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This contribution presents a novel methodology for myolectric-based control using sur-
face electromyographic (sEMG) signals recorded during finger movements. A multivariate
Bayesian mixture of experts (MoE) model is introduced which provides a powerful method
for modeling force regression at the fingertips, while also performing finger movement
classification as a by-product of the modeling algorithm. Bayesian inference of the model
allows uncertainties to be naturally incorporated into the model structure. This method
is tested using data from the publicly released NinaPro database which consists of
sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The
results demonstrate that the MoE model achieves similar performance compared to the
benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent
to the Bayesian framework is the inclusion of uncertainty in the model parameters,
naturally providing confidence bounds on the force regression predictions. Furthermore,
the integrated clustering step allows a detailed investigation into classification of the
finger movements, without incurring any extra computational effort. Subsequently, a
systematic approach to assessing the importance of the number of electrodes needed
for accurate control is performed via sensitivity analysis techniques. A slight degradation
in regression performance is observed for a reduced number of electrodes, while
classification performance is unaffected.

Keywords: sEMG signals, finger force regression, finger movement classification, variational Bayes, multivariate
mixture of experts, prosthetic hand

1. INTRODUCTION

Estimation of user intention from surface electromyographic (sEMG) signals is a key challenge in
the design of active prosthetics, and this method of control has been a thriving area of research for a
few decades (Saridis and Gootee, 1982). The harnessing of sEMG signals allows the user to actively
control the device, while providing a relatively simple, non-invasive and low cost human-machine-
interface. Highly dexterous active arm prosthetics will enable amputees to perform tasks which are
not possible with the current state-of-the-art. However, achieving refined control of upper limb
prosthetics is particularly challenging due to the very high number of degrees-of-freedom (DoF)
present in the extremities of the arm.
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TABLE 1 | A table of related work found in the literature for both finger movement classification and force regression.

# electrodes Feature Extraction Classifier (regressor) Finger moves # of subjects Accuracy Reference

4 WT ANN 6 s 10H >80% Jiang et al. (2005)
4 TD ANN 4m 7H 96% Naik et al. (2009)
32, 19 TD MLP 10 s 5H, 1A 90% Tenore et al. (2009)
10 – SVM 4m 12H 89.7% Castellini and van der Smagt (2009)
10 – (SVM) 4m 12H 7.98% (NRMSE) Castellini and van der Smagt (2009)
12 2–3 TDs SVM 12 s 5H, 1A >80% Kanitz et al. (2011)
9 Filtering (SVM) 6 s, 5m 12H <8% (NRMSE) Castellini and Kõiva (2012)
2 WT SVM 4s 11H, 1A 93% Kumar et al. (2013)
12, 11 TDAR LDA 11 s, 4m 10H, 6A >95% Al-Timemy et al. (2013)
12 mDWT (NK) 6 s, 3m 40H 91.74% (R2) Gijsberts et al. (2014)
6 TDAR ANN 5 s 5H 89.4% Li et al. (2015)
6 TDAR (Quadratic) 5 s 5H 0.15 (MAE) Li et al. (2015)
2 TDAR ANN 5 s, 5m 8H 92% Naik and Nguyen (2015)
12 pairs Various LDA 5 s 3A <83% Jarrassé et al. (2017)

“# electrodes” gives the number of electrodes for healthy, amputee. The type of feature extraction used is given in the second column: WT (wavelet transform), TD (time domain), TDAR
(time domain autoregressive), and mDWT (marginal discrete wavelet transform). The classifiers/regressors are given by: ANN (artificial neural network), MLP (multilayer perceptron),
SVM (support vector machine), LDA (linear discriminant analysis), and NK (nonlinear kernel). In “Finger Moves” column, “s”= single and “m”=multiple. H and A in the “# of subjects”
column correspond to healthy and amputee subjects, respectively. Classifier accuracy is the percentage of correct predictions, and regressor performance uses NRMSE (normalized
root mean square error), R2, or MAE (mean absolute error).

In order to achieve highly dexterous control of prosthetic
arms, control schemes are used that combine classification of
movement-type with regression for proportional force control
(Castellini and van der Smagt, 2009). Classification of hand/wrist
movements (including grasping) has been tackled successfully
(Ferguson and Dunlop, 2002; Farrell andWeir, 2008; Atzori et al.,
2012). Performing finger movement classification is a more diffi-
cult task: first, sEMG signals are smaller in amplitude for finger
movements, and second, muscles responsible for finger activa-
tions lie deep beneath the skin surface and so the signals recorded
at the skin are subject to nonlinear transformations by forearm
tissues (Al-Timemy et al., 2013). Several authors have tackled
single and multiple finger movement classification using a variety
of combinations of sEMG feature extractions (FE) and classifiers,
with varying degrees of success (Jiang et al., 2005; Castellini and
van der Smagt, 2009; Naik et al., 2009; Tenore et al., 2009; Kanitz
et al., 2011; Al-Timemy et al., 2013; Kumar et al., 2013; Li et al.,
2015;Naik andNguyen, 2015; Jarrassé et al., 2017) (refer toTable 1
for a comprehensive list).

Recently, regression between the user’s intent, via sEMG sig-
nals, and the force applied at the fingertips has been performed
(Castellini and van der Smagt, 2009; Castellini and Kõiva, 2012;
Gijsberts et al., 2014; Li et al., 2015) (refer to Table 1 for ref-
erences). Regression for proportional force control is a natural
and accurate form of control since sEMG signals are related to
the force a muscle is applying (Luca, 1997). The whole control
scheme, consisting of a classifier coupled with a regressor, is hence
capable of predicting the movement being performed along with
how much force the subject is exerting.

Movement dynamics of a patient observed via sEMG can vary
substantially over time due to, e.g., the fatiguing of muscle, motor
unit noise, and electrode movement (Luca, 1997). Due to this
variability, dynamic models of movement would be improved
by intrinsic characterization of uncertainty within the modeling
framework to aid robust control design. To date, this aspect of
user intention estimation has generally been neglected. In order to
address this gap, the authors propose a newmethod for classifying

movement-type and regressing force based on amixture of experts
(MoE) model, identified within a Bayesian framework which
intrinsically characterizes model uncertainty. Further advantages
of this approach are: (i) the method simultaneously performs
classification and regression, which simplifies themodel represen-
tation and estimation process, (ii) the model can represent both
linear and nonlinear dynamics, and (iii) the estimation algorithm
consists of an iterative sequence of closed form expressions, which
are computationally simple to execute.

The MoE model used in this work probabilistically divides
the input space of a system by means of gates, while individual
regression experts specialize on certain regions of the input space.
Thus the adoption of aMoEmodel exploits the linear relationship
between the sEMGsignals and the force for each fingermovement,
giving rise to a more natural modeling description. Additionally,
classification is also performed since it is a by-product of the MoE
structure which is integral to the model. Thus force regression
and movement classification of fingers are implemented within a
single unified framework.

Bayesian inference naturally incorporates uncertainty into the
training of themodel by specifying distributions over the parame-
ters. A useful by-product is the evaluation of confidence bounds of
model predictions, hence providing a natural check on themodel’s
predictive capabilities. Due to the Bayesian setting, overfitting is
avoided and a metric naturally arises for choosing the appropriate
number of experts. Bayesian inference also opens up the possi-
bility of performing patient-specific modeling by incorporating
patient-specific heuristics to guide the model building process
in order to provide much more accurate predictions for clinical
applications. One such approach, for example, is to instruct the
Bayesian model averaging process in clinical applications, which
has been successfully applied to sepsis and heart failure clinical
datasets (Visweswaran et al., 2010).

Cost and power consumption are predominant factors for the
success of a method for clinical application, and they can be
reduced by minimizing the number of electrodes used for clas-
sification and regression. In this work, this problem is addressed
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FIGURE 1 | Location of the 12 sEMG electrodes on the arm.

by applying sensitivity analysis (SA) techniques in order to pro-
vide a methodical framework for assessing the importance of
the individual and grouped sEMG signals on the output force
DoF. SA allows an increased understanding of the relationships
between the input and output variables of a system/model and has
been used extensively within the biomechanics literature, see for
example, Batterbee et al. (2011) and Becker et al. (2011).

In this study, the authors build on previous analytical and
computational work (Baldacchino et al., 2016) and demonstrate
that the proposed multivariate Bayesian MoE model is a suitable
candidate for finger force regression and finger classification using
sEMG signals since accurate performance, comparable to that
found in the literature, was achieved for both regression and clas-
sification. The novel work presented in this article provides a pow-
erful method for actively controlling highly dexterous prosthetic
and robotic hands for rehabilitation purposes.

The rest of the article is structured as follows. Section 2
describes the sEMG/force dataset used in this article, along with
preprocessing methods for the sEMG signals. This section also
summarizes the main analysis approaches. The multivariate MoE
model is introduced in Section 2.2, and the Bayesian parameter
update equations are given in Section 2.3. Section 2.6 gives details
of the SA framework used in this work. The results are presented
collectively in Section 3. An in-depth discussion regarding the
results obtained is given in Section 4. Finally, conclusions on the
work presented are drawn in Section 5.

2. THE DATA AND THE METHODOLOGY

2.1. NinaPro Data
The dataset analyzed in this article is comprised of the second
version of the publicly released NinaPro (Non-invasive Adaptive
Prosthetics) database (Atzori et al., 2012; Gijsberts et al., 2014).
The NinaPro database contains sEMG recordings collected from
40 intact subjects while performing a large number of common
hand/finger movements and grasping actions. Of particular inter-
est is the dataset containing measurements of the sEMG and the
corresponding applied forces at the fingertips for different finger
and thumb movements.

Each subject had 12 electrodes attached to their forearm and
upper arm in order to measure sEMG signals. The 12 electrodes
were placed in such a way that some electrodes provided dense

TABLE 2 | Description of the 9 force patterns.

# Movement description

F1–F4 Flexion of little through to index fingers.
F5/F6 Abduction/Flexion of the thumb.
F7 Flexion of the index and little finger.
F8 Flexion of the ring and middle finger.
F9 Flexion of the index finger and the thumb.

sampling while others targeted specific muscles. Eight electrodes
(1–8) were equally spaced around the forearm at the height of
the radio-humeral joint, one electrode each was placed on the
finger extensor (9) and flexor (10) muscles, and on the biceps
(11) and triceps (12), see Figure 1. Six DoF force measurements
were considered: flexion of the five digits (little, ring, middle,
index and thumb) along with abduction of the thumb. These force
signals were collected by way of a Finger-Force Linear Sensor
(FFLS) (Kõiva et al., 2012). Each subject was asked to produce
a set of nine force patterns, given in Table 2, by pressing down
with one or more digits of the dominant hand in response to an
external stimulus. Each force pattern was repeated six times, and
a rest period was enforced in between each movement and each
repetition in order to prevent muscle fatigue. More information
and detail regarding the setup and data collection can be found in
Gijsberts et al. (2014), Nin (2014).

The data preprocessing steps employed in this article follow the
steps proposed in Gijsberts et al. (2014), since a benchmark for
force regression on the NinaPro data has been set. The data was
first split into a training and testing set based on the repetition of
movements; the second and fifth repetition for each movement
were used for testing and the four remaining repetitions were
used for training. All the data were then standardized to be zero
mean and unit variance, using statistics calculated solely from the
training set.

A common practice used in smoothing sEMG signals is to
first segment the signal into overlapping windows, and features
are then extracted from each window. The sEMG signals were
sampled at 2,000Hz, and following on from Gijsberts et al. (2014)
windows of 400ms (800 samples) with a sliding window incre-
ment of 10ms (20 samples) were used. For computational feasi-
bility the training set was subsampled by a factor of 10 (at regular
intervals) resulting in approximately 3,000 data points for training.
The subsample rate used here is slightly higher than that used
by Gijsberts et al. (2014) for regression analysis but preliminary
analysis indicated that a higher subsample rate achieved a better
performance. TheMoEmodel is trained using the extracted sEMG
features as inputs to the modeling algorithm.

Preliminary results using multivariate MoE for force regression
alluded to low-dimensional FE representations outperforming
high dimensional FEs (Baldacchino et al., 2015). Thus commonly
used low dimensional time-domain FEs for sEMG signals are
considered in this work, see Table 3. All the FEs considered have
dimensionality equal to the number of sEMG channels (in this
case 12). All the FEs, except for FILT, were performed on the
windowed data as outlined in the previous paragraph. For FILT
FE, a zero-phase second-order low pass Butterworth filter with
a cutoff frequency of 2Hz was applied to the full wave rectified
sEMG data, separately for the training and test datasets. In order
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TABLE 3 | A table showing the different FEs, used on each channel of the sEMG data, analyzed in this article.

Feature extraction (FE) Definition (per channel) References

Mean absolute value (MAV) x = 1
Nw

∑Nw
n=1 |̃xn| Hudgins et al. (1993), Hargrove et al. (2008), Artemiadis and Kyriakopoulos (2011),

and Kuzborskij et al. (2012)
Waveform length (WL) x =

∑Nw
n=2 |̃xn − x̃n−1| Hudgins et al. (1993), Hargrove et al. (2008), Artemiadis and Kyriakopoulos (2011),

and Kuzborskij et al. (2012)

Root mean square (RMS) x =
(

1
Nw

∑Nw
n=1 x̃2n

) 1
2 Gijsberts et al. (2014) and Hahne et al. (2014)

Butterworth filter (FILT) See text Atzori et al. (2012) and Lenzi et al. (2012)

The extracted features are denoted by x which are computed from the windowed sEMG signal x̃ of length Nw. The “References” column provides references from the biomedical,
robotics and exoskeletons literature where the different types of FEs have been implemented.

to obtain a similar number of data points to the other FE datasets,
this dataset was subsampled at regular intervals of 200 samples.

2.2. Multivariate Bayesian Mixture of
Experts
The only instance of an MoE model applied to myoprosthetic
control appears in Hahne et al. (2014) for regression analysis
of wrist movements. The model was limited to two experts and
trained using iterative reweighted least squares separately for each
DoF. In Section 2.2.1, a sophisticated MoE is defined which is
capable of accommodating unlimited DoFs and achieving ana-
lytical update solutions. The MoE model structure used in this
article follows the work of Ueda and Ghahramani (2002), and
further developed in Baldacchino et al. (2016). This particular
choice ofMoEmodelwas adopted for two reasons; tractable closed
form update equations for the parameters are obtained, and it is
easily extended to accommodate multivariate outputs. These two
characteristics reduce the computational effort during the training
phase resulting in fast training times. The model used in this
article is thus referred to as the multivariate BayesianMoEmodel.
Since a Bayesian approach to training themodel is employed, prior
distributions for the random variables need to be specified and
these are given in Section 2.2.2.

2.2.1. Multivariate MoE Regression Model
The dy DoF force signal, yn = [y1n, . . . , yd

y

n ], at time instant n, can
be represented by a MoE model withM regression experts, given
by

yn =
M∑
i=1

gi
(
xn, θgi

)
fi(xn,Wi), (1)

where xn = [x1n, . . . , xd
x

n ] is the dx dimensional input vector
consisting of the extracted sEMG features. The ith gating function,
gi(·), is a normalized Gaussian function, given by

gi
(
xn, πi, θgi

)
=

πiN
(
xn|µi,Λ−1

i
)∑M

l=1 πlN
(
xn|µl,Λ−1

l
) , (2)

where θgi = [µi,Λi]; µ = {µi}Mi=1 is the mean and Λ−1 =
{Λ−1

i }Mi=1 is the covariance matrix. π = {πi}Mi=1 are the mixing
coefficients satisfying πi ≥ 0 and

∑M
i=1 πi = 1. gi(xn, πi, θgi ) is

the posterior conditional probability that xn is assigned to the
partition corresponding to the ith expert.

The ith parametric expert function, fi(xn,Wi) describes the
relationship between the sEMG signals and the force applied at

the fingertips. This function is restricted to be a linear vector
such that fi(xn,Wi) = W⊤

i [xn 1] (1 represents a bias term)
and Wi is a (dx + 1) × dy matrix corresponding to the weights
associated with each sEMG signals and eachDoF force signal. The
probability distribution, p(yn|xn, θ

e
i ), of the ith expert is taken to be

a multivariate Gaussian distribution having mean fi(xn,Wi) and
covariance χ−1

i , given by

p
(
yn|xn, θ

e
i
)

= N
(
yn|W

′
i [xn 1], χ−1

i

)
, (3)

where θei = [Wi, χi]; W = {Wi}Mi=1 is the multidimensional
parameter weight matrix, andχ−1 = {χ−1

i }Mi=1 is the covariance
matrix.

The set of unknownmodel parameters for the model expressed
in (1) is given by [π,Θ]= [π, θg, θe]. Given thatN training data
points are available, then the joint likelihood of the finger force
and sEMG signals is expressed as

p(Y,X|π,Θ) =
N∏

n=1

M∑
i=1

πiN
(
xn|µi,Λ−1

i

)
︸ ︷︷ ︸

g̃i

× N
(
yn|W

′
i [xn 1], χ−1

i

)
, (4)

where X = [x1, . . . , xN] ∈ RN×dx , and Y = [y1, . . . , yN] ∈
RN×dy . The gating network g̃i is a Gaussian mixture model
(GMM) and it divides the sEMG input space into separate Gaus-
sian clusters. Hence, clustering (unsupervised classification) is
performedusingGMMs, andGMMshave been previously applied
to hand movements as a means of performing classification with
minimal computational complexity when compared to supervised
learning classifiers (Chan and Englehart, 2003). The form of this
gate results in singularities when maximum likelihood is used
due to an ill-defined likelihood function (this causes a mixture
component to collapse onto a single data point (Bishop, 2006)),
hence further justifying the use of a Bayesian approach in this
article. Expressing the likelihood as in equation (4) enforces soft
competition between the experts such that only one expert will
be dominant in a certain region of the input space (Jacobs et al.,
1991), see Figure 2.

Discrete latent indicator variables, Z = {zni}M,N
i=1,n=1 ∈ RN×M,

are introduced such that if (xn, yn) was generated from the ith
expert then zni = 1, else it is 0. Latent variables are introduced in
order to simplify expression (4) since the sum over M experts is
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Gate M } Gating

Network 

Expert 1

Expert M

Expert 2Input x Output y 

Gate 1

Gate 2

FIGURE 2 | Mixture of experts model with soft competition, whereby only one expert is active at any given time. This expert is chosen probabilistically via the gating
function.

changed to a product over M. Thus the complete-data likelihood
can be written as

p(X,Y,Z|π,Θ) =
N∏

n=1

M∏
i=1

(
πiN

(
xn|µi,Λ−1

i

)
×N

(
yn|Wi

′[xn 1], χ−1
i

))zni
, (5)

which is an equivalent representation of (4) incorporating an
explicit latent variable.

2.2.2. Priors
Conjugate priors are assigned to all the parameters except for
the mixing coefficients π (which are treated as non-random
variables). The priors used here follow on from the Bayesian
literature.

The Gaussian-Wishart prior is used for the mean, µ, and
precision, Λ, of the gating GMM, given by

p(µ,Λ) =p(µ|Λ)p(Λ)

=
M∏
i=1

N
(
µi|m0, (β0Λi)−1

)
W(Λi|B0, ν0), (6)

where B0 is a dx x dx symmetric, positive definite matrix, and
v0> dx–1 is the number of degrees of freedom of the Wishart
distribution. Similarly, the prior distribution of the joint sEMG
weights, W, and precision matrix, χ, for the linear regres-
sor experts is given by a matrix-Normal-Wishart distribution
expressed as

p(W,χ|a) =
M∏
i=1

MN
(
Wi|0,A−1

i , χ−1
i

)
× W(χi|Q0, λ0), (7)

where MN is the matrix-Normal distribution. The matrix Ai =
diag(ai,1, . . . , ai,dx+1) and it is assigned the following hyperprior
distribution

p(ai,j) = Ga(ai,j|c0, d0). (8)

The parameterAi incorporates automatic relevance determina-
tion (ARD) since each input sEMGsignal has an associated ai,j that
forms part of the variance of the ith expert weights’ distribution
(MacKay, 1995). ARD automatically imposes conditions such that
if a−1

i,j = 0 then the corresponding sEMG signal xj will have little
effect on the force.

The joint distribution of all the random variables can be
expressed hierarchically as,

p(Y,X,Z,µ,Λ,W,χ, a|π)

= p(Y,X|Z,π,Θ)p(Z|π)p(µ,Λ)p(W,χ|a)p(a), (9)

where a= (a1,. . .,aM). In order to simplify the assignment of
hyperparameter values for the prior distributions, the extracted
feature dataset was again standardized to zeromean and unit vari-
ance. This alleviates the issue of assigning hyperparameter values,
removing the need to perform hyperparameter optimization. The
hyperparameter values were set accordingly so as to define broad
priors:m0 is set using K-means, β0 = 0.01, B0 = I, and v0 = dx for
the gates; and Q0 = I, λ0 = dy, c0 = 0.01, and d0 = 0.0001 for the
experts.

2.3. Variational Bayesian Framework
Given the multivariate MoE and priors distributions for the ran-
dom variables described in the previous sections, a learning algo-
rithm is needed to train the model. An approximate Bayesian
framework is desired in order to find the posterior distribution
of the parameters p(Θ,a|Y). The marginal likelihood p(Y) (which
appears in the denominator of Bayes’ theorem) is analytically
intractable due to a multi-dimensional integral over the param-
eter space. The choice of conjugate-exponential distributions,
along with a latent variable model is elegantly accommodated by
the variational Bayes expectation-maximization (VBEM) frame-
work. In short, the VBEM algorithm forms a lower bound of
the marginal likelihood which is maximized iteratively so as to
obtain a tight bound. Detailed information regarding the VBEM
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algorithm can be found in Beal (2003) and Beal and Ghahramani
(2003).

Since conjugate priors for the model parameters were used, the
functional form of the variational distributions will thus be the
same as the priors. The optimal variational distributions are noted
below, and expressed as q*(·). The VBM-step update equations are
given in (10)-(16) while the VBE equations for the latent variables
Z are shown in equatios (17)–(19). The equations given here are
similar to the ones detailed in Baldacchino et al. (2016), however,
some equations have been modified to cater for the multivariate
output force signals.

The joint variational posterior distribution of the gates’ mean
and covariance is a Gaussian-Wishart distribution, given by

q∗(µi,Λi) = N
(
µi|mi, (βiΛi)−1

)
W(Λi|Bi, νi), (10)

where

mi =
β0m0 +

∑N
n=1 rnixn

βi
, βi = β0 + Ni,

B−1
i = B−1

0 +
N∑

n=1
rnixnx′

n + β0m0m′
0 − βimim′

i

νi = ν0 + Ni, Ni =
N∑

n=1
rni, rni = E[zni]. (11)

The joint variational posterior distribution of the expert func-
tions’ mean and covariance is a matrix-Normal-Wishart distribu-
tion having the following form

q∗(Wi, χi) = MN
(
Wi|Ŵi, χ

−1
i , Li

)
W(χi|λi,Qi), (12)

where

Ŵi = Li[X 1N×1]′ViY

Li =
(
[X 1N×1]′Vi[X 1N×1] + Υi

)−1

Vi = diag(E[z1i], . . . ,E[zNi])
λi = λ0 + Ni

Q−1
i = Q−1

0 + Y′ViY − Ŵ′
i(X′ViX + Υi)Ŵi. (13)

The term Υi = E[Ai] is defined in equation (16). The varia-
tional distribution for the ARD parameters is

q∗(ai,j) = Ga(ai,j|ci, di,j), (14)

where

ci = c0 + 0.5dy, di,j = d0 + 0.5ξi,j
ξi,j = dy(Li)j,j + λiŵi,jQiŵ′

i,j, (15)

where (Li)j,j is the jth diagonal element of Li, and ŵi,j ∈ R1×dy

is the jth row of Ŵi. Using the statistic of a mean from a Gamma
distribution, then

Υi = E[Ai] = diag
(

ci
di,1

, . . . ,
ci

di,dx+1

)
. (16)

The VBE-step consists of updating the variational distribution
of Z and the relevant equations are listed below. The variational
distribution for the latent indicator variables follows a multino-
mial distribution, such that

ln q∗(Z) =
N∑

n=1

M∑
i=1

zni ln rni and rni =
γni∑M
l=1 γnl

, (17)

γni = πiexp
{
1
2

(
ln Λ̂i + ln χ̂i −ϖni − ξni

)}
. (18)

The terms required in equation (18) are,

ln Λ̃i = E[ln |Λi|]

=
dx∑
j=1

ψ

(
νi + 1 − j

2

)
+ dx ln 2 + ln |Bi|,

ln χ̃i = E[ln |χi|]

=
dy∑
j=1

ψ

(
λi + 1 − j

2

)
+ dy ln 2 + ln |Qi|, (19)

ϖni = Tr(E[Λi]E[(xn − µi)(xn − µi)′])

= νi(xn − mi)Bi(xn − mi)′ + β−1
i dx,

ξni = Tr(E[χi]E[(yn − [xn 1]Wi)(yn − [xn 1]Wi)′])

= λi(yn − [xn 1]Ŵi)Qi(yn − [xn 1]Ŵi)′

+ dy[xn 1]′Li[xn 1].

where ψ(·) is the digamma function.
The update equation for the mixing coefficients is obtained

by maximizing the variational lower bound with respect to the
mixing coefficients. The update equation is given by

πi =
1
N

N∑
n=1

rni. (20)

The equation given above was used to determine the number
of mixtures in GMMs (Corduneanu and Bishop, 2001), and it was
later extended to a MoE framework in Baldacchino et al. (2016).
Using (20), any surplus experts will have their πi driven to zero,
effectively removing them from the model. This equation needs
to be interleaved into the iterative procedure since (18) depends
onπ. Following on from previous authors the mixing coefficients
are updated after a pass of the variational posterior distribution
update equations. The equations presented in this section are
summarized in Algorithm 1.

2.4. Posterior Predictive Distribution
The posterior predictive distribution allows one to perform pre-
dictions of the output force signals to new unseen sEMG signals.
This distribution also gives information regarding the variance of
the predictions, and thus confidence bounds can be calculated.
The posterior predictive distribution is expressed as p(yn′ |xn′ ,D),
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ALGORITHM 1 | Multivariate VBEM MoE.

Initialize the hyperparameters:
- GMM gates, m0, β0, B0 and ν0,
- Linear experts ρ0, λ0, c0, d0 and Υ(0)

i = c0
d0

Idx ∀ i.

- Initialize γ
(0)
ni ∼ U [0, 1] ∀i, n.

for k= 0: stopping criteria
VBM-step:
- Evaluate mixing coefficients π(k+1) using (20)
- Update the gate parameters using (11).
- Update the expert parameters using (13), (15) and (16).
VBE-step:
- Update for latent variables Z using (17)–(19).

end for

where D = [Y,X], and n′ = N + 1 is the new data point. For
the mixture of experts described in this article, the predictive
distribution is given by,

p(yn′ |xn′ ,D) =
M∑
i=1

Ωi,n′T
(
yn′

∣∣[xn′ 1]Ŵi, κiΣi, κi
)

(21)

where {Ωi,n′}Mi=1 take value 1 with probabilities
{
gMAP
i,n′

}M
i=1,

respectively. gMAP
i,n′ = gi(xn′ , πi, θ

g
iMAP) using (2) at the maximum

a posteriori (MAP) estimates θ
g
MAP = {µMAP,ΛMAP} obtained

from the posterior distribution (10), and the final value for π.
At any given time n′ only one {Ωi,n′}Mi=1 can be 1 (the rest
are zero) corresponding to the gate with the largest probability.
T ([xn′ 1]Ŵi, κiΣi, κi) is a multivariate Student-t distribution
with κi =λi − dy + 1 degrees of freedom, mean [xn′ 1]Ŵi and
scale matrix κiΣi, where Σi = Qi(1 + [xn′ 1]′Li[xn′ 1])−1. The
relevant statistics for prediction are

E[yn′ ] =
M∑
i=1

Ωi,n′ [xn′ 1]Ŵi,

cov[yn′ ] =
M∑
i=1

Ωi,n′
Σ−1

i
κi − 2

. (22)

2.5. Implementation
The multivariate VBEM MoE algorithm, given in Algorithm 1,
was trained on the sEMG/force data from all 40 subjects, and all
the 6 force signals were trained together. The gate divisions on the
input space are common to all the outputs. Since 9movements and
a rest period between repetitions and movements are considered
here, the algorithm is initialized with 10 experts. The algorithm
was run 100 times with random initialization for γ and m0 so as
to avoid the local maxima problem. The model with the largest
lower bound was chosen as being the best model to represent
the data. The algorithm was run for all the FE representations
listed in Table 3, and a comparison between them is considered in
Section 3.

2.6. Sensitivity Analysis
In this article, the authors apply SA techniques with the intention
of assessing the importance of the number of electrodes to the
performance of the modeling framework. Interested readers are

referred to Saltelli et al. (2000, 2008) for an in-depth exploration of
SA. Here, the regression-based global SA technique developed in
Xu andGertner (2008) is applied since thismethod accommodates
correlated input signals. The contribution of an individual sEMG
signal to the variance of themodel force output,Vj, is decomposed
into twoparts: the uncorrelated contributionVUj, which describes
variations unique to a sEMG input xj which are independent of
the other sEMG inputs, and correlated contribution VCj, which
explains variations of an sEMG input xj which are correlated with
other sEMG signals (Xu and Gertner, 2008)

Vj = VUj + VCj. (23)

This discrimination between uncorrelated and correlated con-
tributions highlights, respectively, if the sEMG input itself domi-
nates or if the correlated variations among the sEMG signals dom-
inate. The three indices found in equation (23) can be calculated
using the regression-based SA equations found in Xu and Gertner
(2008). The final indices of interest are the first-order sensitivity
indices given by the total Sj, uncorrelated SUj and correlated SCj
contributions of sEMG input xj such that

Sj =
Vj

V , SUj =
VUj

V , SCj =
VCj

V , (24)

where V = 1
Nlhs

∑
n (yn − ȳ)2 is the estimated variance of the

force output, and ȳ is the mean of the force signal. A Latin
hypercube sampling (LHS) procedure is used to generate Nlhs
rank-correlated samples for X from which the output {y}Nlhs

n=1
can be generated using the final MoE model. The LHS strategy
used here follows that given in Iman and Conover (1982) since
it takes into account the correlations between the inputs when
generating samples. Using the sensitivity indices given in equation
(24), examination of spurious sEMG signals is possible since they
will affect the force output only due to their strong correlations
with other significant sEMG inputs (that is, they will have a very
low SUj compared to SCj). The regression-based SA approach
relies on an approximate linear relationship between the sEMG
signals and the force. This is not a bad assumption for the data used
in this article since in Gijsberts et al. (2014), an average R2 = 60%
was achieved for a linear model using RMS FE.

3. RESULTS

The multivariate Bayesian MoE algorithm for simultaneous
regression/classification was applied to the problem of predicting
finger force dynamics and classifying finger movements from the
Ninapro dataset. The results are reported here with a compar-
ative evaluation against previous results (Gijsberts et al., 2014):
firstly the results of finger force regression are presented and
secondly classification. Lastly, SA is performed in order to assess
the importance of the electrodes’ contribution to the output force
signals.

3.1. Finger Force Regression Using Test
Data
The performance of the final regression models is analyzed
using the normalized root mean square error (NRMSE) measure,
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given by

NRMSE =

√
(1/N)

∑N
n=1 (yn − ŷn)

2

ymax − ymin , (25)

and the coefficient of determination (R2), given by

R2 = 1 −
∑

n (yn − ŷn)
2∑

n (yn − ȳ)2
. (26)

where ŷn is the model predicted output at time instance n, and
ȳ is the mean of y These two statistics were chosen because of
their wide use by the bio-robotics and rehabilitation/prosthetics
communities in assessing the quality of their models.
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FIGURE 3 | A plot of NRMSE averaged over the 40 subjects for the 6 DoF.
The error bars indicate unit SD.

The average normalized root mean square error (NRMSE) for
each force DoF across all subjects, is plotted for all the different
FEs in Figure 3. All FEs perform similarly and lowNRMSE values
are recorded. The multivariate VBEM MoE algorithm performs
consistently well across all subjects since the SDs associated with
each DoF are small compared to their mean values (i.e., the
coefficients of variation are overall less than 30%). Focusing on the
FILT FE as being fairly typical, the best results are obtained for the
thumb abduction force signal (3.6± 1.2%), while the worst result
is for the thumb flexion force signal (4.96± 1.5%). Prediction of
little, ring, middle and index flexion force signals have similar
performance.

Figure 4 shows the average NRMSE for all subjects (averaged
over the 6 DoF force activations) for each FE, including unit
SD (given by the black vertical lines). The performance of the
algorithm is fairly consistent across all subjects, withmost subjects
achieving a level of NRMSE below 5%. Subject 37 forMAVhas the
worst overall NRMSE of 9.61± 1.76% while Subject 36 performs
the worst for the other FEs. The best results were achieved by
Subject 8 for WL and Subject 33 for MAV having an NRMSE
of 2.64± 0.46 and 2.64± 0.22%, respectively (Subject 33 has the
worst NRMSE for RMS and FILT). Themean (over all DoF and all
subjects) and corresponding unit SD for both NRMSE (given by
red and black horizontal lines in Figure 4) and R2 are reported in
Table 4. Overall, the FILT FE has the best performance with the
other FEs having very similar performance.

TABLE 4 | Average R2 and NRMSE including 1 SD.

Feature type Average R2 Average NRMSE

MAV 90.54±6.93% 4.22±1.33%
WL 90.75±5.07% 4.20±1.08%
RMS 89.81±5.00% 4.44±1.06%
FILT 90.91±4.50% 4.14±0.92%

FIGURE 4 | A plot of average NRMSE for the model obtained for each subject for all FEs (x), along with ±1 SD (black error bars). The red dashed line represents the
mean NRMSE, while the horizontal black dashed lines represent ±1 SD from this mean.
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FIGURE 5 | A plot of the average NRMSE for each individual force pattern.
The error bars indicate unit SD.

To investigate the performance of the models on each of the
9 force patterns, the average NRMSE per pattern is shown in
Figure 5. Similar to that reported inGijsberts et al. (2014), patterns
involving the individual activation of the four fingers (F1-F4) are
all characterized by slightly better performance overall (i.e., by
NRMSE values around 3%). The remaining movements (F5–F9)
have a slightly worse performance (between 3.5 and 5%), espe-
cially those movements involving flexion of the thumb (F6 and
F9); this is consistent with the results shown in Figure 3, where
thumb flexion shows the worst NRMSE result.

3.1.1. Results for Subject 1
The results reported in this section concern Subject 1 (so as to
compare to Gijsberts et al. (2014)) and the model obtained with
the RMS FE is used since this model has the lowest NRMSE for
this particular subject.

The top plot of Figure 6 shows the predictions (red) obtained
on the test data (blue) for the fourth force DoF (index flexion).
The signals are plotted on a background of colors where each color
corresponds to a particular expert. The black dashed lines repre-
sent the 99% confidence intervals which are calculated using (22)
hence arising naturally from the Bayesian inference framework.
The confidence intervals visibly enclose most of the observed
data (blue). The model predictions of the force closely follow
the measured data indicating that the multivariate MoE model
is a suitable model for performing force regression from sEMG
signals; at least so far as Subject 1 is concerned.

An equally interesting result is the assignment of experts to the
data points. The different movements are immediately identified
as being separate due to being allocated a different expert (denoted
by a different color in Figure 6). The experts allotted to the
different movements in the training set are also the same ones
used in the test set for correspondingmovements.Details of expert
assignment are discussed further in Section 3.2.

The predictions for all 6 DOF force measurements on the
test data is shown in the bottom plot of Figure 6. All the force
measurement signals and force patterns are predicted well, with

the predicted andmeasured data visibly following the same overall
trends. The model even learned the involuntary negative forces,
which was also observed by Gijsberts et al. (2014) and they
attribute these forces to synergistic or compensatory mechanisms.

3.2. Finger Movement Classification
Classification can be seen as a natural by-product of the VBEM
MoE algorithm presented in this article. The learning algorithm
consists of soft competition among the experts, such that only
one expert dominates in different regions of the input space. The
dominant expert is probabilistically chosen by assessing the gates
using (2).

Insight into the relation between the different force movements
and the sEMG signals is obtained via principal component analy-
sis (PCA). Using PCA on the sEMG signals, the first two principal
components can be plotted against each other, with the different
force patterns each taking on a unique color, as shown in Figure 7.
In this plot, the columns indicate 4 and 10 (9 movements plus
rest) force patterns, respectively, while the rows show the effect
of increasing the number of subjects. Even when just one subject
is considered, increasing the number of movements results in the
force patterns having lots of overlap, hence making it harder to
distinguish between the different movements. Similarly, increas-
ing the number of subjects also results in a large overlap. This
figure also highlights the high variability in the recorded sEMG
signals between subjects, and it is expected that this variability will
be reflected in large deviations in classification performance. High
variability among subjects was also observed byAtzori et al. (2012)
for different hand movements.

A common metric for assessing the quality of the classifier is
the classification accuracy, which is the proportion of correctly
classified instances to the total number of instances. The left-hand
plot in Figure 8 shows the average classification accuracy for each
force pattern where F0 is the rest position, for all the FEs. All FEs
achieve similar performance, and multifinger movements have a
lower accuracy; more information can be obtained by analyzing
the confusion matrix given in the top plot of Figure 9.

The confusion matrix profiles the misclassification of move-
ments since correct predictions would result in a distinct black
diagonal (left to right), while any non-clear off-diagonal cells are
indicative of misclassifications. The top plot in Figure 9 shows
that the VBEM MoE framework is consistent in correctly clas-
sifying movements, since the diagonal is prominent. The most
conspicuous misclassification is given by the non-clear first col-
umn indicating that all force patterns are sometimes mistaken
as rest, that is, the absence of movement. This phenomenon was
also observed by Kuzborskij et al. (2012), and they attribute this
to: 1/the data contains rest-to-movement segments which causes
ambiguity and these segments are technically neither rest nor
non-rest, and 2/when windowing is used, some windows include
sections of rest and non-rest samples and so these samples are
again neither rest nor non-rest. For the FILT FE only point 1 is
valid (since no windowing is used), and this is enough to confuse
the algorithm into thinking that these regions of the data are
associated with no movement. In Chan and Englehart (2003), it
was reported that this type of error is treated as being acceptable
since it is expected that due to mechanical inertia, a prosthesis
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FIGURE 6 | Top plot: Predictions (red) versus observed data (blue) including 99% confidence intervals (dashed black) on the test data of the fourth DoF force
activation. The background of colors represents the individual experts, and black vertical line indicates when a movement starts. Bottom plot: A plot of observed
(solid) and predicted (dashed) forces for the second and fifth repetitions of all nine force patterns. Each box represents a force pattern, and each color corresponds to
a force measurement.

FIGURE 7 | Two principal components of the filtered sEMG signals, showing the effects of increasing the number of subjects and force patterns. Each color
represents a different force pattern.

would not be able to respond to transitory misclassifications. In
the literature regarding finger movements classification, the rest
position is either ignored or the sEMG data stream is segmented
in such a way that regions of ambiguity are removed from the
training set.

The right hand plot of Figure 8 and the bottom plot of Figure 9
show the results when only sections of the data set are considered
when calculating classification accuracy, that is, each movement
is divided into three equally sized segments and only labels from
the center segment were retained (no retraining was performed).
A higher accuracy is now attainable: single finger movements and

multi-finger movements have an average accuracy of 87.89% and
62.39%, respectively.

Referring back to the confusion matrix plots (Figure 9) gives
useful insight into why multi-finger movement achieves lower
accuracy than single finger movement. Movement F8 (flexion of
ring and middle fingers) has the lowest classification accuracy
fromallmovements. The algorithmmostlymisclassified F8 for the
corresponding individual finger movements of F2 (flex ring) and
F3 (flex middle). The same trend is observed with movements F7
(flexion of index and little fingers) and F9 (flexion of index finger
and thumb).
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FIGURE 8 | Average classification accuracy for each individual force pattern, including rest, for each of the FEs: left, using the continuous data, right, using the
segmented data.

3.3. Reducing the Number of Electrodes
via SA
The SA procedure outlined in Section 2.6 is applied to the dataset
using the final MoE model obtained with the FILT FE (similar
results were obtained using the othermodels, so only the results of
one FE are shown here). All 12 sEMG signals are treated as indi-
vidual inputs, and the SA results revealed that the contributions of
all the sEMG input signals to the variance of the force outputs are
mainly due to the correlations with other inputs, since all inputs
had a low SU index compared to SC index.

The SA is performed again but this time the sEMG input signals
are grouped according to their electrode location. Thus the groups
comprise of electrodes 1–8 (forearm), 9–10 (finger extensor and
flexor), and 10–11 (biceps and triceps)—refer to Figure 1. The
three sensitivity indices, averaged over all 40 subjects, for all
the output force signals for these groups of inputs are shown in
Figure 10. The SU index for electrodes 1–8 is now significant
(and comparable to the SC index) for most outputs. Hence, the
sEMG electrodes located around the forearm are necessary for
describing the relationship between force at the fingertips and the
sEMG signals because this group of inputs’ individual contribu-
tion is important. The other 2 groups of inputs are almost entirely
dominated by their correlated effect, and so their individual
contribution is low.

The multivariate VBEM MoE algorithm was run again but
this time only the 8 electrodes around the forearm were used
as inputs to the model. The plot shown in Figure 11 shows
the performance of the models on the reduced input set (solid
lines) versus that of the full input set (dashed lines) for both
regression and classification over the different force patterns. The

top plot shows the quality of the models for the force regression
given by the average NRMSE for the different force activations
considered. A slight degradation in NRMSE is observed for the
reduced input set (across all FEs), however, the models are still
performing exceptionally well. The bottom plot demonstrates the
quality of classifying the different finger movements including the
rest position using the average classification accuracy. In this case,
the reduced set and full set models have similar performance, with
no clear winner.

4. DISCUSSION

4.1. Regression
The results and observations obtained for the force regression
using the multivariate VBEM MoE are comparable to those
reported in the literature, for example (Castellini and Kõiva, 2012;
Gijsberts et al., 2014). Predictions of thumbmovements are worse
than for the other fingers due to no sEMG activity being recorded
from the majority of the thumb muscles since these are located
at the wrist (and hence are not usually available on the amputee’s
stump) (Kõiva et al., 2012; Gijsberts et al., 2014).

In the benchmark set by Gijsberts et al. (2014), overall R2

values of 91.74 and 88.93% for marginal discrete wavelet trans-
form (mDWT) and RMS, respectively, for a exp-χ2 kernel ridge
regression were reported. The results of Table 4 indicate that the
VBEMMoE algorithm achieves similar performance to that given
in Gijsberts et al. (2014) but with the use of a much simpler FE
representation for sEMG signals. The mDWT has a considerably
higher feature dimensionality (36 inputs) than the FEs considered
in this article (12 inputs). The use of a low dimensional FE allows
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FIGURE 9 | Confusion matrix for the models obtained with the FILT FE averaged over all 40 subjects for all force patterns including rest. The rows represent the true
class, and each cell corresponds to the prediction accuracy of each class. The top plot corresponds to the continuous data, while the bottom plot corresponds to
the segmented data.

for faster feature computation of the windowed sEMG signals
compared to the mDWT in the preprocessing stage. Faster train-
ing times are also achieved when a smaller input dimension is
used in any algorithm. It has also been shown that TD features

performed better than frequency domain and WTs in real-time
applications (Englehart and Hudgins, 2003).

TheNRMSE values for each finger force pattern are comparable
to those reported in the literature, such as (Castellini and Kõiva,
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FIGURE 10 | Variance contribution for the six force signals using regression-based sensitivity analysis for correlated inputs (using the MoE model obtained with FILT
FE) for grouped sEMG input signals, averaged over all 40 subjects. The large SU values (green) indicate that the group of inputs 1–8 is influential.
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2012; Gijsberts et al., 2014). The R2 values are not reported for
the individual force patterns since the sum of error over each
force pattern is not necessarily 0, and so the R2 value can go
negative although the model provides a good fit. Therefore, it

is not possible to perform a direct comparison to the R2 values
reported in Gijsberts et al. (2014) since it would result in an
erroneous interpretation. However, the NRMSE values reported
here highlightwhat the authors inGijsberts et al. (2014) and others
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have established: force signals from single finger movements are
easier to predict than frommultiple finger movements and thumb
movements.

4.2. Classification
The misclassification of multiple finger movements reported in
this article tends to be represented by the corresponding indi-
vidual finger movements. This result seems to suggest that mul-
tiple finger movements can be accurately represented by their
corresponding individual finger movements implying that the
sEMG signals of the multiple finger movements can be decom-
posed into the individual sEMG signals. This outcome appears to
give weight to the hypothesis presented in Castellini and Kõiva
(2012) whereby the authors suggested that for example flexion
of ring+middle would be statistically similar to flexion of lit-
tle+ ring+middle. To the best of the authors’ knowledge, this
phenomenon of sEMG signals of somemultiple fingermovements
being similar to the sEMG signals of the individual fingers has
not been analyzed in the literature. Possible explanations for this
could be that similar finger movements have not been tackled
(some articles do not specify whichmultiple fingermovements are
being analyzed), and confusion matrices are not reported hence
by-passing the opportunity to assess in detail how the classifier is
misclassifying movements.

The classification accuracy reported in this article is similar
to that found in the literature, refer to Table 1. The algorithm
presented here is capable of classifying finger movements which
is the result of a by-product from regression analysis—no extra
computational expense is incurred. Another important point to
note is that this is the first instance of simultaneous regression and
classification of finger movements via sEMG signals using MoE
models.

4.3. SA
The initial SA investigation indicated that the contribution to
the force variance was a result of correlated contributions of all
the sEMG signals. This result seems to suggest that the VBEM
MoE learning algorithm is not sensitive to the nominal place-
ment of electrodes since the uncorrelated contribution of all the
electrodes was low suggesting that individual contribution of the
electrodes themselves are not important. This result supports the
research performed in Hargrove et al. (2008), where the authors
report that the pattern recognition framework is insensitive to
nominal electrode placements, however, it is sensitive to electrode
displacement during the training/testing phase. Hence, the same
locations need to be used for training and testing in order for a
classifier/regressor to have a high accuracy.

Good force regression and movement classification was
achieved by the VBEMMoE model on a reduced input set which
consists of a dense sampling of electrodes around the forearm.
This setup in which no relevant muscles are targeted was consid-
ered by Castellini and Kõiva (2012) such that 9 electrodes were
uniformly positioned around the forearm. The regression results
obtained here are comparable to those reported by Castellini and
Kõiva (2012). Reducing the number of electrodes reduces the
overall cost in terms of both physical cost (less electrodes) and

computational cost (training the model). With a training dataset
of around 3,000 samples, an average training time of 114 s for
the full input set and an average of 93 s for the reduced input
set was achieved. Therefore, SA techniques provide a structured
methodology for reducing the number of electrodes needed for
clinical application.

5. CONCLUSION

Following on from preliminary work, this article provides an in-
depth analysis of the use of multivariate Bayesian mixture of
expertsmodels using sEMGsignals for refined control of prosthet-
ics withmultiple DoF. Bayesian inference is a novel concept within
the sEMG community and it allows uncertainties to be naturally
incorporated into themodel structure, supporting a fuller descrip-
tion of the model. The use of a MoEmodel provides simultaneous
finger force regression and finger movement classification at no
extra computational cost. The MoE model favors a more natural
interpretation between the sEMG and force signals by automat-
ically separating out the data into individual finger movements.
This feature relates the model with the underlying biological and
physical properties of the data. TheMoEmodel is mathematically
and (potentially) computationally demanding compared to other
regression and classification methods; however, this is balanced
by the extra capability that is obtained.

The method described in this work achieves high perfor-
mance using low-dimensional feature extraction techniques for
the sEMG signal. Accurate force predictions and movement clas-
sification were obtained for several finger movements, across all
6 DoF force activations and all 40 subjects. Examination into
the effects of a reduced set of sEMG inputs using SA techniques
enabled a structured investigation into the influence of the sEMG
inputs on the force regression/movement classification perfor-
mance. It was concluded that the dense sampling of electrodes
around the forearm had the greatest influence on the output force
DoF. Retraining the models on a reduced input set resulted in
similar performance for both the force regression and movement
classification when compared to the full input set models.

The next phase of research is to apply this framework to fin-
ger force data collected from transradial amputees, and compare
performance to that obtained by healthy subjects. It is foreseen
that the algorithm will achieve high accuracy, thus providing an
exciting novel method of controlling state-of-the-art dexterous
myoprosthetics.
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