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In silico trials recently emerged as a disruptive technology, which may reduce the costs

related to the development and marketing approval of novel medical technologies, as

well as shortening their time-to-market. In these trials, virtual patients are recruited from

a large database and their response to the therapy, such as the implantation of a medical

device, is simulated by means of numerical models. In this work, we propose the use of

generative adversarial networks to produce synthetic radiological images to be used in

in silico trials. The generative models produced credible synthetic sagittal X-rays of the

lumbar spine based on a simple sketch, and were able to generate sagittal radiological

images of the trunk using coronal projections as inputs, and vice versa. Although

numerous inaccuracies in the anatomical details may still allow distinguishing synthetic

and real images in the majority of cases, the present work showed that generative models

are a feasible solution for creating synthetic imaging data to be used in in silico trials of

novel medical devices.

Keywords: generative models, spine imaging, synthetic image, in silico trial, generative adversarial networks,

synthetic spine radiology

INTRODUCTION

The introduction of an innovative medical technology such as an implantable device in the market
is a long and expensive process, which is strictly regulated by the competent authorities, with
the aim of ensuring safety and efficacy of the product. Depending on the specific regulations, a
full campaign of pre-clinical tests may be required prior to the first use of the device in human
subjects. Typically, this pre-clinical testing stage includes biomechanical testing in human or
animal specimens and implantation in a suitable animal model for in vivo testing (Wilke et al.,
1998). Subsequently, testing in a human clinical trial is performed, following a sequence of phases
involving a growing number of patients and increasing follow-up periods. These required series
of activities results in an average cost in the order of millions of dollars prior to the marketing
approval of the medical device and a time-to-market of several years (Medical Device Innovation
Consortium, 2016).

Recently, in silico trials emerged as a disruptive technology, which may reduce the costs
related to the development and marketing approval of novel medical technologies, as well as
shortening their time-to-market, with an enormous potential impact on both human health
and the medical industry (Viceconti et al., 2016). An in silico trial has been defined as
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“the use of individualized computer simulation in the
development or regulatory evaluation of a medicinal product,
medical device, or medical intervention” (Avicenna Alliance).
In practical terms, conducting an in silico trial would involve
the automated computational simulation of the behavior of the
device in a large set of virtual patients, in which specific aspects
of the outcome such as the device safety or its biomechanical
effect are predicted, and the consequent statistical analysis of
these computational results.

Although early examples of in silico trials have been presented
(Glinka and Polak, 2014; Williams and Mirams, 2015), the use
of this form of investigation is not widespread yet, due to the
major technical challenges involved (Viceconti et al., 2016). First,
methods to simulate numerically the implantation of a medical
device in the human body and to predict its outcome in an
accurate and valid manner need to be available. Second, a large
database of virtual models of patients in which the device should
be simulated needs to be generated. The first challenge has been
widely confronted in the last decades (Prendergast, 1997), and
refined methods to create numerical models based on patient
data, typically medical imaging such as X-rays, CTs and MRIs,
have been developed and are currently widely employed. The
second challenge, on the other hand, emerged more recently
and is relatively unexplored (Viceconti et al., 2015), since the
vast majority of numerical models were aimed to simulate a
single specific patient anatomy and were not intended to be
applied to a large population. In fact, large databases of patient
data, such as medical images, to be used in future in silico
trials either do not exist at all or are at least not publicly
available. The use of radiological datasets available at hospitals
is not an optimal solution to the aim of building simulations
in an automated setting, due to the strong heterogeneity and
incompleteness of the data as well as ethical concerns related to
privacy and security (Häyrinen et al., 2008). Furthermore, the
available data may not sufficiently cover the target of the specific
in silico trial in terms of the characteristics of the pathology
and required inclusion and exclusion criteria such as age, sex,
comorbidities etc.

Generative models based on deep learning methods are
quickly gaining interest as tools to generate synthetic images
based on other images or sketches, and already showed promising
results in a wide range of applications (Salakhutdinov, 2015;
Goodfellow, 2016; Isola et al., 2017). In this work, we propose the
use of generative models to create synthetic data to be used in in
silico trials. The hypothesis of our study is that generative models
would allow for the creation of a large number, virtually infinite,
of synthetic radiological images, which can be used as the base
for an in silico trial, in a controlled environment, which allows
the designer of the trial to create images perfectly suitable for
the intended use. Furthermore, we hypothesize that generative
models may be employed to improve the completeness of the
data, i.e., to integrate data available from other sources (e.g., from
the radiological database of a hospital) whenever the available
data is not sufficient for the generation of the computational
models.

To test the hypotheses, generative models were used in two
distinct scenarios: (1) the generation of synthetic planar X-ray

images of the lumbar spine, based on a simple image depicting
the outline of the desired anatomy; (2) the creation of sagittal
radiographic projections of the trunk and pelvis using the
coronal projection as the sole input, and vice versa. For these
purposes, generative adversarial networks (GANs) (Goodfellow
et al., 2014), which are recently emerging as one of the most
promising and successful frameworks for the generation of
synthetic imaging data, were used in the present study.

MATERIALS AND METHODS

Generative Adversarial Networks for
Image-to-Image Translation
The problem of generating data such as images by means of deep
learning methods has been one of the most heavily investigated
topics in the field of machine learning in recent years. A
description of the technical details of the recent developments
is out of the scope of this paper, which is focused on exploring
the possible medical applications of GANs rather than on the
methodological side. Indeed, a wide technical documentation
about GANs as well as other deep learning generative techniques
is available elsewhere (Goodfellow et al., 2014; Radford et al.,
2015; Zhao et al., 2016).

In simple terms, the use convolutional neural networks to
generate realistic images tends to result in blurry outputs, which
can be easily detected as fake by the human eye (Isola et al.,
2017). The poor outcome is due to the fact that the training of
the network requires the definition and optimization of a loss
function, i.e., an quantitative measure of the implausibility of the
generated output with respect to real images, which is difficult
to design in mathematical terms. In early implementations,
the employed loss functions used were frequently very specific
and application-dependent, thus limiting the applicability of the
network to a restricted set of images, or excessively simplified
such as the Euclidean distance with respect to the training
dataset, which typically results in images lacking sharpness.
A brilliant solution to such challenge has been proposed
by Goodfellow et al. (2014), who introduced the concept of
adversarial networks. In this framework, the generative model,
which produces the image is confronted by a discriminative
model, which decides if the image is realistic or not, i.e., if the
image is coming from the training data or from the generative
model. The competition between the two networks leads to an
improvement of both the realism of the generated images and
the capability of the discriminative model for identifying the
implausible images. Blurred images would be easily depicted
as fake by the discriminative model and thus discarded. The
authors efficaciously described the adversarial nets concept as
a team of counterfeiters (= generative network) trying to
generate fake currency without being discovered by the police (=
discriminative network), which results in improvements of the
techniques used by both counterfeiters and police (Goodfellow
et al., 2014).

The use of GANs for the image-to-image translation problem,
i.e., for generating an image based on another image representing
the same scene, has been described in several recent papers. Isola
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and colleagues introduced a framework in which GANs are used
in a conditional setting (Mirza and Osindero, 2014; Isola et al.,
2017), which has been widely used for several applications and
further investigated due to its generality and simplicity (Huang
et al., 2017; Yi et al., 2017; Zhu et al., 2017). In the current
study, we employed an implementation of this framework based
on Tensorflow, which is publicly available at https://github.com/
affinelayer/pix2pix-tensorflow.

Generation of Synthetic Planar X-Rays
From Label Data
To test the potential of GANs in generating realistic X-rays
images, a large training dataset has been generated from 1,352
real sagittal radiographs of the lumbar spine. For each image,
an operator manually identified the four corners of the vertebral
bodies between L1 and L5, as well as four points describing the
shape of the upper part of the sacrum including the S1 endplate
in a consistent way (Figure 1). If the corner points of one or more
lumbar vertebrae or the sacrum were not clearly visible in the
radiographic image, as occasionally occurring for example for the
sacrum due to the overlapping of the pelvis, the operator did not
perform the corner identification for the specific bone.

For each radiographic image, an image having the same
size of the corresponding radiograph and depicting vertebrae
as colored convex quadrilaterals was generated based on the
coordinates of the corner points, using a custom C++ code
developed in-house (available at https://sourceforge.net/projects/
sketchfromxrays). A fixed color code was used to identify each
vertebral level. Both the image containing the labels and the
original radiograph were then resized to 256 × 256, and a
composite image with size 512 × 256 including the labels on
the left side and the resized radiographic image on the right was
generated (Figure 1).

Of the collection of 1,352 images, 1,252 were used for training
the GANs whereas the remaining 100 constituted the testing
dataset (Figure 2).

Generation of Synthetic Coronal Images
From Sagittal Ones and Vice Versa
In order to explore the use of GANs in a more challenging
environment in which input and output images have a very
different content and appearance, the conversion from sagittal
to coronal radiographic projections of the trunk and vice versa
has been performed. In order to collect the necessary training
data consisting of coupled sagittal and coronal images of the
same patients, 1602 CTs have been used to generate simulated
projections in the two directions by means of average intensity
projection. 72% of the CTs covered the whole trunk, from the
shoulders to the pelvis, whereas the rest included only lumbar
spine, pelvis and proximal femurs. Similarly to the previous test
case, a composite image with size 512× 256 including the sagittal
projection on the left side and the coronal one on the right side
was generated for each CT scan (Figure 3). One thousand five
hundred two composite images were used for training the GAN,
whereas the remaining 100 were employed for testing purposes.

RESULTS

Generation of Synthetic Planar X-Rays
From Label Data
The generative framework proved to be able to create convincing
synthetic planar X-rays with good success (Figure 4). Based on
a colored input image depicting the approximate shape of the
lumbar vertebrae and the sacral endplate, the GANs could create
realistic representations of lumbar pedicles, facet joints, spinous
processes, sacrum, skin, bowel, and ribs.

From a qualitative point of view, the networks had greater
difficulties in generating the structures which were not depicted
in the input images, such as the spinous processes and the distal
part of the sacrum, which turned out rather indistinct and with
indefinite contours, with respect to the vertebral bodies, which
are directly represented in the inputs. The thoracic vertebrae,
some of which are typically visible in lumbar X-rays but about

FIGURE 1 | Creation of the training dataset for the GANs aimed to generate synthetic planar X-rays from labels. Vertebral corners, from L1 to L5 and for the upper

aspect of the sacrum, are manually identified in each image (Left); based on the coordinates of the points, an image containing the label data on the left and the

target radiograph on the right is generated (Right).
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FIGURE 2 | Examples of images in the training dataset used to train the GANs for the generation of synthetic planar X-rays from labels.

which no information was provided, were also rendered in
an approximate manner. It should be noted that these less
well defined anatomical structures had a shadowy, indistinct
appearance, which nevertheless resulted rather convincing to
the human eye. When incomplete data was provided in the
input, such as the examples “4” and “6” in Figure 4, which do
not include L5 and the sacral endplate, the GANs attempted to
render the missing anatomy in the output, with partial success.
Interestingly, the networks also replicated some text, which is
commonly added to the X-rays and was included in the training
data, such as the indication of the side (“L” in Figure 4), the name
of the hospital and patient information.

Conversion From Coronal to Sagittal
X-Rays and Vice Versa
At a first glance, the GANs were able to generate credible
sagittal X-rays projections of the trunk based only on the coronal
projection (Figure 5), and vice versa (Figure 6). The output of
the networks included all and only the anatomical structures
depicted in the input, and respected the general appearance of
the input image. For example, for images taken with a low X-
rays dose in which the internal organs are clearly visible, such
as example “3” of Figure 5 and example “4” of Figure 6, the
corresponding output also showed renderings of the organs with
correct sizes, positions and densities. The GANs also produced

a remarkable output in terms of the general body size, i.e.,
distinguishing between patients with high body mass index
and large body envelope and thinner subjects. The occasional
presence of a hip joint replacement was also generally correctly
rendered (see example “5” in Figure 5).

However, a closer inspection of the generated images revealed
several anatomical inaccuracies. In the sagittal images (Figure 5),
whereas the rendering of the lumbar spine and of the sacrum was
mostly realistic, the geometry of the pelvis and of the hip joints
was generally rather indistinct. The coronal images (Figure 6)
showed inmost cases a credible representation of the upper trunk
including the shoulders (whenever visible), the thoracic spine
and the ribs. Although the generated pelvises were realistic and
symmetric, the femurs were inaccurately represented in some
cases (e.g., example “2” in Figure 5), especially with respect to
the shape of the trochanters. The anteroposterior rendering of
the lumbar vertebrae was rather satisfactory in several cases (such
as examples “1”, “3,” and “5” in Figure 6) and included pedicles,
laminae and spinous processes; in other cases (examples “2” and
“6”), the depiction was asymmetrical and generally unrealistic.
These inaccuracies are likely related to the composition and size
of the training data; the relatively low number of images of
the lumbar spine determined a generally lower quality of the
outputs regarding lumbar images with respect to those including
the whole trunk. In a small number of cases (see example “6”
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FIGURE 3 | Examples of images in the training dataset used to train the GANs for the conversion from coronal to sagittal X-rays and vice versa.

FIGURE 4 | Six randomly selected examples of generated sagittal radiographs of the lumbar spine. “input”: label data provided as input; “output”: image created by

the generative model; “target”: ground truth.

in Figure 5), a clearly implausible image has been generated.
Specifically for example “6,” the incorrect output may have been
triggered by the concomitant presence of lumbar scoliosis and
a hip prosthesis, which was very infrequent in the training
data.

DISCUSSION

The recent developments in generative models, including GANs,
are providing novel powerful tools to the scientific community,
the possible uses of which are still being explored. In the present
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FIGURE 5 | Six randomly selected examples of the conversion from coronal to sagittal radiographic projections of the trunk. “input”: label data provided as input;

“output”: image created by the generative model; “target”: ground truth.

FIGURE 6 | Six randomly selected examples of the conversion from sagittal to coronal radiographic projections of the trunk. “input”: label data provided as input;

“output”: image created by the generative model; “target”: ground truth.

work, GANs proved to be able to generate realistic synthetic
medical images, which were in several cases challenging to
distinguish from real ones even for a human observer. Although
the numerous inaccuracies in the anatomical details may still
allow for a correct identification of synthetic images in the
majority of cases, the potential of GANs, which emerges from
analysis of the results shown in Figures 4–6 is evident.

In our work, we employed the conditional GANs framework
presented by Isola and coworkers, which has been developed

as an application-agnostic tool and that has been tested by the
authors in tasks such as the generation of photorealistic images
from labels and sketches, and image colorization (Isola et al.,
2017). Indeed, current research about generative models, and
especially GANs, is now targeting a number of applications such
as the colorization of black and white images, the generation
of images based on sketches, sparse annotation (Karacan et al.,
2016) or even text (Reed et al., 2016), the creation of maps from
aerial views and the increase of the image resolution during
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upscaling (superresolution) (Ledig et al., 2016), with outstanding
results highlighting the potential of these methods.

Regarding applications related to medical imaging, the use of
generative models seems to be still in its infancy. An example
of an early musculoskeletal application is offered in a recent
paper by Kadoury and colleagues, who trained a model to predict
the curve progression in subjects suffering from adolescent
idiopathic scoliosis, and retrospectively validated the results
against clinical observations and radiological imaging (Kadoury
et al., 2017). Another interesting application is described in a
work by Aubert and coworkers, who used convolutional neural
networks to remove the shadowing due to the presence of
metallic implants in biplanar radiographs, in order to facilitate
the three-dimensional reconstruction of the spinal anatomy
(Aubert et al., 2017). On the other side, the use of other machine
learning methods other than generative models is already
rather established in medicine. Concerning musculoskeletal
imaging, several papers employed deep learning techniques for
classification problems such as the automated grading of disc
degeneration and herniation on MRI scans (Koh et al., 2012;
Jamaludin et al., 2017), or regression problems such as locating
anatomical landmarks in planar X-rays (Galbusera et al., 2016),
with promising results, which anticipate a wider exploitation of
machine learning in radiology research in the near future.

Based on the results of the present study, the task of generating
synthetic images to be used in in silico trials seems to be within
the reach of generative models. We foresee that future uses
of GANs may include the creation of virtual patients to be
recruited in in silico trials, including a full radiographic dataset,
based on a small set of sparse data. A possible example of such
application would be the generation of the X-rays and CT scans
of a patient suffering from idiopathic scoliosis, based purely on
body size, Cobb angles and Lenke classification (Lenke et al.,
2003), which may be later employed for the simulation of the
surgical treatment. Such a generative framework would allow
creating a large group of synthetic patients, which would cover
the anatomical and functional variability of the pathology based
exactly on the desired inclusion and exclusion criteria of the
in silico trial. In addition to the generation of complete synthetic
patients, GANs may support the management of heterogeneous
data, for example if the virtual patients to be recruited in the in
silico trial are based on real patient data and images, rather than
on a fully synthetic dataset. In this case, similarly to the published
works in which generative models filled missing regions in
pictures (Yeh et al., 2016; Iizuka et al., 2017), the models may
help in the standardization of the data structure, by filling gaps
in the available data whenever required, thus allowing for an
easier automated generation and simulation of the numerical
models. Besides these applications strictly related to the creation
of in silico trials, generative models may prove useful for
other related tasks such as automating the segmentation of CT
and MRI scans (Diplaros et al., 2007; Sabuncu et al., 2010),
extracting the value of anatomical parameters from imaging
data, creating virtual multimodal images such as CT/MRI,
as well as generating a three-dimensional anatomical model
from two-dimensional data (Wu et al., 2016) such as an
X-rays projection.

Exploiting generative models to create synthetic patient and
radiological data involves, however, overcoming a number of
obstacles. First, training the models requires a large dataset of
annotated data, in turn necessitating a large database of raw
radiological data from real patients, which is not easily accessible
by many research institutes (Viceconti et al., 2015). Furthermore,
the generation of thousands of sketches or labels from real
patient data, such as those shown in Figures 1, 2, may require
a substantial amount of manual work if an automated method
to perform the task is not readily available. Other foreseen
difficulties are associated to the ethical aspects of acquiring,
storing and exploiting clinical and imaging data pertaining to
real patients, such as privacy and data security (Nunan and
Di Domenico, 2013; Schneeweiss, 2014). Due to the potential
commercial value of software frameworks aimed to perform in
silico trials of medical devices, issues related to the marketing
exploitation of products deriving from sensitive patient data
should also be taken into account (Murdoch and Detsky, 2013).

The present study has some limitations, which should be
considered in light of its explorative nature. Only two possible
applications of generative models related to in silico trials have
been tested to date, and both regarded the same anatomical
district. As a matter of fact, further tests covering a larger scope
of clinical applications need to be performed in order to prove
the general validity and usefulness of GANs in the context of in
silico trials. In addition to the generation of radiological images,
the creation of a full dataset of virtual patients and the respective
numerical models involves several other key steps, such as for
example image segmentation and the automated generation of
numerical models based on synthetic patient data. Technical
issues can be foreseen in the implementation of specific tasks;
for example, virtual multimodal CT/MRI imaging would require
the creation of a large training dataset consisting of coupled CTs
and MRIs, relative to the same patient and time point, which are
practically hard to collect even in the radiological databases of
large hospitals. Similarly, generating three dimensional models
and finite element meshes based on synthetic data involve
numerous technical challenges, which should be considered
outside of the scope of the present work but need to be addressed
prior to a fully automated implementation of in silico trials.

Furthermore, the quality of the outputs of the generative
models has been judged qualitatively only by assessing their
plausibility, whereas no quantitative evaluation has been
performed. Concerning the latter point, it should be noted
that assessing the quality of synthetic images in an automated
manner is an open and challenging issue, and although a few
methodological works about it have been published, a general
solution is not currently available (Salimans et al., 2016; Isola
et al., 2017). It should be noted that an insufficient quality and
plausibility of the generated images may practically prevent their
use in in silico trials, and therefore constitutes a key issue to be
investigated in future studies.

In conclusion, the present work showed that generative
models are a feasible solution for the creation of synthetic
imaging data to be used in in silico trials of novel medical devices.
Assuming that in silico trials become standard step of the process
of developing and bringing to the market a novel implantable
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device in the near future, generative models have the potential to
provide a fundamental contribution in the creation of the cohort
of virtual patients to be recruited in the simulated trial.

AUTHOR CONTRIBUTIONS

FG, FN, AK, and H-JW: conceived the main ideas of the study;
AK andH-JW: supervised the project; FG, FN, and TB: developed
the various computer programs involved in the project; MS, AK,
and GC: assembled the set of annotated images used for training
the generative models; FG and AK: were involved in funding

acquisition; FG and FN: wrote the draft of the paper. All authors
reviewed the manuscript.

ACKNOWLEDGMENTS

The work has been partially funded by the Central Innovation
Programme of the German Federal Ministry for Economic
Affairs and Energy (project number ZK4145001CR5). We
gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan Xp GPU used for this
research.

REFERENCES

Aubert, B., Vidal, P. A., Parent, S., Cresson, T., Vazquez, C., and De Guise, J.

(2017). “Convolutional neural network and in-painting techniques for the

automatic assessment of scoliotic spine surgery from biplanar radiographs,” in

International Conference on Medical Image Computing and Computer-Assisted

Intervention (Cham: Springer), 691–699.

Diplaros, A., Vlassis, N., and Gevers, T. (2007). A spatially constrained generative

model and an EM algorithm for image segmentation. IEEE Trans. Neural Netw.

18, 798–808. doi: 10.1109/TNN.2007.891190

Galbusera, F., Bassani, T., Costa, F., Brayda-Bruno, M., Zerbi, A., and Wilke, H.-

J. (2016). Artificial neural networks for the recognition of vertebral landmarks

in the lumbar spine. Comp. Methods Biomech. Biomed. Eng. Imaging Visual.

doi: 10.1080/21681163.2016.1261370. [Epub ahead of print].

Glinka, A., and Polak, S. (2014). The effects of six antipsychotic agents

on QTc—an attempt to mimic clinical trial through simulation

including variability in the population. Comput. Biol. Med. 47, 20–26.

doi: 10.1016/j.compbiomed.2014.01.010

Goodfellow, I. (2016). NIPS 2016 tutorial: generative adversarial networks.

arXiv:1701.00160.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., et al. (2014). “Generative adversarial nets,” in Proceedings

of the 27th International Conference on Neural Information Processing

Systems, Vol. 2, (NIPS’14), eds Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger (Cambridge, MA: MIT Press),

2672–2680.

Häyrinen, K., Saranto, K., and Nykänen, P. (2008). Definition, structure, content,

use and impacts of electronic health records: a review of the research literature.

Int. J. Med. Inf. 77, 291–304. doi: 10.1016/j.ijmedinf.2007.09.001

Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., and Belongie, S. (2017). Stacked

generative adversarial networks. Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit. 2:4.

Iizuka, S., Simo-Serra, E., and Ishikawa, H. (2017). Globally and locally

consistent image completion. ACM Trans. Graphics (TOG) 36:107.

doi: 10.1145/3072959.3073659

Isola, P., Zhu, J., Zhou, T., and Efros, A. A. (2017). Image-to-image translation with

conditional adversarial networks. arXiv:1611.07004v07002.

Jamaludin, A., Lootus, M., Kadir, T., Zisserman, A., Urban, J., Battié, M. C.,

et al. (2017). ISSLS Prize in Bioengineering Science 2017: automation of

reading of radiological features from magnetic resonance images (MRIs)

of the lumbar spine without human intervention is comparable with an

expert radiologist. Eur. Spine J. 26, 1374–1383. doi: 10.1007/s00586-017-

4956-3

Kadoury, S., Mandel, W., Roy-Beaudry, M., Nault, M. L., and Parent, S. (2017). 3-

D morphology prediction of progressive spinal deformities from probabilistic

modeling of discriminant manifolds. IEEE Trans. Med. Imaging 36, 1194–1204.

doi: 10.1109/TMI.2017.2657225

Karacan, L., Akata, Z., Erdem, A., and Erdem, E. (2016). Learning to

generate images of outdoor scenes from attributes and semantic layouts.

arXiv:1612.00215

Koh, J., Chaudhary, V., and Dhillon, G. (2012). Disc herniation diagnosis in MRI

using a CAD framework and a two-level classifier. Int. J. Comp. Assis. Radiol.

Surg. 7, 861–869. doi: 10.1007/s11548-012-0674-9

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A.,

et al. (2016). Photo-realistic single image super-resolution using a generative

adversarial network. arXiv:1609.04802

Lenke, L. G., Edwards, C. C., and Bridwell, K. H. (2003). The Lenke classification

of adolescent idiopathic scoliosis: how it organizes curve patterns as a

template to perform selective fusions of the spine. Spine 28, S199–S207.

doi: 10.1097/01.BRS.0000092216.16155.33

Medical Device Innovation Consortium (2016). Project Report: Excessive Data

Collection in Medical Device Clinical Trials. Available online at: http://mdic.

org/wp-content/uploads/2016/06/MDIC-Excessive-Data-Collection-in-

Clinical-Trials-report.pdf (Accessed on April 25th 2018).

Mirza, M., and Osindero, S. (2014). Conditional generative adversarial nets.

arXiv:1411.1784.

Murdoch, T. B., and Detsky, A. S. (2013). The inevitable application of big data to

health care. JAMA 309, 1351–1352. doi: 10.1001/jama.2013.393

Nunan, D., and Di Domenico, M. (2013). Market research & the ethics of big data.

Int. J. Market Res. 55, 505–520. doi: 10.2501/IJMR-2013-015

Prendergast, P. (1997). Finite element models in tissue mechanics

and orthopaedic implant design. Clin. Biomech. 12, 343–366.

doi: 10.1016/S0268-0033(97)00018-1

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation

learning with deep convolutional generative adversarial networks.

arXiv:1511.06434.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016).

Generative adversarial text to image synthesis. arXiv:1605.05396.

Sabuncu, M. R., Yeo, B. T., Van Leemput, K., Fischl, B., and Golland,

P. (2010). A generative model for image segmentation based on label

fusion. IEEE Trans. Med. Imaging 29, 1714–1729. doi: 10.1109/TMI.2010.

2050897

Salakhutdinov, R. (2015). Learning deep generative models. Ann. Rev. Stat. Appl.

2, 361–385. doi: 10.1146/annurev-statistics-010814-020120

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen,

X. (2016). “Improved techniques for training GANs,” in Advances in Neural

Information Processing Systems, eds D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnet (NIPS), 2234–2242.

Schneeweiss, S. (2014). Learning from big health care data. N. Engl. J. Med. 370,

2161–2163. doi: 10.1056/NEJMp1401111

Viceconti, M., Henney, A., and Morley-Fletcher, E. (2016). In silico

clinical trials: how computer simulation will transform the biomedical

industry. Int. J. Clin. Trials 3, 37–46. doi: 10.18203/2349-3259.ijct20

161408

Viceconti, M., Hunter, P., and Hose, R. (2015). Big data, big knowledge: big data

for personalized healthcare. IEEE J. Biomed. Health. Inform. 19, 1209–1215.

doi: 10.1109/JBHI.2015.2406883

Wilke, H. J., Wenger, K., and Claes, L. (1998). Testing criteria for spinal implants:

recommendations for the standardization of in vitro stability testing of spinal

implants. Eur. Spine J. 7, 148–154. doi: 10.1007/s005860050045

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 May 2018 | Volume 6 | Article 53

https://doi.org/10.1109/TNN.2007.891190
https://doi.org/10.1080/21681163.2016.1261370
https://doi.org/10.1016/j.compbiomed.2014.01.010
https://doi.org/10.1016/j.ijmedinf.2007.09.001
https://doi.org/10.1145/3072959.3073659
https://doi.org/10.1007/s00586-017-4956-3
https://doi.org/10.1109/TMI.2017.2657225
https://doi.org/10.1007/s11548-012-0674-9
https://doi.org/10.1097/01.BRS.0000092216.16155.33
http://mdic.org/wp-content/uploads/2016/06/MDIC-Excessive-Data-Collection-in-Clinical-Trials-report.pdf
http://mdic.org/wp-content/uploads/2016/06/MDIC-Excessive-Data-Collection-in-Clinical-Trials-report.pdf
http://mdic.org/wp-content/uploads/2016/06/MDIC-Excessive-Data-Collection-in-Clinical-Trials-report.pdf
https://doi.org/10.1001/jama.2013.393
https://doi.org/10.2501/IJMR-2013-015
https://doi.org/10.1016/S0268-0033(97)00018-1
https://doi.org/10.1109/TMI.2010.2050897
https://doi.org/10.1146/annurev-statistics-010814-020120
https://doi.org/10.1056/NEJMp1401111
https://doi.org/10.18203/2349-3259.ijct20161408
https://doi.org/10.1109/JBHI.2015.2406883
https://doi.org/10.1007/s005860050045
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Galbusera et al. Generative Models for in Silico Trials

Williams, G., and Mirams, G. R. (2015). A web portal for in-silico

action potential predictions. J. Pharmacol. Toxicol. Methods 75, 10–16.

doi: 10.1016/j.vascn.2015.05.002

Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J. (2016). “Learning

a probabilistic latent space of object shapes via 3d generative-adversarial

modeling,” in Advances in Neural Information Processing Systems 29, eds D. D.

Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnet (NIPS), 82–90.

Yeh, R., Chen, C., Lim, T. Y., Hasegawa-Johnson, M., and Do, M. N.

(2016). Semantic image inpainting with perceptual and contextual losses.

arXiv:1607.07539.

Yi, Z., Zhang, H., Tan, P., and Gong, M. (2017). Dualgan: unsupervised

dual learning for image-to-image translation. arXiv:1704.02510

doi: 10.1109/ICCV.2017.310

Zhao, J., Mathieu, M., and LeCun, Y. (2016). Energy-based generative adversarial

network. arXiv:1609.03126.

Zhu, J., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-

image translation using cycle-consistent adversarial networks. arXiv:1703.

10593.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Galbusera, Niemeyer, Seyfried, Bassani, Casaroli, Kienle and

Wilke. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 May 2018 | Volume 6 | Article 53

https://doi.org/10.1016/j.vascn.2015.05.002
https://doi.org/10.1109/ICCV.2017.310
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Exploring the Potential of Generative Adversarial Networks for Synthesizing Radiological Images of the Spine to be Used in In Silico Trials
	Introduction
	Materials and Methods
	Generative Adversarial Networks for Image-to-Image Translation
	Generation of Synthetic Planar X-Rays From Label Data
	Generation of Synthetic Coronal Images From Sagittal Ones and Vice Versa

	Results
	Generation of Synthetic Planar X-Rays From Label Data
	Conversion From Coronal to Sagittal X-Rays and Vice Versa

	Discussion
	Author Contributions
	Acknowledgments
	References


