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Dentistry is a continuously changing field that has witnessed much advancement in the

past century. Prosthodontics is that branch of dentistry that deals with replacing missing

teeth using either fixed or removable appliances in an attempt to simulate natural tooth

function. Although such “replacement therapies” appear to be easy and economic they

fall short of ever coming close to their natural counterparts. Complications that arise often

lead to failures and frequent repairs of such devices which seldom allow true physiological

function of dental and oral-maxillofacial tissues. Such factors can critically affect the

quality of life of an individual. The market for dental implants is continuously growing

with huge economic revenues. Unfortunately, such treatments are again associated with

frequent problems such as peri-implantitis resulting in an eventual loss or replacement

of implants. This is particularly influential for patients having co-morbid diseases such

as diabetes or osteoporosis and in association with smoking and other conditions

that undoubtedly affect the final treatment outcome. The advent of tissue engineering

and regenerative medicine therapies along with the enormous strides taken in their

associated interdisciplinary fields such as stem cell therapy, biomaterial development,

and others may open arenas to enhancing tissue regeneration via designing and

construction of patient-specific biological and/or biomimetic substitutes. This review will

overview current strategies in regenerative dentistry while overviewing key roles of dental

mesenchymal stem cells particularly those of the dental pulp, until paving the way to

precision/translational regenerative medicine therapies for future clinical use.

Keywords: prosthodontics, biological replacement, dental pulp stem cells, peri-implantitis, translational

regenerative dentistry

INTRODUCTION

Prosthodontics is “the dental specialty pertaining to the diagnosis, treatment planning,
rehabilitation and maintenance of the oral function, comfort, appearance, and health of patients
with clinical conditions associated with missing or deficient teeth and/or maxillofacial tissues using
biocompatible substitutes” (Academy of Prosthodontics, 2005). Through the years, materials and
techniques have improved to enhance the outcome of appearance, mastication, phonetics, and
function ofmillions of patients all around the world (Ellis et al., 2010; Behr et al., 2012; Lynch, 2012).
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For example, implant-supported dentures have definitely
upgraded the level of patient satisfaction over the past 20 years
as compared to conventional removable dentures (Sanchez-Siles
et al., 2018). The advancement of digital techniques employing
computer aided designing and computer aided manufacturing
(CAD/CAM) has also enhanced the ease and precision of
replacement prosthetics such as removable partial dentures (Ye
et al., 2017). Computer-aided designing techniques have also
paved the way to major improvements in the surgical planning
and placement of implants and have increased the precision
and as such the predictability of prosthetic treatment outcomes
(Schnutenhaus et al., 2018).

Although such conventional artificial replacements are
continuously being challenged there is still much room for
advancements of such therapies as they will continue to serve
thousands if not millions of people particularly of the aging
population in the upcoming years. The introduction of zirconia
implants has also had a pronounced effect on enhancing the
quality of implant-retained prosthetics. A recently published
retrospective clinical study has shown that the rehabilitation of
edentulous jaws using complete-arch fixed implant-supported
zirconia prosthesis with veneered porcelain displayed high
survival rates for both the prostheses and the implants
with minor complications encountered (Tischler et al., 2018).
Current advancements in artificial replacement strategies have
also extended to other facial prostheses for management of
auricular defects which comprise a major sector of maxillofacial
deformities. Again the use of CAD/CAM techniques has greatly
facilitated obtaining an auricular prosthetic replacement therapy
that is accurate, requires fewer number of visits for the patient
and which can have a great impact on improving patients’ quality
of life (Yadav et al., 2017).

However, although dental replacement therapy is considered
an economic and easy treatment, however, this kind of therapy
is associated with various complications resulting in failure,
frequent repair, and does not always allow physiological function
of dental and oral-maxillofacial tissues, all of which are critical
factors that affect quality of life (Bilhan et al., 2012; Dewan et al.,
2015).Current therapeutic interventions in dentistry are based
on sophisticated biomaterials and dental implants yet, there
is an enormous unmet need for all these innovative methods
to enable a balance between formation of new dental tissue
while maintaining normal physiological function (Albrektsson
et al., 2014; Carcuac and Berglundh, 2014; Lindhe and Pacey,
2014; Derks et al., 2016). The Federation of Periodontology
has provided a forecast that 80 percent of patients and 50
percent of dental implants will develop peri-implant mucositis
in the future. These corresponding figures for peri-implantitis
are 28–56 percent of the patients and 12–43 percent of the
implants (Mombelli et al., 2012). A meta-analysis of 504 studies
which included 1,497 patients with 6,293 implants reported the
prevalence of peri-implant mucositis to be 63.4% of patients and
30.7% of implants. Smokers recorded higher frequency of peri-
implant diseases of up to 36.3% (Atieh et al., 2013). The promise
of patient-specific substitutes to enhance tissue regeneration
has provided a new approach toward addressing the issue of
periimplantitis in spite the fact that numerous efforts have been

made to develop more predictable methods for treatment of this
disease (Khoshkam et al., 2013; Larsson et al., 2016).

When the field of cell therapy “known later on as tissue
engineering and regenerative medicine” was introduced 30 years
ago, no one believed that it would extend to the dental and
maxillofacial region, while the more critical organs and tissues
were on the top of the priority list e.g., liver, kidney, heart,
etc. If we look today, the most successful applications of tissue
engineering and regenerative medicine are skin, cornea, bone,
dental pulp, periodontal ligament, and alveolar bone; all related
to the dental and head and neck area (Jalali et al., 2014; Chen F.
M. et al., 2016; Miller et al., 2016).

THE NATURE OF DENTAL MESENCHYMAL
STEM CELLS: SPECIAL FOCUS ON THE
DENTAL PULP RESERVOIR

Most of the tissues in the craniofacial region including the
dental pulp and periodontal ligament, are of mesenchymal origin
yet specifically derived from the neural crest during embryonic
development and so they are frequently termed as ecto-
mesenchyme stem cells “EMSC.” These dental EMSC appear
not only to be present in permanent teeth but in the deciduous
dentition as well particularly in the pulp and periodontium and
exist in substantial amounts (La Noce et al., 2014a). In the
dental pulp these cells serve to maintain homeostasis by acting
as a reservoir for dental pulp fibroblasts, to replace damaged
odontoblasts when needed and to produce reparative dentin
(Morikawa et al., 2016).

Several similarities exist between dental pulp stem cells
(DPSC) and bone marrow-derived mesenchymal stem cells
(BMMSC) with both cell types exhibiting a fibroblast-like
phenotype in culture and staining positively for mesenchymal
cell markers yet negatively for hematopoietic cell markers. Both
BMMSC and DPSC have clonogenic and multi-differentiation
potentials being able to differentiate into osteogenic, adipogenic,
and chondrogenic lineages (Gronthos et al., 2000; Perry et al.,
2008). Mesenchymal stem cells have been found to have dual
origin; pericytic and non-pericytic. This fact may imply that
tissues harboring higher vascularity may provide more stem cells
with a “pericytic” origin to the repair process (Feng et al., 2011).

Donor-matching experiments have demonstrated that DPSC
contain a bigger population of stem/progenitor cells and have
higher population doubling times than BMMSC (Alge et al.,
2010). DPSC also had significantly higher alkaline phosphatase
activity than BMMSC following osteogenic differentiation,
supporting the possibility of using DPSC to regenerate
mineralized tissue. Sub-cloned DPSC were shown to retain
their ability to proliferate whereas BMMSC did not. As such,
researchers have strongly suggested that DPSC populations may
possess enhanced features allowing them to be better candidates
than BMMSC for tissue engineering applications (Yu et al., 2007;
Huang G. T. et al., 2009).

DPSC have also exhibited the ability to differentiate
into melanocytes, myocytes, cardiomyocytes, hepatocyte-
like cells, and active neurons in vitro. Consistently, the
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reconstruction of large-scale cranial bone defects was reported
in non-immunocompromised rats (de Mendonca Costa
et al., 2008; Graziano et al., 2008). Additionally, a dental
pulp cell/collagen sponge biocomplex was able to completely
regenerate mandibular bone defects in patients indicating
clear evidence that autologous DPSC could be used as an
effective therapeutic strategy for the repair of bone defects with
minimal risks involved (d’Aquino et al., 2009). In a follow-up
for the clinical cases regenerated by DPSC, it was revealed
that the regenerated bone was extremely hard and was actually
highly vascularized compact rather than spongy bone which
represented a non-physiological nature of the regenerated tissue
in relation to that site (Giuliani et al., 2013).

The role of DPSCs in bone regeneration around dental
implants has also been investigated and showed that this cell
population exhibited the highest osteogenic potential as a source
for tissue-engineered bone around titanium implants (Yamada
et al., 2010). In more critical cases, it was stressed on the safety
of using a graft consisting of DPSC, platelet rich plasma gel and
tricalcium phosphate as a scaffold in cases of osteoradionecrosis
of the mandible (Manimaran et al., 2014).

Although large numbers of basic scientific and clinical
researches have demonstrated the potential of DPSC isolated
from 3rd molars or incisors to generate mineralized tissue,
dentin, periodontal ligament, or dental pulp; their potential
has also extended to applications in orthopedic, oral,
and maxillofacial reconstruction (Sonoyama et al., 2006;
Aurrekoetxea et al., 2015; Khojasteh et al., 2015; Gao et al., 2016;
Li et al., 2016). Recently, the possibility that such cells may have
applications beyond the scope of the head and neck region has
paved the road toward translational regenerative medicine.

DENTAL MESENCHYMAL STEM CELLS
BEYOND REGENERATIVE DENTISTRY

Neuro-Regenerative Potential of Dental
Mesenchymal Stem Cells
All types of dental mesenchymal stem cells (MSC) express
nestin (neural stem cell marker), in addition to other neural
crest stem cell (SC) markers (musashi-1, p75, snail-1,-2, slug,
Sox-9, etc.) indicating their embryonic origin. Undifferentiated
dental MSCs express markers of both neural stem/progenitor
cells and mature neural cells, including SOX-2, tenascin C,
ENO-2, MAP2ab, c-FOS, Nestin, Neurofilament (NEF-H and
NEF-L), Glial Fibrillary Acidic Protein (GFAP), bIII-tubulin, and
Microtubule-Associated Protein 2 (MAP-2) (Osathanon et al.,
2014; Pall et al., 2017). Indeed, a significant subpopulation of
DPSCs was recently demonstrated to have glial origins which
confirms the neuroregenerative potential of these cells (Kaukua
et al., 2014).

Recent studies have demonstrated that tooth-driven stem cells
promoted strong neuroregenerative activities that fulfill many
requirements for functional recovery after spinal cord injury.
DPSCs and stem cells from human exfoliated deciduous teeth
(SHED) can differentiate into functionally active neurons with
the ability to express voltage-gated Na+ channels in vitro and in

vivo toward neuron-like cells within only 48 h of transplantation
(Arthur et al., 2008; Martens et al., 2014). DPSC-differentiated
Schwann cells have also recently been shown to effectively
participate in neural tissue regeneration providing a promising
tool for peripheral nerve tissue repair (Sanen et al., 2017).

Multiple mechanisms of action involved in the
neuroregenerative potential of these cells have been observed.
The first is that these cells could inhibit apoptosis of neurons,
astrocytes, and oligodendrocytes, which directly improved the
preservation of neuronal filaments and myelin sheaths. Second,
they inhibited the expression of multiple axon growth inhibitors
such as chondroitin sulfate proteoglycan and myelin-associated
glycoprotein, via paracrine mechanisms which directly promoted
the regeneration of transected axons. They could then replace the
lost cells by differentiating into mature oligodendrocytes (Sakai
et al., 2012; Yamagata et al., 2013).

Dental Mesenchymal Stem Cells: A Fountain of Youth
Although mesenchymal stem cells are promising tools for
cell-based tissue engineering strategies, the decline in their
cellular proliferation, differentiation potential as well as their
regenerative ability with increasing donor age is a valid
limitation. The vital role of bone marrow MSCs in cell-
based therapies is shown through their immunomodulatory,
trophic, and paracrine functions that may have the greatest
in vivo therapeutic impact however, these functions have been
demonstrated to be age-dependent (Fafian-Labora et al., 2015).

Though DPSC and BMMSC share many common features,
there are differences. The ability to form dental tissues
and differentiate into odontoblasts are unique to DPSCs.
Investigation into the effects of age on cell source is becoming
some important issue especially as older patients become
the recipients of procedures for regenerative therapy. With
increasing age, the properties of MSCs are altered leading
to problems when using autologous MSCs from aged donors
for cell-based therapies. Cellular functions of aged BM-MSCs
change leading to a reduction in responsiveness to biological and
mechanical signals which are related to increased oxidative stress
exposure as well as a less dynamic actin cytoskeleton which favor
macromolecular damage and senescence. Age-related changes
in human MSCs include increases in apoptosis in addition to
upregulation of the p53 pathway as well as decreased proliferation
and osteogenic differentiation abilities (Zhou et al., 2008; Kasper
et al., 2009).

When compared to BMSCs, research data suggested there
is no significant change in the DPSC percentage with age, yet,
with aging the amount of present DPSCs in the tooth likely
decreases. This is a result of age-related changes leading to
reduced volume of pulpal tissue, deposition of dentin internally,
dystrophic calcification within the vascular components, and
an increase in the fibrous component of the dental pulp.
Some studies have shown that with increased age, there is a
decrease in the proliferative capacity of DPSCs as well as their
osteogenic/dentinogenic potential. Human DPSCs from aged
donors appear to lose their proliferative and differentiation
capabilities with advanced passaging. Growing human DPSCs
under hypoxic conditions under 3% O2, appears to have
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succeeded in reversing this deficiency, indicating the possibility
to obtain sufficient amounts of DPSCs from older patients
(Gronthos et al., 2002; Iida et al., 2010).

Indeed, although there is a decrease in the proliferative
capacity of DPSC by age this can be modulated by the extrinsic
microenvironment. Another important matter is that aging
can negatively impact neurogenic differentiation in human
DSCs, but the activation of Wnt/β-catenin can this reverse the
age-associated decline in neurogenic differentiation. This may
support the therapeutic application of these cells for treating
nerve injury and neurodegenerative diseases (Feng et al., 2013).
In a nerve guide tube model of PLGA, DPSCs were able to
promoted 7-mm-long facial nerve gap repair in vivo. Cultured
dental pulp-derived cells produced neurotrophic factors, such
as nerve growth factor, brain-derived neurotrophic factor, and
glial cell line-derived neurotrophic factor, all of which are key
elements to protect from facial motor neuron death and promote
peripheral nerve regeneration (Sasaki et al., 2011; Yamamoto
et al., 2016).

In a recent study aiming to more precisely identify the MSC
populations present in the human dental pulp upon passaging,
it was found that there was progressive increase in the number
of (CD56-Neural Cell Adhesion Molecule) with passages in
vitro. CD56 is a cell adhesion molecule which belongs to
the superfamily of immunoglobulin receptors. It is abundantly
expressed in the central nervous systems and hence it mediates
several neuronal functions by controlling intercellular adhesion,
neurite outgrowth, and cell migration, proliferation, survival and
differentiation; all of which are characteristics of cells migrating
from the cephalic neural crest (Ducret et al., 2016).

Mesenchymal stem cells from dental origins other than
pulp tissue have been shown to be affected by donor age in
regards to proliferation, migration, and differentiation potential
as with periodontal stem cells (Zhang et al., 2012). The
effect of aging on the regenerative potential of DPSCs has
also been investigated thoroughly in an ischemic hindlimb
and an ectopic tooth root model in order to determine its
influence on the mobilization of specific subpopulations of
DPSC when subjected to a granulocyte-colony stimulating factor
(G-CSF) protocol. The results indicated that mobilized DPSCs
from aged donors were similar to those from young donors
in their capacities for migration, differentiation, expression
of angiogenic/neurotrophic factors. Their trophic effects on
proliferation and migration, and anti-apoptotic effects were
also comparable indicating that this population maintains its
properties irrespective of age. Pulp mesenchymal stem cells
from aged and young donors expressed stem cell markers as
CXCR4, GCSFR, and CD105. Themobilization isolation protocol
using granulocyte-colony stimulating factor allowed DPSCs to
overcome the decrease in stemness occurring with age (Horibe
et al., 2014).

Dental Stem Cell-Paracrine-Mediated Functions for

Regenerative Applications
These previously mentioned characteristics suggest an immense
utility for stem cells from the dental pulp in clinical applications
in regenerative dentistry as well as ischemic diseases by

autologous cell transplantation. DPSCs were able to induce
cardiac repair in the absence of cell differentiation, which
occurred through an increase in vessel numbers and a reduction
in the size of the infarcted area as it was demonstrated before
with bone marrow mesenchymal stem cells. Their ability to
secrete proangiogenic VEGF improved cardiac function by
reversing the cardiac ratio of angiopoietin-1 to angiopoietin-
2 and antiapoptotic factors (Gandia et al., 2008). Human
DPSC-induced paracrine-mediated angiogenesis took place via
production of high amounts of angiogenicmolecules, stimulation
of endothelial cell migration by activation of the P13l–AKT
and MEK–ERK pathways and thus significantly induced the
formation of blood vessels, highlighting the suitability of DPSCs
for treatment of stroke and myocardial infarction; diseases in
which a reduction of angiogenesis is clear (Tatullo et al., 2015).

Paracrine-mediated angiogenesis by DPSCs is associated
with the secretion of a broad range of regulatory proteins
such as platelet derived growth factor (PDGF), basic fibroblast
growth factor (bFGF), and vascular endothelial growth factor
(VEGF), either in normal conditions or in response to noxious
stimuli, such as injury or hypoxia. Other angiogenesis-promoting
factors that have been detected in DPSCs are angiogenin
(ANG), angiopoietin-1 (ANGPT1), colony-stimulating factor
(CSF), dipeptidyl peptidase IV (DPPIV), endothelin-1 (EDN1),
interleukin- 8 (IL-8), insulin-like growth factor binding protein-
3 (IGFBP3), monocyte chemoattractant protein-1 (MCP-1), and
urokinase-type plasminogen activator (uPA) (Janebodin et al.,
2013).

Additionally, stem cells from pulps of human exfoliated
deciduous teeth (SHED) have bone marrow-derived MSC-like
characteristics. An in vivo transplantation study showed that
SHED could produce dental pulp-like tissue with the beneficial
paracrine effects that are involved in immunomodulation
and angiogenesis; characteristics that will enhance the clinical
potential of dental mesenchymal stem cells to treat a variety
of pathologies (Miura et al., 2003; Werle et al., 2016; Zhang
et al., 2016). Although SHED are derived from deciduous
teeth, the developmental and anatomical similarities between the
deciduous and adult dental pulps has shown that SHEDmay also
have perivascular origins and thus pericyte-like characteristics.
Indeed, in-vivo studies have demonstrated that SHED were able
to form functional vessel-like structures upon transplantation
(Kim et al., 2016).

While DPSCs lose their plasticity through passaging, several
investigations have provided enough evidence that SHED can
retain their characteristics. Results from DNA microarray
analysis revealed that there were 4386 genes that were expressed
differently between DPSCs and SHED by 2.0-fold or more. SHED
expressed higher levels of genes related to pluripotency (OCT4,
SOX2, NANOG, and REX-1), cell proliferation, and extracellular
matrix, including several cytokines such as fibroblast growth
factor and tumor growth factor b (Kerkis and Caplan, 2012;
Kaukua et al., 2015; Majumdar et al., 2016).

Studies in recent years have resulted in the recognition
of a paracrine function of stem cells, and have suggested
that stem cell transplantation may also be regarded as cell-
based cytokine therapy. Exogenously delivered DPSC and
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SHED secrete factors, such as vascular endothelial growth
factor, chemokine stromal cell-derived factor-1, nerve growth
factor, brain-derived neurotrophic factor, and glial cell-derived
neurotrophic factor which highlight their possible mechanism
of function. The degree of cytoprotection offered by human
DPSCs and conditionedmedia of humanDPSCs was significantly
greater compared with human MSCs and conditioned media
of human MSCs, suggesting that human DPSCs could be a
better therapeutic source for cerebral ischemia. The mechanism
underlining this effect was that conditioned media of pulp
CD31–side population cells significantly enhanced migration,
anti-apoptosis and angiogenesis while having little effect on cell
proliferation compared with the non-pulp-derived conditioned
media. The proof-of-this concept was documented recently
as an inductive microenvironment reconstituted from EDTA
soluble chemical components of extracted teeth and the
conditionedmedia ofmobilized populationDPSCs promoted cell
proliferation, migration, and odontoblastic differentiation (Inoue
et al., 2013; Hayashi et al., 2015; Song et al., 2015; Kawamura et al.,
2016).

Recent work has additionally developed the methodology of
intravenous administration of allogeneic dental pulp derived
neurosphere cells as an important base for regenerative medicine
and indicated that those cells were able to ameliorate the
outcomes in focal brain ischemia in rat global cerebral ischemic
condition. Since pulp stem cells can be obtained from exfoliated
deciduous teeth as SHED or impacted adult wisdom teeth thus,
preserved autologous or allogeneic dental pulp could be an
attractive source for future regenerative therapy for oral diseases
as well as systemic diseases (Kumasaka et al., 2017).

Dental Mesenchymal Stem Cells: Hope for a

Multitude of Systemic Ailments?
Being able to bank DPSCs obtained from adult third molars
after routine extraction or bank SHED, has paved the road to
many investigations as a powerful autologous stem cell source
for treatment of a variety of ailments. Through gene and protein
expression, DPSCs were shown to differentiate effectively into
keratocytes in vitro, and to function in vivowithout eliciting overt
rejection. As a matter of fact, other investigators have provided
evidence of DPSC-special characteristics that are similar to
epithelial and neural stem cells evenmore than those of BMMSCs
(Karaoz et al., 2011; Garzon et al., 2015). DPSCs have been shown
to effectively differentiate into keratocytes confirmed by their
expression of keratocyte-specific molecules similar to the normal
human cornea. This evidence strongly points to the potential
translation of DPSCs as an autologous cell source for targeting
corneal regeneration (Syed-Picard et al., 2015).

Corneas are the most frequently transplanted tissue
worldwide, however, this procedure is successful only if the
recipient has a functional stem cell population. As a result,
this limits what can be done for those patients with damaged
limbal stem cell niches and who have developed limbal stem
cell deficiencies because the corneal epithelial layer is no longer
maintained (Ricardo et al., 2013). Recent studies have looked
at restoring the stem cell population in a way to re-establish a
functional limbus (Rahman et al., 2009). Contact lenses were

used by many studies not only to correct vision or aesthetics,
but also to provide an adequate reservoir for drugs and/or
cells to adjust the environment of the cornea (Espandar et al.,
2014; Bobba and Di Girolamo, 2016). In a revolutionary step
toward routine clinical application, soft contact lenses were
used as carriers to deliver DPSCs to enhance corneal epithelium
regeneration. Investigators described that the cell/ scaffold
construct once transplanted in-vivo, DPSCs had transferred from
the contact lenses to the corneal surface and began to express
the corneal specific markers cytokeratins 3 and 12. In addition to
the expression of these markers, the DPSCs were able to prevent
conjunctival cells from growing in the central cornea (Yam et al.,
2015; Kushnerev et al., 2016).

Recently DPSCs have been shown to differentiate toward
specific neuronal fates upon specific chemical and environmental
cues. Co-culturing of DPSCs with rat retinal explants allowed
DPSCs to enter into a retinal neuronal fate with upregulated
brain-derived neurotrophic factor and retinal markers expression
along with induction of the mature photoreceptor gene. From
these studies it was suggested that DPSCs could be an enticing
source of retinal-like stem cells that can differentiate into retinal
neurons and even photoreceptors. This has paved the road to a
novel strategy for reversing retinal degeneration (associated with
age-related macular degeneration, retinitis pigmentosa, macular
dystrophy, artery, or vein occlusion) (Bray et al., 2014; Syed-
Picard et al., 2015; Yam et al., 2015).

Dental mesenchymal stem cells also hold great promise for
the treatment of diabetes. Indeed, researchers have spent decades
trying to find a reliable method to restore functional pancreatic
islets that produce insulin. Embryonic or adult bone marrow
stem cells have been shown to contribute to b-cell renewal and
may help reverse nervous system damage (Ianus et al., 2003;
Schonhoff et al., 2004; Lee et al., 2006; Koblas et al., 2009; Okura
et al., 2009). It has been previously shown that type I diabetes
could be cured by transplantation of insulin-producing islet cells
from a donor pancreas. However, a critical limitation of such an
approach is the lack of sufficient donor organs and the side-effects
of immunosuppression which have hindered the application of
such a therapy and have directed huge efforts to search for
alternative sources of islet cells (Shapiro et al., 2000).

Major advances have been made in the understanding of
developmental endocrinology that have opened the arena to
stem cell therapy via differentiation of mesenchymal stem
cells into pancreatic islets. Although there are many sources
for MSCs such as umbilical cord blood, bone-marrow, and
adipose stem cells that have the potential to differentiate into
insulin-producing cells, these sources maybe scarce and still
require invasive procedures to obtain them; factors which
again have limited their use (Ianus et al., 2003; Lee et al.,
2006; Koblas et al., 2009; Okura et al., 2009). Accordingly,
DPSCs may be considered as an appealing source for MSCs,
since their use is not controversial, they are easily accessible
and available, and they pose no risk of discomfort for the
patient. Researchers have transplanted DPSCs and demonstrated
for the first time that these cells have a powerful and long
lasting irreversible anti-nociceptive effect in mice with diabetic
neuropathic pain. They showed that this effect was hardly
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reached by clinically used analgesics and could be explained
by the cells’ strong secretion of anti-inflammatory, angiogenic,
and neurotrophic factors (Guimaraes et al., 2013; Izumoto-Akita
et al., 2015).

Reports have demonstrated many common features among
pancreatic β-cells of endodermal origin and those of neurons of
ectodermal origin. During pancreatic development, the neural
crest is linked with the pancreatic epithelium via Phox2b and
Nkx2.2 which form a non-cell-autonomous feedback loop. This
loop also regulates the proliferation of the beta-cell population,
and thereby impacts insulin-secretory capacity and homeostasis
of energy. Although, the neural crest cells do not differentiate into
pancreatic islet cells, these cells do contribute indirectly to islet
development via a novel non-cell autonomous negative-feedback
interaction between the neural crest cells and the pancreatic cells
(Schonhoff et al., 2004; Nekrep et al., 2008).

The previously established intrinsic similarities between
neural cells and DPSCs, have suggested that stem cells of dental
originmay offer a useful alternative to generate insulin producing
cells. Studies have additionally documented the potential of
dental mesenchymal stem cells derived from deciduous teeth or
periodontal tissues to differentiate into insulin producing cells
as a non-invasive source of cells for islet generation that can be
used for autologous transplantation for the treatment of children
with type I diabetes without risk of rejection and calls for banking
deciduous teeth for clinical application (Govindasamy et al.,
2011; Lee et al., 2014).

Recent work has also indicated that cryopreserved (Cryo-)
DPSCs displayed comparable capacity for proliferation and
differentiation as fresh-DPSCs. Cryo-DPSC transplantation was
as effective as the transplantation of fresh-DPSCs in improving
nerve conduction speed and blood flow in diabetic rats. DPSCs
showed anti-inflammatory properties as they could ameliorate
diabetic polyneuropathy upon transplantation into diabetic rats.
These effects were apparent via their ability to modulate the
proportions of M1/M2 macrophages in diabetic peripheral
nerves (Hata et al., 2015; Omi et al., 2016). As it was mentioned
before, SHED express many genes encoding extracellular and
cell surface proteins at levels that are 2-folds higher than those
in human bone marrow-derived MSCs (Sakai et al., 2012; Feng
et al., 2013; Yamagata et al., 2013; Fafian-Labora et al., 2015;
Yamamoto et al., 2016). Current data additionally support the fact
that treatment with SHED-conditioned media (CM) can directly
improve both survival and function of pancreatic β-cells much
more than with Bonemarrow-CM indicating anti-diabetic effects
of the secreted paracrine factors of SHED-CM. These results
have opened a new avenue for the treatment of diabetic patients
(Izumoto-Akita et al., 2015).

Further important applications of dental mesenchymal stem
cells are for treatment of kidney injuries. The anti-inflammatory
ability of SHED secreted factors has been shown to promote the
proliferation and migration of tubular epithelial cells through
a paracrine mechanism in acute kidney injury (Hattori et al.,
2015). Another very promising emerging application is in cardiac
repair indicating that DPSC transplantation improves regional
contractility as well as preventing ventricular remodeling. Ultra-
structural analysis of Left Ventricular wall peri-infarct zones

showed an increase in cardiomyocyte bundles that reduced
infarcted area and a higher proportion of myofibroblasts. It is
believed that DPSCs are able to repair infarcted myocardium,
due to their ability to secrete pro-angiogenic and anti-apoptotic
factors (Gandia et al., 2008). In a recent investigation, SHED-CM
protected the heart from acute ischemic injury as it suppressed
inflammation and apoptosis. SHED-CM antiapoptotic action was
more effective than bone marrow-derived stem cell (BMSC)-CM
or adipose-derived stem cell (ADSC)-CM in cardiac myocytes.
SHED-CM could attenuate myocyte apoptosis representing
an important therapeutic target for ischemic heart disease
(Yamaguchi et al., 2015).

Recently, various stem cell populations have also been used to
treat muscular dystrophy. The ability of these cells to mobilize
host progenitor cells and promote angiogenesis is partly owed
to their ability to resist stress but mainly due to their paracrine-
mediated effects which directly caused improvement of muscle
histopathologies (Gharaibeh et al., 2011). In this aspect, human
DPSCs have also been employed (Martinez-Sarra et al., 2017)
and they have shown capability of supporting the improvement
of skeletal muscle regeneration by promoting new blood vessel
formation and interacting directly and indirectly with myoblasts
as well as promoting the proliferation of myogenic precursor
cells within the transplanted muscles. The engraftment of these
cells contributed reducing fibrosis within the dystrophic muscle,
which further enhanced regeneration (Pisciotta et al., 2015).

Another promising application for dental mesenchymal stem
cells was the ability to differentiate DPSCs into bladder-associated
smooth muscle cells (SMCs) when treated with a combination of
conditioned media from bladder SMCs and TGF-β1 (Song et al.,
2016). Furthermore, although DPSCs rarely express tendon-
related proteins in vitro, such as SCX, EYA2, and TNC; when
cultured in 2-D culture dishes researchers have been able to
demonstrate that DPSCs could be differentiated into tenogenic-
like cells and form more mature tendon-like tissues under
mechanical loading in the mouse model (Chen Y. Y. et al., 2016).

THE ROAD TO TRANSLATIONAL/
PRECISION REGENERATIVE MEDICINE

The field of precision medicine which includes “prevention and
treatment strategies that take individual variability into account”
has been dramatically improved by the recent development of
large-scale biologic databases and the advent of computational
tools for analyzing large quantities of data. At the forefront
of this new era of medicine is the discovery of the human
genome sequence that has generated knowledge applicable to
span all of health and disease (Collins, 2015; Collins and Varmus,
2015).

The discovery of stem cells has not only revolutionized the
study of disease, but also holds major therapeutic value. Through
combining stem cell research with new methods to efficiently
generate targeted mutations in mammalian cells, a new window
for precise diagnosis and treatment has now been opened. The
twenty-first century can truly be defined as the century of biology
with investments in biomedical research which will optimally
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have its rewards on both economy and health. Themain objective
of biomedical research is to speed up the clinical translation of
basic research and eventually to therapeutic strategies to reduce
human suffering and minimize health inequalities (Cong et al.,
2013; Surkis et al., 2016).

The evolution of patient-specific medicine has witnessed
strides of achievement with the dawn of technologies that can
reprogram human adult somatic cells into pluripotency or into
a different cell type making the study of patient-specific cells
a possibility. Having patient-specific cells allows researchers to
thoroughly understand the disease mechanisms and also provide
a platform for drug testing which could then be followed by
upscaling these strategies. There are a handful of stem-cell-
based treatments available, such as bonemarrow transplantations
to treat blood disorders, which have proven beneficial for
patients in well-designed clinical trials and are now offered as
treatments. In clinical trials, most therapies that utilized adult
stem cells and have shown successful results, are shifting to
using DPSCs for the same application and have started to show
promising results. Clinicians and researchers have demonstrated
that 75% of patients with limbal stem-cell deficiency who received
limbal stem-cell grafts as corneal transplants, showed successful
treatment with follow-up extending up to 10 years (Rama et al.,
2010; de Araujo and Gomes, 2015). However, because of the
concern of removing the limbus from a healthy eye, with the
potential harm to limbal epithelial stem cells during isolation
in addition to disruption occurring to the native limbal niche,
different protocols have arisen to modify the original technique
(Tseng et al., 2010; Ramirez et al., 2015).

With a continuously growing body of evidence demonstrating
that the trophic effects of proteins and paracrine factors
rather than terminal engraftment are key factors, regenerative
medicine appears to offer a factual approach toward transforming
healthcare in a true clinical sense. Yet, there are currently
many challenges facing the use of cellular products. In most
clinical situations, the number of primary donor cells needed
for transplantation maybe insufficient to meet the clinical
therapeutic level needed and the expansion of cells in culture
under goodmanufacturing process (GMP) conditions is required
to address this shortage (Heathman et al., 2015). Autologous
cell-based therapies are based on personalized (service-based)
medicine in addition to the complexity of upscaling production
and delivery of a cost effective autologous cell-based therapy. In
fact, delivery of autologous cell-based products can be complex
due to the inability to perform long term preservation for
transport and delivery (Mason and Dunnill, 2009). Autologous
therapies requiring participation by clinicians; partly because
of the need for initial patient biopsy and a subsequent
surgical restoration phase; have resulted in a smaller scale of
clinical trial studies since clinician participation is restricted
to autologous procedures. High levels of process and product
characterization are required for autologous cell therapies
making the establishment of allogeneic cell banks a much more
cost effective option (Dodson and Levine, 2015).

Transplantation of hematopoietic stem cells has illustrated
success for over 50 years since 1960 and is becoming
the standard-of-care for numerous indications. Currently,

tissue-specific stem cells have focused on the paradigm shift of
replacement of diseased tissue with autologous or allogeneic stem
cells (Korbling and Estrov, 2003; Boo et al., 2011).

However, research has shown that the engraftment of
implanted cells may not be all that crucial thus opening a new
avenue of clinical application for mesenchymal stem cells in
immune- and inflammation-mediated diseases. This therapeutic
approach relies on indirect effects of mesenchymal stem cells
in addition to their direct effects (Griffin et al., 2013; Wang
et al., 2016). In turn, this novel direction has urged the
shift from autologous to allogeneic cell sources. While the
immunomodulatory properties ofMSCswere identified few years
ago, nearly half “almost 42%” of all registered clinical trials are
being conducted for immune-/inflammation mediated diseases
with only 32.5% that use autologous sources and over 50.9%
of trials using allogeneic sources. It is becoming obvious that
the capacity to use allogeneic MSCs has greatly contributed to
increased popularity of stem cells (Griffin et al., 2013; Introna
et al., 2014; Wang et al., 2016; NIH1).

The current approach of using autologous stem cells is
to avoid immune rejection of donor cells that is probable
after allogeneic transplantation. However, in spite of promising
results, harvesting autologous cells is not without its drawbacks.
These include logistic, economic, and timing constraints
particularly since the target population for these therapies
is likely the elderly who already present for treatment with
multiple complex disorders. As previously mentioned there
are a number of studies that have shown that mesenchymal
stem cells (MSCs) obtained from elderly donors, and those
with diabetes may have limited therapeutic potentials. This
has opened the avenue for the obvious clinical advantages of
universal donor cells from young healthy individuals which
could be used for stem cell allotransplantation without the need
for immunosuppression. Additionally, serious consequences of
replicative senescence in hMSCs are that this phenomenon
may impair the secretion of soluble factors in response to the
inflammatory microenvironment thus resulting in loss of the
immunoregulatory functions of these cells (Zhuo et al., 2010;
Bustos et al., 2014).

A series of observations has highlighted the
immunomodulatory properties of allogeneic MSCs whereby
they are able to survive and differentiate when transplanted
in immunecompatible-mismatched recipients. They do not
induce a proliferative T-cells response but instead can modulate
their function in allogeneic experiments indicating that the
hypoimmunogenic pattern is a unique expression pattern of
cell-surface antigens on MSCs (Horwitz et al., 2002; Tse et al.,
2003; Atoui and Chiu, 2012). Hence, allogeneic “off-the-shelf ”
therapies maintain long-term stability and by automating the
manufacturing process enhanced processing and control can be
achieved that dictate the introduction of the universal cell donor
and paint the next generation of clinical cell-based therapy trials
(Kinkaid et al., 2010; Telukuntla et al., 2013; Heathman et al.,
2015).

1NIH Clinical Trial Database. Available online at: https://clinicaltrials.gov/ct2/

results?term=allogeneic+mesenchymal+stem+cells&Search=Search
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TRANSLATIONAL REGENERATIVE
DENTISTRY FOR THE FUTURE

The presence of active immune responses in the oral cavity
make it a challenging unique environment which inevitably
affects periodontal tissue, jaw bone, and tooth regeneration.
Due to the highly dynamic inflammatory environment of the
oral cavity; dental MSCs, including SHED, SCAP, periodontal
ligament stem cells (PDLSCs), and jaw bone MSCs, have shown
strong immunomodulatory capacities (Wada et al., 2009; Yamaza
et al., 2010, 2011; Ding et al., 2010a; Hieke et al., 2016; Rajan et al.,
2016). For example, DPSCs can suppress T lymphocyte growth
rate by 18% higher than BMMSCs, indicating possible superior
immunosuppression properties of DSCs (Taşl et al., 2016).

More importantly, DPSCs can strongly inhibit proliferation
of peripheral blood mononuclear cells induced by mitogens in
comparable degrees to PDLSCs yet stronger than BMSCs. This
effect appears to be modulated by secretion of transforming
growth factor-b1. Earlier reports have proven that the addition
of DPSCs can inhibit the T-cell response up to 91% while BMSCs
allowed only 75% inhibition of T-cell response, highlighting the
possible use of DPSCs in different individuals or to be used
for immune therapy (Pierdomenico et al., 2005; Ding et al.,
2015). The dental pulp of healthy young patients appears to
possess the generic MSC phenotype and can strongly inhibit
acute allogeneic immune responses resulting from T-lymphocyte
stimulation again through their release of TGF-β (Kwack
et al., 2017). This provides insight into the potential clinical
use of hDPSCs for dental and non-dental tissue regeneration
using allogeneic transplantation, that will move the field of

stem cell therapy into true clinical application faster than
before.

Human dental pulp stem cells (DPSC) are an attractive option
for exogenous stem cell therapy and have several advantages for
translational cell-based therapy. Teeth are a clinically accessible
source especially since many older adults possess their own
teeth which could then be used as a source of viable human
DPSCs for autologous transplantation. The feasibility that viable
DPSCs can still be obtained up to 120 h of tooth storage in
phosphate buffered saline (PBS) at 4◦C post extraction from a
whole tooth and can be obtained from teeth undergoing root
canal treatment without the need for extraction; all support the
possibility for banking these tissues for regenerative medicine
applications (Arthur et al., 2008; Perry et al., 2008; Huang A.
H. et al., 2009).This is in addition to the low immunogenic
response of DPSCs which could open the door for allogeneic
cell grafts. Moreover, as previously mentioned human DPSCs
have been shown to have neurogenic potential and to generate
functional neurons in addition to their high proliferative
capacities (Gronthos et al., 2000; Leong et al., 2012).

Clinical banking of DPSCs can be facilitated by storing teeth
that have been subjected to minimal processing which also
minimizes cost particularly if these cells are not planned for
immediate expansion and use (Papaccio et al., 2006; Woods
et al., 2009). Additionally, expanded cells can be stored for
a minimum of 6 months and even longer at −85◦C. SHED
isolated from deciduous pulp tissues cryopreserved for over
2 years can maintain their stem cell properties in a way
comparable to SHED isolated from fresh tissues (Papaccio et al.,
2006; Woods et al., 2009; Ding et al., 2010b; Ma et al., 2012).

FIGURE 1 | Translational regenerative potential of dental pulp stem cells.
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TABLE 1 | A summary of the dental and non-dental therapeutic applications of

dental pulp stem cells.

Dental

therapeutic

applications

Non-dental

therapeutic

applications

Benefits Limitations

Dentin/Pulp

complex

regeneration

Spinal cord injury

and peripheral

nerve tissue repair

Clinically

accessible source

May become

limited with age

Craniofacial bone

regeneration

Cardiac

repair/angiogenesis

and treatment of

ischemic disease

Can be banked

easily and with low

cost

Lack of optimized

standardized

protocols for

isolation and

characterization of

clinical grade cells

Enhancing

osseointegration

of dental implants

Corneal and retinal

regeneration

Higher proliferative

and osteogenic

differentiation

capacities

compared to bone

marrow

mesenchymal

stem cells

DPSCs may lose

plasticity with

passaging as

compared to

SHED which retain

their

characteristics

Treatment of

osteoradionecrosis

Muscular

dystrophy and

tendon

regeneration

Derived from the

neural crest

Express

pluripotency

markers at a lesser

degree than SHED

Diabetes mellitus

including

treatment of

diabetic

neuropathic pain

Indeed, there is an international call for banking SHED as
they require less than one third of the cost of cord blood
storage and they are not subject to the same ethical concerns
as embryonic stem cells. SHED may also be useful to a certain
extent to their immediate family and blood relatives such as
grandparents, parents, uncles, and siblings. SHED cells are
complementary to stem cells from cord blood (Arora et al.,
2009). Although, bone marrow and adipose tissue are considered
potential sources of stem/progenitor cells; painful collection
protocols, the decline of the amount of stem/progenitor cells
with age, the necessity for general anesthesia, the reduced
proliferation capacity, and risk of morbidity at the collection site
have all encouraged the search for alternatives such as dental
mesenchymal stem cells (Huang G. T. et al., 2009; Davies et al.,
2015).

Several protocols have been developed to obtain clinical-
grade dental pulp stem/progenitor cells (DPSCs) from teeth
while avoiding any alteration of their biological properties
and preserving the quality of the derived cell-based products.

Cell performance is affected by cell isolation and expansion
conditions and thus optimization and standardization
procedures for MSC-based product manufacturing are required
(Menard et al., 2013; Menard and Tarte, 2013; Huang and
Garcia-Godoy, 2014; Pacini, 2014). While the cell-based
approach using dental mesenchymal stem cells has already laid
down the proof-of-the-concept in regenerative medicine since
the discovery of DPSCs in the year 2000; developing standardized
cGMP protocols requires tremendous effort regarding several
key players as its safety via clinical trials, increased efficiency
and reproducibility, and precise cost estimation after all these
regulatory processes (Eubanks et al., 2014; La Noce et al., 2014b;
Ducret et al., 2015a).

In a more recent study, specific conditions for hDPC isolation,
storage, and amplification with a medicinal manufacturing
approach have been developed. These conditions include
minimal tissue manipulation, enzyme-free isolation, use of
xenogeneic-free products, and serum free media culture. They
allow for the expression of stem/progenitor cell markers and
preserve amplification kinetics without inducing karyotype
abnormality while maintaining the differentiation potential of
DPSCs into osteoblast/odontoblast cells. Although there are
many successful advanced therapies with medicinal products and
good regulations from the FDA “21 CFR Part 1271” and the
European Medicines Agency (European Directive 1394/2007),
further studies are required to determinemore specific properties
that could be used for the regeneration of human tissues, with
standardized cell-based medicinal products (Ducret et al., 2015b,
2016).

In conclusion, as the fields of regenerative medicine and
dentistry quickly move into an era of personalized and precision
therapeutics, the use of dental pulp stem cells for clinical
translation will soon become a feasible reality (Figure 1). Dental
pulp stem cells represent a versatile and readily available source
of stem cells that can be stored efficiently for long periods of
time. Dental pulp stem cells not only offer potential treatment
for many dental dilemmas but their use may span numerous
non-dental applications as well (Table 1). This is an addition
to their therapeutic benefits that are elicited not only via their
exogenous transplantation but through their paracrine-mediated
mechanisms as well. With the development of standardized and
optimized clinical good manufacturing process guidelines, both
allogenic and autologous use of these cells for therapy may soon
become an achievable goal.
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