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Colorectal cancer (CRC) is the third cause of cancer-related mortality in industrialized

countries. Local invasion and metastasis formation are events associated with poor

prognosis for which today there are no effective therapeutic options. Invasion and

metastasis are strongly modulated by cells of the tumor microenvironment (TME), in

particular fibroblasts and endothelial cells. Unraveling interactions between tumor cells

and cells of the TME may identify novel mechanisms and therapeutic targets to prevent

or treat metastasis. We report here the development and in vivo validation of a 3D tumor

spheroid model to study the interactions between CRC cells, fibroblasts and endothelial

cells in vitro. Co-cultured fibroblasts promoted SW620 and HCT116 CRC spheroid

invasion, and this was prevented by the SRC and FGFR kinase inhibitors Dasatinib

and Erdafitinib, respectively. To validate these findings in vivo, we injected SW620 cells

alone or together with fibroblasts orthotopically in the caecum of mice. Co-injection with

fibroblasts promoted lung metastasis growth, which was fully reversed by treatment with

Dasatinib or Erdafitinib. Co-culture of SW620 or HCT116 CRC spheroids with endothelial

cells suppressed spheroid growth while it had no effect on cancer cell migration or

invasion. Consistent with this in vitro effect, co-injected endothelial cells significantly

inhibited primary tumor growth in vivo. From these experiments we conclude that effects

on cancer cell invasion and growth induced by co-cultured TME cells and drug treatment

in the 3D spheroid model in vitro, are predictive of in vivo effects. The 3D spheroid model

may be considered as an attractive model to study the effect of heterotypic cellular

interactions and drug activities on cancer cells, as animal testing alternative. This model

may be adapted and further developed to include different types of cancer and host cells

and to investigate additional functions and drugs.

Keywords: colorectal cancer, three-dimensional model (3D), in vitro, invasion, tumor microenvironment,
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INTRODUCTION

After decades of experimental and molecular cancer research,
drug development and testing, cancer remains a leading cause of
death worldwide (Siegel et al., 2017b). Colorectal cancer (CRC)
is the third cause of cancer-related mortality in industrialized
countries (Brenner et al., 2014; Siegel et al., 2017a). Next
generation DNA sequencing has allowed the identification of
recurrent CRC mutations thereby opening the way to a better
detection, classification and treatment of CRC (Dienstmann and
Tabernero, 2016). Four consensus molecular subtypes (CMS) of
clinical relevance have been recently reported based on RNA
expression profiling (Guinney et al., 2015). At the cellular level,
however, many questions remain unsolved, in particular those
concerning mechanisms of invasion and metastasis, two of
the main hallmarks of cancer (Hanahan and Weinberg, 2011;
Valastyan and Weinberg, 2011; Sleeman et al., 2012). This is
clinically highly relevant as cancer cell migration and local
invasion are the first steps toward metastatic dissemination,
which will eventually determine patient outcome (Brenner et al.,
2014; McAllister and Weinberg, 2014).

Invasion and metastasis are not fully cell autonomous events.
Multiple elements of the tumor microenvironment (TME)
play critical roles not only in supporting local tumor growth
but also in promoting invasion and metastasis in several
cancer types, including CRC (Gout and Huot, 2008; Lorusso
and Ruegg, 2008; Joyce and Pollard, 2009; Jeon et al., 2015;
Malandrino et al., 2018). Growth factors production, metabolic
changes, extracellular matrix (ECM) remodeling, activation of
host cells such as fibroblasts, mesenchymal stem cells and
endothelial cells as well as recruitment and polarization of
immune and inflammatory cells, contribute to cancer growth,
local invasion and distant metastasis formation (Lorusso and
Ruegg, 2008; Quail and Joyce, 2013; Kalluri, 2016). As there
are no robust, curative treatment for metastatic disease, the
understanding of the mechanisms used by cells of the TME
and their interaction with tumor cells to promote invasion
and metastasis is essential for the rational development of
new treatments impinging on local invasion and metastasis
formation. The knowledge about the complex signaling circuits
occurring between the tumor cells and the different cell
populations of the TME is growing but still incomplete (Quail
and Joyce, 2013; Bhome et al., 2015). Studying heterotypic cellular
interaction in vivo is limited due to constrains in accessing the
tissue, the simultaneous presence of multiple cell types, and
the difficulty in selectively modulating specific cell types or
intercellular interactions. In addition, in vivomonitoring requires
invasive procedures and time-course experiments necessitate
large amounts of animals (Taketo, 2006; Clarke, 2007; Golovko
et al., 2015).

In vitro 2D co-culture models mimicking cancer-stromal cell
interaction are widely used to identify new therapeutic targets
and study new drugs. However, 2D tissue culture conditions
do not mimic well in vivo heterotypic interactions, leaving a
wide gap between in vitro and in vivo models (Bartlett et al.,
2014). It is now generally accepted that 3D tissue culture is the
preferred way of investigating cancer cells in vitro to bridge this

gap. 3D tissue culture represents a more physiological setting to
study morphology, cell cycle progression, cellular interactions,
gene and protein expression, invasion, migration, and tumor
metabolism. This is particular relevant to drug discovery and
testing of anti-cancer agents as cells have different sensitivities
in 3D vs. 2D conditions, including CRC cells (Stadler et al.,
2015; Weiswald et al., 2015; Pereira et al., 2016; Penfornis
et al., 2017; Ravi et al., 2017; Jin et al., 2018; Langhans,
2018). In addition, in vitro 3D co-culture models constitute
invaluable tools to interrogate the role of individual cells of
the TME and their interactions with cancer cells in tumor
progression (Herrmann et al., 2014; Thoma et al., 2014; Horie
et al., 2015; Ravi et al., 2015, 2017). We previously reported
a 3D spheroid in vitro model of CRC to study multicellular
interactions between tumor cells and fibroblasts and used it
to decipher mechanisms by which fibroblasts promote CRC
invasion (Knuchel et al., 2015). We showed that cell surface
presentation of fibroblasts-derived FGF-2 to cancer cells, leads to
integrin αvβ5-dependent and SRC-mediated adhesion of cancer
cells to fibroblasts, and contact-dependent tumor cell elongation,
migration and invasion. Here we report the in vivo validation
of results obtained with co-cultured fibroblasts and SRC and
fibroblast growth factor receptor (FGFR) inhibitors in this 3D
model in vitro. We also tested the effects of endothelial cells as
additional cells to reconstitute the multicellular interactions in
the TME.

RESULTS

Dasatinib or Erdafitinib Treatment Prevents
Fibroblast-Promoted CRC Cell Migration
and Invasion In Vitro
We previously developed a 3D CRC cell-fibroblasts co-culture
model and used it to demonstrate that fibroblasts promote
contact-dependent cancer cell motility and invasion. Treatment
with the SRC inhibitor CGP77675 and the FGFR inhibitor
PD161570 prevented these in vitro effects (Knuchel et al.,
2015). These results raised the question whether fibroblasts
would also promote CRC invasion/metastasis in vivo in a
SCR and FGFR-dependent manner. To test this hypothesis, we
used two drugs in clinical practice or clinical development:
Dasatinib, a BCR/ABL and SRC family tyrosine kinases inhibitor
used to treat chronic myelogenous leukemia (CML) and
acute lymphoblastic leukemia (ALL) (Lindauer and Hochhaus,
2014), and Erdafitinib, a potent pan-FGFR inhibitor (Perera
et al., 2017) in clinical testing in advanced solid tumors,
including breast, prostate, colon, bladder, esophageal and
non-small-cell lung cancers (www.clinicaltrials.gov). Dasatinib
reduced SRC phosphorylation (Figures 1A–C) in cancer cells
and or Erdafitinib inhibited FGF-2 production in fibroblasts
(Supplementary Figure S1). In drug titration experiments we
identified non-toxic Dasatinib or Erdafitinib concentrations to
use in the in vitro experiments (50 nM and nM, respectively,
Figures 1D–F). Dasatinib or Erdafitinib treatment of SW620
and HCT116 CRC cells co-cultured with fibroblasts reduced
fibroblast-induced cancer cell elongation, motility and invasion
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FIGURE 1 | Activity and toxicity of Dasatinib and Erdafitinib. (A,B) Intracellular detection of total and phospho-SRC in SW620 (A) and HCT116 (B) show that

Dasatinib inhibits SRC phosphorylation. (C) Western blot analysis confirms that Dasatinib suppresses SRC phosphorylation in cancer cells. (D) Growth curve of

SW620 and HCT116 over 48 h in presence or absence of the described drugs at the described concentration. In red the in vitro used concentration for the two drugs.

(E) Quantification of cell dead by flow cytometry after 7 days in 3D assay conditions. (F) Viability measurements of the different cell lines cultured in 2D conditions in

the presence or absence of the corresponding inhibitor for 48 h using DAPI staining.
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FIGURE 2 | Dasatinib and Erdafitinib reduce fibroblasts-induced SW620 cancer cell elongation, migration and invasion in vitro. (A) Representative images of

SW620-LifeAct-GFP cells cultured under 2D conditions with and without fibroblasts in the absence or presence of Dasatinib and Erdafitinib for 48 h. White bars

represent 100µm. (B) Quantification of elongation of SW620 cells of experiment in (A), cultured as indicated, at day 4. (C) Quantification of SW620 cell spheroid 2D

invasion under the indicated conditions after 4 days of culture. (D) Representative images of SW620-LifeAct-GFP cells of experiment in (C) cultured as indicated, at

day 4. White bars represent 500µm. (E) Quantification of motility of SW620 cancer cells cultured as indicated for 48 h. Both inhibitors block fibroblasts-induced

SW620 elongation, migration and invasion. All quantification data represent mean values ± SD. **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. Red line represent

control value at 1.

under 2D (Figure 2 and Supplementary Figure S2) and 3D
conditions in vitro (Figure 3).

Dasatinib or Erdafitinib Treatment Prevents
Fibroblast-Promoted CRC Cell Migration
and Invasion In Vivo
The pro-invasive effect of co-cultured fibroblasts in vitro raised
the question whether fibroblasts co-injected with CRC cells
would promote cancer metastasis in vivo. To this end SW620
cells expressing luciferase were orthotopically injected alone or
together with fibroblasts in the caecum of immunocompromised
(NSG) mice. Fibroblasts and tumor cells were mixed and
injected at a 1:1 ratio which is a realistic approximation of the
average Cancer Associated Fibroblasts (CAF): epithelial cell ratio
observed in human CRC, considering variability observed in
different CRC subtypes, stages and intertumoral heterogeneity
(Henry et al., 2007; Isella et al., 2015; Nishishita et al.,
2018). Fibroblasts co-injected with tumor cells did not impact
primary tumor growth (Supplementary Figure S3). However,
they induced a significant increase in the lung metastatic burden
as detected by luciferase activity measured ex vivo (Figure 4A),
and by immunohistochemistry (IHC) for human vimentin of

the lungs (Figure 4D). Fibroblasts co-injection promoted the
formation of larger metastatic nodules (Figures 4C,D), while
it did not increase the number of the nodules themselves
(Figure 4B).

Next, we tested whether Dasatinib or Erdafitinib treatment
would impinge on fibroblast-promoted metastasis formation
in vivo, as it did for cancer cell migration and invasion
in vitro. Treatments were started 2 weeks after primary tumor
development was confirmed by In Vivo Bio Luminescence
imaging (IBL; data not shown). Animal treated with Dasatinib
or Erdafitinib showed a significant and homogeneous reduction
of fibroblast-induced lung metastasis burden as detected by
IBL imaging (Figure 5A). Immunohistochemical analysis of the
lungs confirmed that Dasatinib and Erdafitinib treatment nearly
completely reduced metastatic burden in the lungs as detected
by IBL or by vimentin IHC of the lungs (Figures 5B,C). The
number of metastatic lesions in the lungs, however, was not
affected by the treatment (Supplementary Figures S4B–D). From
week 4 on under treatment, animals were losing weight with
both treatments (Supplementary Figure S4A), known side effect
of kinase inhibitors due to intestinal toxicity (Galinsky and
Buchanan, 2009), and therefore experiments were prematurely
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FIGURE 3 | Dasatinib and Erdafitinib inhibitors reduce fibroblasts-induced SW620 cancer cell invasion in vitro under 3D condition. Representative images of (A)

SW620-LifeAct-GFP and (B) HCT116-LifeAct-GFP 3D spheroid invasion with and without LifeAct-mCherry labeled fibroblasts in the absence or presence of Dasatinib

and Erdafitinib inhibitors after 7 days. Both inhibitors are blocking fibroblasts-induced SW620 3D invasion. Arrows are indication the invasion area. White bars

represent 250µm.

terminated at 6 weeks. As at this time point lung metastases
in the treated animals are still microscopic, and therefore no
significant increase in IBL signal was detected compared to
untreated control animals in which lung metastases are already
well established (Supplementary Figures S4B–D).

These data demonstrate that fibroblasts orthotopically
co-injected with CRC cell promoted metastatic outgrowth
(increased volume of metastatic lesions) in the lung, without
however affecting the number of lesions. Conversely, treatment
with the SRC and pan-FGFR inhibitors Dasatinib and Erdafitinib,
respectively, prevented the fibroblasts-induced increase in lung
metastasis. These in vivo results are consistent with in vitro
results obtained with the 3D co-culture model, and further
validate our previously in vitro-only study (Knuchel et al., 2015).

Endothelial Cells Suppress CRC Cell
Spheroid Growth in the In Vitro 3D
Co-culture Culture Model
Based on these results we reasoned that this 3D model might be
further developed to higher complexity by adding endothelial

cells to mimic the vascular compartment of the TME. To this end
we used an immortalized human umbilical vein endothelial cells
(HUVEC)-derived cell line, Ea.hy296, previously reported to
retain characteristics and functions of differentiated endothelial,
such as angiogenesis, homeostasis/thrombosis, blood pressure
and inflammation and are able to form a long lasting tube-like
network in vitro (Edgell et al., 1983, 1990; Bauer et al., 1992;
Rieber et al., 1993). We confirmed expression of the endothelial
marker CD31 at similar level as in HUVEC (Supplementary
Figure S5A). Ea.hy296 cells were genetically modified to
express the life dye Azurite to assure visualization in the co-
cultures (Figure 6A). As endothelial cells need a flat surface
to form a visible tube-like network, the 3D model has been
adapted accordingly by using a thicker second gel layer. 3D
Co-culture experiments with CRC cells, fibroblasts and Ea.hy296
endothelial cells show that neither fibroblasts nor cancer
cells directly interact with endothelial cells (Figures 6B,C).
However, the presence of Ea.hy296 endothelial cells consistently
reduced SW620 and HCT116 cell 3D spheroid growth
(Figures 6C,D).
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FIGURE 4 | Fibroblasts promote SW620 colorectal cancer cell metastasis. (A) Ex-vivo Luciferase activity in the lung of mice injected with SW620-A299 ± fibroblasts.

(B) Quantification of the number of metastatic nodules in the lung of mice orthotopically injected with SW620-A299 cells ± fibroblasts. (C) Quantification of the

metastatic lung surface positive for vimentin by IHC of mice orthotopically injected with SW620-A299 cells ± fibroblasts. (D) Representatives images of consecutive

sections of lungs of mice injected with SW620 ± fibroblasts stained by H&E (left) and for human vimentin by IHC (right). Arrows indicate metastases. Twelve mice per

group were used. Quantification data represent mean values ± SD. Scale bars are given on the images. **p ≤ 0.01; Circles represent cells injected alone and triangles

in presence of fibroblasts.

Co-injected Endothelial Cells Suppress
Cancer Cell Growth In Vivo
To validate these in vitro 3D results, Luciferase expressing
SW620 and HCT116 CRC cells were injected subcutaneously
in the back of NSG mice, alone and together with Ea.hy296
or HUVEC. Tumor growth was monitored over time
by IBL and animals were sacrificed after 10 days. Co-
injection of cancer cells with either Ea.hy296 or HUVEC
significantly reduced the growth of both SW620 and
HCT116 CRC cells (Figure 7 and Supplementary Figures
S5B–D).

Taken together these results demonstrate that, in contrast
to fibroblasts, which promoted spheroids invasion in vitro
and metastasis formation in vivo, co-cultured and co-injected
endothelial cells suppressed spheroids growth in vitro and tumor
growth in vivo, respectively.

DISCUSSION

Local invasion and metastasis development in distant organs are
the leading cause of cancer-related death (Siegel et al., 2017b).
Mechanisms governing invasion and metastasis are only in part
understood and the contribution of host cells at the primary and
metastatic sites is being progressively unraveled (Quail and Joyce,
2013). Further understanding of these processes is essential in
order to identify new mechanism and targets to develop novel
therapeutic strategies to prevent tumor cell dissemination and
outgrowth at distant sites. The multi-cellular nature of the TME
and its multitude of soluble factors contributing to heterotypic
communication, the changes in the extracellular matrix and the
dynamic evolution of tumor-host complicate the in vivo study
of the TME. In addition, animal models are expensive, time
consuming, and subjected to higher variability (Heijstek et al.,
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FIGURE 5 | Dasatinib and Erdafitinib suppress fibroblasts-induced metastasis in vivo. (A) Ex-vivo Luciferase activity in the lung of mice orthotopically injected

with SW620-A299 cells ± fibroblasts treated with Dasatinib or Erdafitinib or vehicle only as indicated. (B) Quantification of the metastatic lung surface positive by

vimentin by IHC of mice of the same experiment. (C) Representatives images of consecutive sections of lungs of mice of the same experiment stained by IHC for

human vimentin. Arrows are indication the metastases. Seven mice per group were used. Quantification data represent mean values ± SD. Scale bars are given on

the images. *p ≤ 0.05, **p ≤ 0.01; Circles represent cells injected alone and triangles in presence of fibroblasts.
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FIGURE 6 | Co-culture with endothelial cells under 3D conditions inhibits SW620 and HCT116 spheroid growth in vitro. (A) Representative images of Ea.hy296 cells

expressing Azurite cultured for 8 days under 3D conditions. (B) Representative images of HCT116-LifeAct-GFP cells cultured under 3D conditions with

Ea.hy296-Azurite-cells and fibroblasts-LifeAct-mCherry cells. (C) Representatives brightfield images of SW620 and HCT116 colon cancer cells cultured for 7 days

under 3D conditions in presence or absence of fibroblasts ± Ea.hy296 endothelial cells. (D) Quantification of relative size of SW620 and HT116 spheroids after 7 days

of 3D culture. Quantification data represent mean values ± SD. White bars represent 500µm. **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001.

2005; Clarke, 2007). Based on these considerations, we set up to
develop a 3D heterotypic co-culture model allowing the study of
the interactions between cancer cells and cells of the TME. Using
this model, we previously reported that co-cultured fibroblasts
promote CRC cells motility and invasion through a FGF-2/FGFR,
αvβ5-integrin, and SRC -dependent mechanism (Knuchel et al.,
2015). The in vivo relevance of this pathway and its therapeutic
implication were not assessed.

To prove that our 3D in vitro model is relevant to in vivo
conditions, we performed in vivo experiments in mice in which
we orthotopically injected SW620 and HCT116 CRC cells with
or without fibroblasts. As a clinically relevant readout we
monitored metastasis formation. Indeed, we observed that co-
injected fibroblasts promoted the formation of larger metastatic
nodules in the lungs, without, however, increasing the number
of metastatic foci. Importantly, the larger metastatic burden
induced by co-injected fibroblasts was prevented by inhibiting
SRC and FGFR using Dasatinib and Erdafitinib, respectively.
Consistent with the fibroblasts promoting effect, Dasatinib and
Erdafitinib decrease the size of the lesions but not their numbers.
Clinically, Dasatinib was tested in metastatic CRC patients, alone

or in combination therapies, but showed no effect on disease
progression (Sharma et al., 2012; Parseghian et al., 2017). These
results are not comparable with our settings, as patients had
already established metastases, while we tested the efficacy of
SRC inhibition on the de novo formation of metastases. Our
results indicate that SRC inhibition blocks metastasis formation
when given early during disease progression. This setting would
be comparable to an adjuvant treatment, for which to our
knowledge, a clinical trial has not been reported yet. Through a
gene-silencing approach, we have previously demonstrated that
inhibition of SRC in tumor cells, but not in fibroblasts, is essential
for the effect observed with pharmacological inhibition of SRC in
the co-culture setting (Knuchel et al., 2015).

Taken together these in vivo results validate the in vitro
results obtained with the 3Dmodel at the cellular (i.e., fibroblasts
promoted CRC cell invasion) andmolecular (i.e., SRC and FGFR-
depended fibroblast mechanism) levels. Although the endpoints
of the two assays (i.e., motility and invasion in vitro vs. metastasis
in vivo) are different, they are functionally linked as local invasion
is considered as one of the first step of the metastatic cascade
(Valastyan and Weinberg, 2011; Sleeman et al., 2012).
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FIGURE 7 | Co-injected endothelial cells reduce SW620 colon cancer growth in vivo. (A) Representative images of luciferase activity in mice subcutaneously injected

with SW620-A299 in the presence or absence of EA.hy296 or HUVEC after 8 days. (B) Quantification of luciferase activity by IBL in mice subcutaneously injected at

the indicated conditions over time. (C) Quantification of ex-vivo luciferase activity in tumors recovered 10 days after injection at the indicated conditions. Seven mice

per group were used. Quantification data represent mean values ± SD. *p ≤ 0.1, **p ≤ 0.01 and ***p ≤ 0.001.

Next, we added endothelial cells to the 3D model to mimic
the presence of a tumor-associated vasculature. Endothelial cells
did not physically interact with fibroblasts or cancer cells and did
not promote invasion but, unexpectedly, significantly decreased
tumor spheroids growth. Consistent with these results in vivo,
we indeed observed that tumor growth was decreased in animal
co-injected with tumor cells and endothelial cells compared to
tumor cells alone. Three dimensional models of tumor cells
(spheroids)—endothelial cell interaction in vitro, have been
largely used to studymorphological and functions effect of tumor
cells on endothelial cells including gene expression and sprouting
angiogenesis, effect or angiogenic factors or anti-angiogenic
drugs (Chopra et al., 1997; Khodarev et al., 2003; Van Moorst
and Dass, 2011; Correa de Sampaio et al., 2012; Szot et al.,
2013; Chiew et al., 2017; Wan et al., 2017). Co-culture with
endothelial cells was shown to promote cancer cell (melanoma)
invasion along tube likes structures (Yamamoto et al., 2014)
or tumor cell growth when mixed inside spheroids (Upreti
et al., 2011). However, in an on-top Matrigel model of ovarian
cancer cells co-cultured with a tubular network of HUVEC, the
presence of HUVEC clearly reduced tumor cell growth (Wan
et al., 2017). No in vivo validation was performed in that work.
The reason for this inhibitory effect remains elusive at this
point and therefore these results should be carefully considered
in their context. It is however tempting to speculate that

quiescent, non-angiogenic endothelial cells may exert paracrine
anti-proliferative/quiescence promoting effects to neighboring
cells in contrast to pro-inflammatory and stimulatory effects of
angiogenic endothelial cells (Potente et al., 2011). Furthermore,
an important point to consider is that we used endothelial cells
of macrovascular origin (HUVEC and a HUVEC-derived line)
rather than microvascular endothelial cells from organs relevant
to CRC, such as the colon itself (for the primary tumor) or the
lung or liver for metastases. Considering the growing interest in
understanding the role and activities of organotypic endothelial
cells (Augustin and Koh, 2017; Potente and Makinen, 2017), this
is an experimental aspect to include in follow-up experiments.

There are many different 3D assays described in the literature
or available commercially (Kimlin et al., 2013b; Hoarau-Véchot
et al., 2018), in the context of CRC (Nietzer et al., 2016; Pereira
et al., 2016), vasculature modeling (Bersini et al., 2016; Haase
and Kamm, 2017) and cancer invasion (Berens et al., 2015; De
Jaeghere et al., 2018). The model that we proposed has been
specifically developed to study the effect of cells of the TME,
and in particular fibroblasts, on tumor cell motility and invasion.
Globally, 3D in vitro models differ at two levels: firstly, on the
preparation of the cancer spheroids. Hanging drop technique is
the standard in creating spheroid either using manual pipetting
or Bioprinting (Albritton and Miller, 2017). We used manual
pipetting with a single spheroid per well. Secondly, models differ
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on the nature of the 3D matrix used. Both natural and synthetic
matrices have been proposed and used for 3D culture conditions
and invasion studies. For example, basement membrane extracts
and hyaluronic acid are commonly used as biologically-derived
matrixes; Polyethylene glycol (PEG), polyvinyl alcohol (PVA),
polylactide-co-glycolide (PLG), and polycaprolactone (PLA) are
commonmaterials used to form synthetic scaffolds (Asghar et al.,
2015; Chung et al., 2017). These matrices face similar limitations
and potential criticisms, as they do not faithfully replicate the
extracellular matrix of the TME. We opted for Matrigel, as there
is ample literature on it and it is still the most widely used matrix
in 3D assays, thereby allowing for direct for comparisons with
other published reports (Benton et al., 2014).

In conclusion, we have developed a 3D in vitro heterotypic
co-culture model to study CRC cell—stroma cell interactions.
The model was validated for two CRC cell lines (i.e., SW620 and
HCT116), two TME cell types (i.e., fibroblasts and endothelial
cells) and two functions (i.e., growth and invasion/metastasis).
This model may be adapted to different cancer types, such
as breast or prostate, to include additional host cells, such as
immune/inflammatory cells, microvascular endothelial cells of
diverse organ origins, to test for additional functions, such
as metabolism (Zecchin et al., 2015) or gene expression and
under different conditions (e.g., hypoxia or starvation) (Bersini
et al., 2016). This will help accelerating project progression and
reducing the number of in vivo experiments and animal used
(Kimlin et al., 2013a; Thoma et al., 2014).

MATERIALS AND METHODS

Cell Culture
The human colorectal carcinoma cell lines SW620, HCT116,
endothelial cells EA.hy296 and HEK-293T cells were purchased
from ATCC (LGC Standards). Dermal fibroblasts were isolated
from human neonatal foreskin as previously described (Knuchel
et al., 2015). HUVEC were isolated from fresh umbilical cords
dissociation and cultured as previously described (Yilmaz et al.,
1998; Dormond et al., 2001). SW620 were cultured in RPMI
GlutaMAXTM, HCT116, EA.hy296, fibroblasts and HEK-293T
in DMEM GlutaMAXTM, all supplemented with 10% FCS, 100
U/ml Penicillin and 100µg/ml Streptomycin. Cell detachment
was performed using Trypsin-EDTA. Cell counting and viability
determination was performed by trypan blue exclusion using
Neubauer Counting Chamber. For co-culture experiments,
fibroblasts and colon cancer cells were grown for 48 h at a 1:1
ratio in DMEM GlutaMAXTM. Growth curve to assess viability
were monitored by Incucyte 10x. All cell culture reagents were
purchased from Life Technologies. Protocols for collection and
use of human samples were approved by the Ethic committees of
Cantons Fribourg, Vaud, Berne and Ticino, Switzerland.

Inhibitors of Signaling
Dasatinib (Medkoo) was used in vitro at 50 nM in DMSO and
in vivo at 30 mg/kg in 80mM sodium citrate buffer pH 3.1 orally
daily for 20 days. Erdafitinib (Medkoo) was used in vitro at 5 nM
in DMSO and in vivo at 25 mg/kg in water with 1% Tween 80
orally daily for 20 days.

Vectors and Infections
LifeAct lentiviral vectors in GFP and mCherry were kindly
provided by Dr. Olivier Pertz, Basel. A299 lentiviral vectors
for Luciferase in GFP was kindly provided by Dr. Albert
SantaMaria, Fribourg. pLV-Azurite plasmid was obtained from
Addgene. Lentiviral particles were generated in HEK-293T cells
by transducing the vector of interest with pMD2G (pSD11)
and pMDLgpRRE (pSD16) plasmids using calcium phosphate
transfection (Dull et al., 1998), followed, for LifeAct vectors, by
an antibiotic-based selection of the infected cells and, for Azurite
and A299 vectors, by a cell sorting using BD FACS ARIA Fusion
based on GFP or blue fluorescent expression.

2D and 3D Culture Assay
Cancer cells spheroids were prepared as previously described
(Kelm et al., 2003), using the hanging drop technic in a Terazaki
plate with 500 cells per well in 20 µl medium for 72 h. For 2D
spheroids assay, cancer cell spheroids were placed on top of a
confluent fibroblasts layer. 3D spheroid assays were performed
according to the 3D-On-Top method (Lee et al., 2007). Seven
mg/ml Matrigel growth factor reduced (Corning) was used as
matrix (Benton et al., 2014). Briefly, a first matrix layer was
seeded on the well bottom of a non-treated multi-well plate to
polymerize. A single spheroid was deposed on the layer and
incubated 30min at 37◦C to adhere. A second matrix layer
diluted 1:5 in culture medium was deposed on top of the
spheroid. For 3D assay with fibroblasts, 75,000 fibroblasts/ml
were added to the gel. For 3D assay with endothelial cells,
the second layer on top of the spheroid was replaced by a
7 mg/ml Matrigel growth factors reduced matrix, mixed or
not with 75,000 fibroblasts/ml. After 45min polymerization
150,000 Ea.hy296 were seeded on top in DMEM. Time course
of the in vitro experiments is given in Supplementary Figure
S6A.

In Vivo Experiments
Male NOD/SCID common gamma chain (IL-2Rγ−/−) ko (NSG)
animals between 7 and 8 weeks old were used for in vivo
experimentation and were purchased from the University of
Lausanne. Twelve or 7 mice per group were used, depending
on the expected difference of 40 or 50% or more for a SD of
30%, alpha = 0.05, and beta = 0.8. Orthotopic injection in
the caecum was performed as previously described (Céspedes
et al., 2007; Ragusa et al., 2014). The number of tumor cells
was kept constrain in all conditions (i.e., ± fibroblasts) in
accordance with widely accepted protocols (Picard et al., 1986;
Erez et al., 2010; Li et al., 2012; Shintani et al., 2013; Cohen
et al., 2017; Nakaoka et al., 2017; Wang et al., 2017). Briefly
one million SW620-A299 cells, mixed or not with one million
fibroblasts, resuspended in 50 µl DMEM solution containing
50%Matrigel were injected using a 30G needle in the submucosa
of the caecum under a binocular loupe. The 1:1 fibroblasts:
tumor cell ration was chosen as a realistic approximation of
the average CAF: epithelial cell ratio reported for human CRC
(Henry et al., 2007; Isella et al., 2015; Nishishita et al., 2018).
Tumor growth was monitored by in vivo bioluminescence
after i.p. injection of 1.5mg/g luciferin (Biosynth), using IVIS
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Lumina II (Xenogen). Sub-cutaneous tumor transplantation
model were performed by injecting subcutaneously in the back
a cell suspension of one million SW620-A299 cells or HCT116-
A299, mixed or not with one million Ea.hy296 in 50 µl DMEM
solution containing 50% Matrigel. Animal procedures were
performed in accordance with the Swiss and French legislations
on animal experimentation and approved by the Cantonal
Veterinary Service of the Canton Fribourg (2016_06_FR). A
schematic of the experiment is represented in the Supplementary
Figure s6B.

Immunohistochemistry
Slide staining’s were performed on Leica BOND RX system
following manufacturer’s instructions. Paraffin embedded organ
cuts were pre-treated 15min with 1% H2O2 in Methanol for
vimentin staining. Primary antibody (Dako) was incubated for
40min at 1:100.

Flow Cytometry
For viability assay, cultures were harvested on ice and
resuspended in PBS containing 3% FCS and 5mM EDTA.
DAPI staining (Miltenyi) was used at 1/1,000 dilutions 5min
before analysis. For 3D recovery and viability testing, cells were
dissociated from recovered spheroids using the BD Recovery
Solution (BD Biosciences) following manufacturer instructions.

For endothelial cells characterization an anti-CD31-
Alexafluor 647 (BD Biosciences) was used at 1/100
dilution.

For intracellular staining, cells were fixed and permeabilized
using a BD Bioscience Fix/Perm assay following manufacturer
instructions. Anti-SRC, phospho-SRC and FGF-2 unlabeled
primary antibodies (Cell Signaling) were used 30min at 1/100
dilution and secondary anti rabbit-Alexa Fluor 488 (Cell
Signaling) was used at 1/300 for 30min. A MACSQuant
instrument was used to perform experiments and FlowJo 10.4
(Treestar Inc.) software was used to analyze all data.

Western Blotting
Cells were lysed using RIPA lysis buffer (Cell Signaling)
supplemented with protease Cocktail inhibitor (Sigma), 2mM
PMSF, 2mM BGE (Sigma) and 0.2mM Orthovanadate (Sigma)
on ice and re-suspended in SDS buffer containing 10% Glycerol,
5% β-mercatoethanol, 60mMTris-Cl, trace of bromophenol blue
and 2% SDS (Sigma-Aldrich). SDS-PAGE, blotting, and detection
were performed as previously described using a Lumina Odyssey
instrument.

Imaging and Data Analysis
Imaging of 2D and 3D spheroids assay were performed with
5x and 40x objectives with Leica AF6000 inverted fluorescence
microscope. For 3D assay, spheroid growth was quantified
using Photoshop CS6 (Adobe) by calculating the spheroid size
area on the 7 days image, normalized on initial spheroid size.
For 2D assay, invasion was quantified using Photoshop CS6
(Adobe) by calculating the invaded area on image taken at

day 4 and normalized on the initial spheroid size. For co-
culture experiments images were taken every hour at different
magnifications with an inverted fluorescence microscope (Leica
AF6000). Cancer cell elongation was quantified manually by
scoring individual cells using Image J “Cell Counter” plugin on
taken images at 48 h co-culture. Elongated cells were defined
as single cells with a minimal length-width rapport of 2:1,
and at least one sharp-ending extremity. Cancer cell motility
was quantified based on single cell track follow for 24 h
on time-lapse movies using Image J “Manual Tracking” and
“Chemotaxis Tool” plugins. Western Blot images were quantified
for protein level using Image J “Gel Analyze Tool” plugin.
For immunohistochemistry images, slides were scanned using a
NanoZoomer 2.0 HT (Hamamatsu) and images were extracted
and analyzed using NDP.view2 analysis software (Hamamatsu).
Metastases were counted based on the presence of vimentin
positive staining in the lung. Each isolated positive cell or cell
cluster (touching) was considered as a metastasis.

Statistical Analysis
Each experiment was repeated independently a minimum of
3 times in triplicate conditions. Acquired data were analyzed
using Prism Software (GraphPad). Statistical comparisons were
performed by un-paired two-tailed Student’s t-test or by two-way
ANOVAwith Bonferroni post-test. Results were considered to be
significantly from p < 0.05.
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