme was employed. Each data 
set related to a task for a participant (20 repetitions) was divided 
into training and testing sets. In the first fold, data from the 1st 
to 10th repetitions formed the training set and the remaining 10 
repetitions formed the testing set. In the second fold, the data from 
the 11th to 20th repetition were used to form the training set and 
the first 10 repetitions formed the testing set. Classification accu-
racy was then computed using the average classification accuracy 
obtained across the two-folds. Before classification, data within 
the training set and testing set were filtered using a median filter.  
The window size for the median filter was empirically selected to be 
three samples (300 ms). Subsequently, both the training and testing 
data were normalized with respect to the maximum and minimum 
values within the training data set. The training set was then used 
for generating a model for each task for each subject, and the testing 
set was used for model evaluation. Classification accuracy was then 
calculated as the average accuracy seen across the two-folds.

For the purpose of accuracy analysis, classification output 
was categorized into true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN). A TP corresponds 
to the classifier correctly predicting a grasp when the participant 
was grasping the cup, as labeled by the validation sensor. A TN 
corresponds to the classifier correctly predicting a neutral hand 
posture when the participant had a neutral hand posture (during 
reaching and preparatory motion), as labeled by the validation 
sensor. An FP corresponds to the classifier incorrectly predict-
ing a grasp when the participant had a neutral hand posture, 

as labeled by the validation sensor. An FN corresponds to the 
classifier incorrectly predicting a neutral hand posture when the 
participant was grasping the cup, as labeled by the validation 
sensor. Grasp detection accuracy was then computed as per Eq. 1.

 
accuracy TP TN

TP TN FP FN
( )% =

+
+ + +  

(1)

For example, a typical participant took approximately 4 s to 
complete a repetition (i.e., a grasp and move action, and the sub-
sequent reaching and preparatory motion leading up to the next 
grasp and move action), resulting in 80 instantaneous samples per 
channel (sampled at 20 Hz). Of these 80 samples, approximately 
60% (48) of the samples would correspond to points of time when 
the participant was grasping and moving the cup, as labeled by the 
validation sensor. The remaining 40% (32) of the samples would 
correspond to points of time when the participant had a neutral 
hand gesture. During these points of time the participant could 
have been reaching for the cup, engaging in other preparatory 
motion, or returning to the neutral position. A 100% accuracy 
would indicate that the classifier was able to correctly identify the 
aforementioned 48 grasp samples as grasp, and the remaining 32 
neutral samples as neutral hand posture.

Classification was carried out using a support vector machine 
(SVM) classifier with a non-linear radial basis function (RBF) 
(Bishop, 2006) kernel given by the following expression (Eq. 2):

 K x x ei j
x xi j( ) ( γ ), || ||= − − 2

 (2)

where xi and xj are two arbitrary samples from the input data, 
and || ||x xi j− 2 is the squared Euclidean distance between the two 
specific samples, γ is the symbol for gamma, a parameter used to 
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FigUre 4 | Predicted class label in relation to true class label for exemplary case of Task 1 for the first participant with stroke.

TaBle 1 | Average classification accuracy for participants with stroke, and healthy participants, for each task using the RBF-SVM and LDA classifiers.

Task Participants with stroke healthy participants

support vector  
machine (sVM)

linear discriminant 
analysis (lDa)

sVM lDa

accuracy (%) σ (%) accuracy (%) σ (%) accuracy (%) σ (%) accuracy (%) σ (%)

Task 1 93.6 2.1 93.4 2.0 97.1 1.3 96.7 1.6
Task 2 91.4 4.6 89.9 5.0 95.1 2.5 93.6 3.9
Task 3 91.7 5.7 91.4 6.2 95.6 2.5 94.4 3.1

Task 1, Task 2, and Task 3 are the grasp and move tasks in the lateral, upward, and forward directions, respectively.
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control the fitting behavior of the SVM. The LIBSVM library was 
used off-line in the MATLAB environment to evaluate the accu-
racy of the RBF-SVM, with default cost and gamma parameters 
(Chang and Lin, 2011). To evaluate the ease of separation of FMG 
data, the use of a linear discriminant analysis (LDA) classifier was 
also evaluated using the MATLAB Statistics and Machine Learning 
Toolbox (MathWorks, 2015). The LDA assumes that the input 
data are normally distributed. The Kolmogorov–Smirnov test was 
used to verify this assumption with the acquired data before clas-
sification was conducted. Unlike the RBF-SVM that seeks a linear 
separator in the non-linear feature space, the LDA seeks a linear 
decision boundary in the data space (Bishop, 2006). The ability to 
use simpler linear signal-processing and classification methods 
would indicate that an FMG-based grasp detection system could 
potentially be more easily embedded into a compact and portable, 
low-power device that is capable of running independently.

Classification accuracy was established for each task using the 
RBF-SVM and LDA classifiers for both healthy participants and 
individuals with stroke. A two-way ANOVA was conducted to 
examine the effect of the two independent variables: (1) partici-
pant type (individuals with stroke vs. healthy individuals) and (2) 
classifier type (RBF-SVM vs. LDA), on the dependent variable of 
classification accuracy. The significance level was set to 0.05.

To examine the effect of training data size on classifica-
tion accuracy, we varied the size of the training set from one 
repetition to 10 repetitions for each fold within the two-fold 
cross-validation scheme. In all cases, accuracy was determined 
by classifying data within the fixed-sized testing set, compris-
ing data associated with 10 repetitions. The training set size 
required to achieve the target 90% average accuracy across 
the two-folds was established for participants with stroke and 
healthy participants for both types of classifiers. The correla-
tion coefficient between training set size and classification 
accuracy was also derived for participants with stroke and 
healthy participants.

resUlTs

All eight participants with stroke and eight healthy partici pants suc-
cessfully completed the data collection protocol. The Kolmogorov–
Smirnov test confirmed that the acquired data were normally 
distributed, and hence suitable for classification using LDA.

Figure 4 depicts the predicted class label in relation to the true 
class label for the RBF-SVM and LDA classifiers for an exemplary 
case of Task 1 for the first participant with stroke. Table 1 shows 
the accuracies associated with grasp detection for each task, for 
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FigUre 6 | Classification accuracy vs. training set size for each task. Task 1, 
Task 2, and Task 3 are the grasp and move tasks in the lateral, upward, and 
forward directions, respectively. The accuracies were averaged across eight 
subjects for each population. The error bars represent 1 SD.

FigUre 5 | Average classification accuracy vs. training set size. The 
accuracies were averaged across the three tasks and eight subjects for each 
population, for training set sizes ranging from 1 repetition to 10 repetitions. 
The error bars represent 1 SD.
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participants with stroke and healthy participants using the RBF-
SVM and LDA.

Grasp detection accuracy was lower for participants with 
stroke, when compared to healthy volunteers. Average grasp 
detection accuracy was 92.2% (σ = 3.5%) and 91.6% (σ = 3.8%) 
across all tasks for participants with stroke using the RBF-SVM 
and LDA, respectively. Average grasp detection accuracy was 
96.0% (σ  =  1.6%) and 94.9% (σ  =  2.3%) across all tasks for 
healthy participants using the RBF-SVM and LDA, respectively. 
The two-way ANOVA revealed that the higher classification 
accuracies obtained for healthy individuals when compared to 
individuals with stroke was statistically significant (F2,31 = 11.65, 
p < 0.005). There was no significant difference in classification 
performance between the RBF-SVM and LDA classifiers, and 
there was no interaction effect between participant type and 
classifier type.

Classification accuracies obtained were lower for moving 
upwards (Task 2), or forwards (Task 3), when compared to 
moving laterally (Task 1) for both participants with stroke 
and healthy participants. To explore the possibility of using a 
single model to detect grasping across all movement directions, 
a single classifier model was constructed using data from all 
three tasks. In specific 50% of the repetitions from all three tasks 
were used for training, and 50% of the repetitions from all three 
task were used for testing. A two-fold cross-validation scheme 
was employed. The classification accuracies obtained were lower 
than those obtained when using a single classifier model for each 
task. Classification accuracies for participants with stroke were 
91.6% (σ = 3.4%) and 90.9% (σ = 3.4%) using the RBF-SVM 
and LDA classifiers, respectively. The classification accuracies 
obtained for healthy participants were 94.9% (σ  =  2.5%) and 
94.0% (σ  =  2.8%), using the RBF-SVM and LDA classifiers, 
respectively.

Figure  5 depicts the average accuracies taken across both 
folds and all tasks, for training sets of differing sizes for par-
ticipants with stroke and healthy participants. The accuracies 

associated with each task are depicted in Figure 6. The accuracy 
was dependent on the size of the training set provided. The 
correlation coefficients between the number of training samples 
and the average accuracy for participants with stroke are 0.8606 
(p = 0.001) using the RBF-SVM, and 0.8488 (p = 0.002) using the 
LDA. The correlation coefficients between the number of training 
samples and the accuracy obtained for healthy participants are 
0.7604 (p = 0.011) using the RBF-SVM, and 0.6254 (p = 0.05) 
using the LDA. The use of two and four repetitions was necessary 
for achieving greater than 90% accuracy for participants with 
stroke using the RBF-SVM and LDA, respectively (Figure 5). The 
use of one and two repetitions was sufficient for achieving greater 
than 90% accuracy for healthy participants using the RBF-SVM 
and LDA, respectively (Figure 5).

DiscUssiOn

The overall objective of this study was to explore the feasibility of 
using FMG for grasp detection in individuals with stroke. Grasp 
detection accuracy was evaluated using an experimental protocol 
that involved grasping, releasing, moving while grasping, and 
moving without grasping, in the three planes of movement within 
which we perform our daily activities. Additional variability was 
introduced by the variety of movement trajectories that were 
employed by participants to achieve the tasks, as participants 
were free to employ varying wrist, elbow, and shoulder motions to 
complete the target movement required for each task. In addition, 
participants were also able to vary the grasp type used, as long as 
they picked up the cup using the instrumented handle. Variability 
was also introduced into the paradigm by the functional impair-
ments that the participants with stroke demonstrated, which are 
reflected in the clinical scores. For example, a Chedoke Hand 
Score of 5 would represent an individual who has difficulty 
extending their wrist and spreading the fingers apart. Grasp clas-
sification accuracy was established and compared for participants 
with stroke and healthy participants using both RBF-SVM and 
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LDA classifiers. The susceptibility of classification accuracy to the 
amount of training data provided was also established.

Grasp detection accuracy was lower for participants with 
stroke when compared to healthy participants. A potential expla-
nation for the lower grasp detection accuracy is the empirically 
observed variability in grasp types, movement trajectories, and 
additional compensatory mechanisms demonstrated by partici-
pants with stroke. This variability may have resulted in a more 
challenging classification problem. In addition, participants with 
stroke often had difficulty in grasping and completely releasing 
the cup at the start and end positions, which potentially made 
classification of those points of time more challenging. It is 
noteworthy that there is an age difference in the groups of par-
ticipants enrolled in this study. Aging can affect the properties 
of muscle fibers (Deschenes, 2004) and subcutaneous fat, which 
may impact the quality of muscle based signals (Vaillancourt 
et  al., 2003). Hence, the difference in accuracies observed bet-
ween the participants with stroke and healthy individuals may  
not be related only to the existence of upper-extremity impair-
ment due to stroke. Instead, these results show the accuracy 
obtainable, within the confines of the experimental protocol, with 
FMG-based grasp detection for the target population of individu-
als with stroke, in comparison to the population of healthy, young 
individuals, in which FMG has been, and continues to be, widely 
studied (Dementyev and Paradiso, 2014; Xiao and Menon, 2014; 
Sadarangani and Menon, 2015).

The use of a linear classification scheme did result in lower 
classification performance for both participants with stroke and 
healthy participants. However, the differences in classification 
performance were not statistically significant. Average grasp 
detec tion accuracy with the LDA remained above 90% for both 
participants with stroke and healthy participants, suggesting 
that linear classification may be adequate for FMG-based grasp 
detection.

It is noteworthy that classification accuracies were lower for 
moving upwards (Task 2), or forwards (Task 3), when compared 
to moving laterally (Task 1) for both participants with stroke and 
healthy participants. Furthermore, the classification accuracies 
obtained when using a single classifier model for all three tasks 
were lower than those obtained when using a single classifier for 
each task. These variations in accuracy suggest that FMG grasp 
classification accuracy may be sensitive to movement direction 
and upper-extremity postures. Despite the noted reductions, 
average grasp classification accuracy remained above 90% for 
this combined model, suggesting that the use of a single train-
ing round for predicting grasping in all three directions may be 
feasible.

Overall, FMG-based grasp detection demonstrated high 
accuracy of 92.2% (σ = 3.5%) with participants with stroke. These 
promising results met our first feasibility criteria and suggest that 
the use of FMG for grasp detection in individuals with stroke, 
in the presence of upper-extremity movement, may be feasible.

Grasp detection accuracy was significantly dependent on 
training set size in all cases. However, a larger training set size was 
required to achieve 90% accuracy with participants with stroke 
when compared to healthy participants. It is possible that a larger 
training set size was necessary for the classifier to generalize the 

variability in movement trajectories and grip patterns observed 
in participants with stroke. Despite the reduction in accuracies, 
the use of a training set that was 50% the size of the testing set 
resulted in 91.7% (σ = 3.9%) with participants with stroke, and 
95.6% (σ = 1.6%) with healthy participants using the RBF-SVM 
(Figure  5); and this met our second feasibility criteria. These 
promising results are indicative of the capabilities of FMG-based 
sensing systems for grasp detection in individuals with stroke, 
with minimal setup, in controlled environments.

It is noteworthy that the grasp detection accuracy obtained for 
this preliminary experimental protocol, corresponds to the detec-
tion of grasping of a single object of constant weight and shape. 
While the use of a variety of movement trajectories, wrist, elbow 
and shoulder postures, and grasp types introduced variability 
within the data, this study did not investigate the effect of the weight 
of the object on FMG grasp detection accuracy. Furthermore, 
this study also did not seek to establish the effect of removing 
and redonning the force-sensing band at different positions, and 
with different levels of tightness, as would be expected in daily 
use. These variations in object weight, band donning position 
and band tightness could introduce variability in the FMG signal 
acquired and impact grasp detection accuracy. It is also possible 
that other sensing modalities, such as sEMG or MMG may prove 
more repeatable, and less susceptible to these additional sources 
of variability when compared to FMG. Based on the promising 
results obtained in this preliminary investigation, future work 
should investigate the impact of the aforementioned variables on 
FMG-based grasp detection accuracy.

FUTUre WOrK

The scope of this study is limited to establishing the preliminary 
feasibility of classifying the FMG signal for grasp detection with 
participants with stroke. The study evaluated grasp detection 
accuracy with a single object, of constant weight, in a controlled 
environment. Future work should explore robustness of FMG 
signal-processing and feature-extraction techniques for differ-
ing objects, various grasp types and movement trajectories in 
an uncontrolled environment. In addition, FMG-based grasp 
detection with participants with stroke with moderate to severe 
impairments should also be evaluated. Furthermore, robust 
FMG sensing bands and systems will also need to be developed 
to be practically deployable for grasp detection in uncontrolled 
environments. This includes an analysis and selection of various 
force-sensing elements, band backing materials, and battery-
based power management systems to make the band wireless. 
Furthermore, the impact of removal and redonning of the FMG 
sensing band should be investigated and minimized. Finally, the 
efficacy of FMG-based grasp detection systems for encouraging 
grasping and functional activity, as part of daily living, in indi-
viduals with stroke who are actively undergoing rehabilitation 
should also be assessed.

cOnclUsiOn

This study investigated the feasibility of classifying FMG for 
grasp detection, in individuals with stroke, with a data set that 
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included variations in upper-extremity movement and post ures, 
as would be expected in daily living. FMG classification accuracy 
was lower and required more training data to achieve the target 
90% accuracy for participants with stroke when compared to 
healthy participants. Despite the noted considerations, FMG-
based sensing achieved a high accuracy of approximately 92% 
for detecting grasping in the presence of other upper-extremity 
movements with participants with stroke. In addition, a training 
set size that was 50% of the testing set size was sufficient to achieve 
approximately 91.5% grasp detection accuracy with participants 
with stroke. These promising results indicate that FMG sens-
ing may be feasible for monitoring grasping in the presence of 
upper-extremity movements, in individuals with stroke and mild 
to moderate upper-extremity impairment.
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