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Hemocompatibility of blood-contacting biomaterials is one of the most important criteria

for their successful in vivo applicability. Thus, extensive in vitro analyses according to

ISO 10993-4 are required prior to clinical applications. In this review, we summarize

essential aspects regarding the evaluation of the hemocompatibility of biomaterials and

the required in vitro analyses for determining the blood compatibility. Static, agitated, or

shear flow models are used to perform hemocompatibility studies. Before and after the

incubation of the test material with fresh human blood, hemolysis, cell counts, and the

activation of platelets, leukocytes, coagulation and complement system are analyzed.

Furthermore, the surface of biomaterials are evaluated concerning attachment of blood

cells, adsorption of proteins, and generation of thrombus and fibrin networks.

Keywords: hemocompatibility, blood contact, biomaterials, coagulation, complement system

INTRODUCTION

Hemocompatibility is one of the major criteria, which limit the clinical applicability of blood-
contacting biomaterials. These materials come in close contact with blood, which is a complex
“organ,” comprising of 55% plasma, 44% erythrocytes, and 1% leukocytes and platelets. Thus,
adverse interactions between newly developed materials and blood should be extensively analyzed
to prevent activation and destruction of blood components. The initially adsorbed protein layer on
the biomaterial surface mainly triggers the adverse reactions, such as the activation of coagulation
via intrinsic pathway, the activation of leukocytes, which results in inflammation, and the adhesion
and activation of platelets (Liu et al., 2014). As a result, the number of blood cells can decrease and
a thrombus can be formed.

Thus, the applied blood-contacting biomaterials should not adversely interact with any blood
components and activate or destruct blood components. Erythrocytes are the most abundant
blood cells with 4–6 × 106 cells/µl and they are important for the transport of oxygen (O2) from
the lung to all tissues and cells and carbon dioxide (CO2) from tissues back to the lung. Since
erythrocytes are the most rigid cells in the blood, they are sensitive to rupture and hemolysis
due to shear stress and changes in osmotic pressure. Blood platelets are the smallest (1–3µm)
and the second abundant cell type in the blood with 1.5–3.5 × 105 cells/µl, which can rapidly
recognize foreign surfaces and initiate blood coagulation. Furthermore, human blood contains
4.3–10 × 103 leukocytes/µl, such as granulocytes, lymphocytes, monocytes, dendritic and natural
killer cells. Monocytes account for 1–6% of all leukocytes and neutrophil granulocytes are the most
abundant leukocytes in the blood, comprising 50–70% of all leukocytes. These immune cells are
belonging to the innate immune system and they can be rapidly activated upon recognition of
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a foreign invader such as a pathogen or a foreign material.
Furthermore, blood plasma contains high amounts of
plasma proteins, such as albumin, coagulation factors, and
immunoglobulins.

Catheters, guidewires, dialyzer, oxygenators (artificial lungs),
heart-supporting systems, cardiac pacemaker, vascular grafts,
stents, heart valves, micro-, and nanoparticles are widely used
medical devices and materials coming in direct contact with
blood. Prior to clinical application, the hemocompatibility
of blood-contacting medical materials have to be analyzed
and therefore, a guidance is developed by the International
Organization for Standardization (ISO 10993-4) (International
Organization for Standardization, 2000). According this
guideline, five different categories, thrombosis, coagulation,
platelets, hematology, and immunology (complement system
and leukocytes), are indicated for hemocompatibility evaluation.
The devices are divided into three categories concerning blood
contact: (1) Externally communicating devices with indirect
blood contact, e.g., cannulas and blood collection sets; (2)
Externally communicating devices with direct blood contact,
e.g., catheters and hemodialysis equipment; (3) Implant devices,
e.g., heart valves, stents, and vascular grafts. So far, several studies
were performed according ISO-10993-4 to evaluate various
blood contacting devices and materials, such as stents (Sinn
et al., 2011; Stang et al., 2014), catheters with a noble metal alloy
coating (Vafa Homann et al., 2016), poly(2-dimethylamino-
ethylmethacrylate) (PDMAEMA) (Cerda-Cristerna et al.,
2011), and DNA hydrogels (Stoll et al., 2017). To perform
hemocompatibility analysis, static, agitated, or shear flow in vitro
models are used for the incubation of blood with the biomaterial.
Before and after the incubation of biomaterials with fresh human
blood, the activation markers regarding hemocompatibility are
analyzed (Figure 1).

INCUBATION OF BIOMATERIALS WITH
HUMAN BLOOD

Using fresh human blood and adequate in vitro models, the
hemocompatibility of blood-contacting biomaterials can be
studied accurately. Compared to in vivo animal models, in vitro
models allow the analysis under well controllable conditions
such as blood flow, anticoagulation and eliminate disturbing
factors related to flow obstruction, surgery, and tissue effects
(van Oeveren, 2013). Furthermore, the blood contact is more
intense and products generated due to reaction of the blood
components to the biomaterial are not cleared. Moreover,
using in vitro models, different devices can be analyzed under
the same conditions, which enable the direct comparison
of outcomes. Thereby, positive controls, which show a poor
hemocompatibility, such as glass (Ferrer et al., 2013), devices
or biomaterials, which are already on the market with a
comparable surface area, and negative controls without test
material should be simultaneously tested to be able to evaluate
the hemocompatibility.

The quality of collected blood is extremely important to enable
standardized hemocompatibility analysis. The in vitro analysis

FIGURE 1 | Schematic representation of the procedure for the evaluation of

the hemocompatibility of biomaterials. First, fresh human blood is collected

and anticoagulated with low dose heparin. Thereafter, the test material is

incubated at 37◦C using static, agitated, or dynamic test models with the

blood. The activation markers in the blood are analyzed before and after the

incubation with the test material. Furthermore, the surface of the biomaterial is

analyzed to determine the interaction of blood cells and proteins with the

biomaterial surface.

should be performed with fresh blood from healthy subjects
(Blok et al., 2016). Blok et al. demonstrated that the stationary
storage of blood over 4 h at room temperature affects the platelet
function and activity of leukocytes. Thus, experiments should be
started within 4 h after the blood collection. However, the faster
the experiments are started, the better it is. Peripheral blood
should be collected from healthy non-smoker, non-pregnant
subjects free of medication (particularly drugs affecting the
hemostasis, such as aspirin, oral contraceptives, and nonsteroidal
anti-inflammatory drugs). Moreover, atraumatic blood collection
by minimizing venostasis during blood withdrawal and the use of
21-gauge needles is required to minimize activation of platelets
and the coagulation cascade during collection (Braune et al.,
2013).

Furthermore, prior to starting hemocompatibility analyses,
unreacted monomers, intermediate- or by-products, solvents,
and unwanted chemical residues should be removed by
appropriate washing and cleaning procedures from generated
biomaterials to eliminate an unwanted influence on blood
components. Depending on biomaterial, device, and production
technique, different washing and cleaning procedures with
different solutions are required, for example ethanol can be
removed by evaporation or washing with PBS (Punet et al.,
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2015), NaCl, or water and unreacted methacrylic anhydride
and by-products can be eliminated by dialysis (Xiao et al.,
2011; Camci-Unal et al., 2013). Additionally, endotoxin content
should be determined to exclude material-unrelated activation of
platelets and blood cells due to presence of endotoxins (Watanabe
et al., 2003; Kälsch et al., 2007; Schrottmaier et al., 2016).
Furthermore, a process called depyrogenation can be applied to
remove endotoxins from biomaterials (Li and Boraschi, 2016).
For example by using detergents (e.g., Triton X-114) and a
two-phase extraction method, endotoxins can be eliminated
(Zhang et al., 2015). After the addition of the detergent to the
sample, endotoxins are incorporated into micelles via non-polar
interactions of the surfactant end groups and alkyl chains of lipid
A, which is the most conserved part of endotoxins (Magalhães
et al., 2007). The increase of temperature leads to the formation of
a water phase (micelle-poor) and a micelle-rich phase. Thereby,
endotoxins remained in the micelle-rich phase (bottom-phase)
can be removed.

Static Blood Incubation Models
In static blood incubation models, test materials are incubated
with blood or platelet-rich plasma (PRP) without flow conditions
(Mohan et al., 2013). Therefore, container, such as well
plates or tubes, can be used to incubate the material with a
certain blood or PRP volume. It is a very simple and rapid
method to determine the hemocompatibility of biomaterials,
especially the thrombogenicity. However, this method provides
only rudimentary results regarding hemocompatibility. Thereby,
major limitations can be the cell sedimentation and the big blood-
air interface, which can lead to a protein aggregation and result
in platelet activation (Haycox and Ratner, 1993).

Agitated Blood Incubation Models
In agitated blood incubation models, flat incubation chambers
with top and bottom surfaces made of the test material are
completely filled with blood and incubated on a shaker or
overhead rotator without directed flow (Streller et al., 2003).
Furthermore, the container filled with the blood can be rotated
to prevent the sedimentation of the test material, such as
nanoparticles (Maitz et al., 2017). Using these models, the blood-
air contact is almost excluded and cell sedimentation is reduced.

Shear Flow Models
Flat-plate flow chambers (Van Kruchten et al., 2012), parallel-
plate and cone-platelet viscometer (Lackner et al., 2012), and
tubular systems such as the “Chandler loop” (McClung et al.,
2007; Krajewski et al., 2013; Stang et al., 2014) and the roller
pump closed-loop (Podias et al., 1995; Wang et al., 2001) systems
are some of in vitro shear flow models. In these models, vascular
blood flow is mimicked to simulate the dynamic interaction
between the biomaterial and whole blood (Sanak and Wegrzyn,
2010). In flat-plate flow chambers, blood flows over a flat piece
of biomaterial and in parallel-plate viscometers, blood is filled
between two plates made of the biomaterial to be tested and one
of the plates is rotated relative to the other (Sukavaneshvar, 2017).
In Chandler loop, a circular conduit made of the biomaterial
or coated with the biomaterial, is filled with fresh human

blood with air bubble to allow the blood mixture and rotated
in a water bath with 37◦C to stimulate blood circulation. In
modified versions of the Chandler loop, small materials, such
as stents are inserted in tubings and then filled with blood
(Müller et al., 2012). Since the Chandler loop is partially filled
with air, the device circulates through an air-liquid interface.
Thus, this method can lead to the denaturation of proteins at
the air-liquid interface (Thorsen et al., 1993; Ritz-Timme et al.,
1997) and the detachment of adhered blood cells. Therefore,
roller pump closed-loop test systems were also used instead
of Chandler loop. Hereby, the blood flow is realized by using
a pump. However, due to use of a pump even with lowest
pumping rates a slight destruction of erythrocytes (hemolysis)
can occur. Van Oeveren and colleagues analyzed additionally to
the Chandler loop and roller pump model, the Hemobile model
(Van Oeveren et al., 2012) regarding intrinsic damage of blood
components and activation of platelets. Hemobile model has a
one-way ball valve to ensure unidirectional flow and the tubing
contains no air, and there is no mechanical device compressing
the tubing. Thus, using this model, less blood trauma
was induced compared to Chandler-Loop and roller pump
model.

However, the main limitation of these in vitro models is
the lack of an endothelium in the circulating system. The
endothelium produces cytokines, anti-thrombotic components
and expresses adhesion molecules for thrombocytes, monocytes,
and neutrophils and plays an important role in interaction
between the circulating blood and injured vessel wall. Therefore,
in a recent study, Nordling et al. used a novel blood endothelial
cell chamber model to study the interactions between human
whole blood and endothelium (Nordling et al., 2014). There,
the blood contacting surface of incubation chambers were
seeded with human umbilical vein endothelial cells (HUVECs).
Furthermore, a relatively new field for the examination of platelet
and coagulation activation is the use of microfluidics (Kent et al.,
2010; Onasoga-Jarvis et al., 2013, 2014; Kovach et al., 2014; Zhu
et al., 2015; Nagy et al., 2017). Using microfluidic flow devices
platelet and coagulation activation can be determined at the same
time and under defined, physiological or pathological (stenotic)
wall shear rates. Due to the small size of microfluidic devices,
only small amounts of blood are required. Furthermore, the
combination with fluorescence microscopy allows the real-time
optical imaging of platelet adhesion and formation of fibrin fibers
(Westein et al., 2012; Zhu et al., 2015).

ANALYSIS OF HEMOCOMPATIBILITY

Using the described in vitro models, various information
regarding hemocompatibility (Figure 2) can be obtained: (1)
Changes of platelets, erythrocytes and leukocytes, (2) Generation
of activation products in plasma, (3) Deposition of proteins
and cells on the material surface. Thus, blood and surface of
biomaterials are analyzed before and after the incubation. In
Table 1, test categories for the hemocompatibility analysis of
biomaterials are summarized and in the following, the required
analyses for the evaluation of hemocompatibility are described.
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FIGURE 2 | Schematic representation of major reactions in blood induced by biomaterial surface. Besides complement system, intrinsic and extrinsic coagulation

pathway can be activated. Coagulation activation results in generation of a fibrin network. Furthermore, platelets can adhere and aggregate on the surface. The

adhesion and activation of leukocytes can lead to the release of polymorphonuclear (PMN) elastase and tissue factor (TF) and result in activation of extrinsic pathway.

ADP, Adenosine diphosphate; β-TG, β-Thromboglobulin; GPIIb/IIIa, Glycoprotein IIb/IIIa; MAC, Membrane attack complex; PF4, Platelet factor 4; TXA2, Thromboxane

A2; vWF, von Willebrand factor.

DETERMINATION OF BLOOD CELL
NUMBERS AND HEMOLYSIS

The number of erythrocytes, leukocytes, and platelets is
measured before and after the incubation of blood with
biomaterial using a hematology analyzer, which uses electrical
impedance. A decrease of the platelet count over time
indicates a thrombogenic material. Furthermore, the rupture of
erythrocytes, called hemolysis, is accompanied by the release
of hemoglobin. Thus, an increased concentration of free

hemoglobin in the plasma is a direct indicator of erythrocytes
destruction. The damage of erythrocytes can lead to the reduced
oxygen transport to tissues and organs in vivo and increased
levels of free hemoglobin can induce toxicity or alter the kidney

function (Qian et al., 2010). Additionally, microvesicles derived
from erythrocytes can promote the thrombus formation in a
tissue factor (TF)-dependent manner (Biró et al., 2003). Thus,
hemolysis can be analyzed after direct or indirect blood contact.

In direct analysis, blood is incubated with the biomaterial and
in indirect testing blood is incubated with biomaterial extract

(Kuhbier et al., 2017). Hemolysis can be detected by using
a photometric colorimetric test (cyanmethemoglobin method)
(Stadie, 1920). Thereby, the free amount of hemoglobin in
plasma is examined after the addition of cyanmethemoglobin
(CMH) reagent, e.g., Drabkin’s reagent, which rapidly converts

hemoglobin to the cyanoderivate (Neun and Dobrovolskaia,
2011). The absorption of CMH is measured at 540 nm using a
photometer. Depending on hemolysis, materials can be classified
in three different categories: Materials resulting in over 5%
hemolysis are classified hemolytic, between 5 and 2% as slightly
hemolytic, and below 2% as nonhemolytic (Totea et al., 2014).

COAGULATION ACTIVATION

The interaction of plasma proteins with artificial surfaces triggers
intrinsic coagulation pathway by contact activation. The contact-
phase system consists of three serine proteinases, factor XII,
factor XI, and plasma prekallikrein (PK), and the nonenzymatic
cofactor high molecular weight kininogen (HMWK) and it is
also called as plasma kallikrein-kinin system (Wu, 2015). The
contact of blood with artificial, negatively charged surfaces,
such as kaolin, glass, collagen, silica, or dextran sulfate, leads
to the conversion of Factor XII to the active enzyme Factor
XIIa. Factor XIIa converts PK into active kallikrein and HMWK
into bradykinin. Besides coagulation, kallikrein and bradykinin
promote inflammation (Long et al., 2016). Kallikrein can directly
activate neutrophils (Wachtfogel et al., 1995) and bradykinin can
stimulate the release of nitric oxide (Bae et al., 2003), TNFα, and
IL-1 (Tiffany and Burch, 1989). Factor XIIa activates Factor XI
to XIa and in the following step, Factor IX is converted by Factor
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TABLE 1 | Summary of test categories for the hemocompatibility analysis of

biomaterials.

Test

category

Parameter Test principle

Complement

System

C3a, C5a, Bb, C4d,

C5b-9

ELISA

Coagulation Factor XIIa, TAT, F1 +

2, free active thrombin,

FPA, aPTT

ELISA, Optical density,

Viscoelasticity

Fibrinolysis D-Dimers Immunoturbidimetry,

LPIA, ELISA

Platelets β-TG, PF4, number of

platelets,

P-selectin, activated

GPIIb/IIIa

ELISA, Cell Counter,

FACS

Hemolysis Number of

erythrocytes,

Hemoglobin

Cell Counter

Colorimetric Assay

Leukocyte

Activation

PMN elastase, ROS

detection, CD11b

expression

ELISA, fluorimetric or

spectrophotometric

methods, FACS

Surface

Analysis

Platelet adhesion,

aggregation, leukocyte

adhesion

Plasma protein

adsorption

SEM, Fluorescence

microscopy

ELISA, Western Blot

aPTT, activated partial thromboplastin time; β-TG, β-Thromboglobulin; C3a, Complement

factor 3a; C5a, Complement factor 5a; C4d, Complement factor 4d; Bb, complement

factor Bb; ELISA, Enzyme-linked Immunosorbent Assay; FACS, Fluorescence-activated

cell sorting; FPA, fibrinopeptide A; F1+2, Prothrombin fragment 1+2; LPIA, Latex

photometric immunoassay; PF4, Platelet factor 4; TAT, thrombin-antithrombin III complex;

PMN elastase, Polymorphonuclear elastase; ROS, Reactive oxygen species; SEM,

Scanning electron microscopy.

XIa to IXa, which then activates factor X. The conversion of factor
X into factor Xa is the first common step in the coagulation
cascade between the intrinsic and extrinsic pathways (Millar
et al., 2016). In addition, the activation of complement system
can lead to the generation of TF by monocytes, which can result
in activation of extrinsic pathway (Kappelmayer et al., 1993).
Factor Xa converts prothrombin to thrombin, which hydrolyses
fibrinogen into fibrin and leads to the subsequent clot formation.

The activation of coagulation system is screened by detection
of FXIIa (Basu et al., 2017), prothrombin fragment 1 + 2 (F1
+ 2) (Maitz et al., 2017; Sperling et al., 2017), which is released
during thrombin formation, free active thrombin (Müller
et al., 2011), fibrinopeptide A (FPA) (Peckham et al., 1997),
partial thromboplastin time (PTT), or thrombin-antithrombin
III complex (TAT). Furthermore, the degradation product of
fibrin, D-dimer, can be detected by ELISA to determine the
activation of fibrinolysis (Sperling et al., 2017). Antithrombin
III inhibits thrombin by forming a TAT complex. Thus, this
complex reflects a functional state of the coagulation system
and can be quantified using ELISA. PTT assay measures the
clotting time from the activation of Factor XII to the formation
of a stable fibrin clot. To detect PTT, citrated platelet-poor
plasma is incubated at 37◦C with the test material for 15, 30,
or 60min. The addition of PTT reagent (cephalin) followed
by the addition of calcium chloride solution inactivates the
anticoagulant and initiates clot formation and this time is

recorded to obtain the activated PTT (aPTT). A shortened
clotting time indicates an activation of the intrinsic and common
pathways of coagulation by the test material. Untreated plasma
is used as negative control and latex or black rubber as positive
control.

ACTIVATION OF COMPLEMENT SYSTEM

Complement system consists of more than 30 proteins
circulating in the blood and present as membrane-associated
proteins (Dunkelberger and Song, 2010). In response to the
recognition of foreign surface structures, complement factors
are sequentially activated in an enzyme cascade via three
different pathways: classical, alternative, and mannose binding
lectin (MBL) pathway. All of these pathways lead to the
generation of a C3 convertase, which cleaves C3 into a large
fragment C3b, which acts as an opsonin and a small fragment
C3a, which is an anapylatoxin that promotes inflammation.
Afterwards, C5 convertase is generated, which cleaves C5 in
C5a, which is an anapylatoxin, and C5b that binds to the
foreign surface and initiates the generation of terminal lysis
complex (C5b-9, TCC), which is also called membrane attack
complex (MAC). As a result, microorganisms are eliminated
by lysis, opsonization and triggering a series of inflammatory
reactions.

The contact of the artificial surface with blood leads to
an immediate adsorption of serum proteins, e.g., fibrinogen,
albumin, and immunoglobulin G (IgG), to the surface of the
material (Wetterö et al., 2000) and it results in a kinetic
competition between the proteins on the material surface, which
is called the Vroman effect (Vroman et al., 1980). During the
first minutes, abundant proteins, such as fibrinogen, adsorb
and they are progressively displaced by less abundant proteins
with a higher affinity for the surface, such as HMWK, Factor
XII, and plasminogen (Ballet et al., 2010). Especially, the
complement protein C3 and IgG can readily bind to hydrophobic
surfaces and lead to the activation of complement system.
Thereby, the following conformational changes on the blood-
contacting surface are considered as initial trigger for the
complement activation via the alternative or classical pathway
(Gorbet and Sefton, 2004; Andersson et al., 2005; Nilsson et al.,
2007). Different biomaterial surfaces show different complement
activating properties, for example, hydrophobic surfaces can lead
to an increased complement activation compared to hydrophilic
surfaces (Nilsson et al., 2007).

The generated complement activation products lead to the
increased expression of P-selectin, which is an important
mediator of neutrophil recruitment and platelet accumulation
(Sukavaneshvar, 2017). Compared to C3a and C4a, the produced
C5a is the most powerful anaphylatoxin. It can increase the
permeability of blood vessels, attract and activate neutrophil
granulocytes and monocytes to stimulate phagocytosis. C5a
stimulates endothelial cells to increasingly express cytokines,
chemokines and cell adhesion molecules, such as E-selectin
(Newton and Dixit, 2012). Furthermore, it can bind to mast
cells and increase inflammation. Moreover, C5a is able to trigger
the release of TF from neutrophils and monocytes, which can
initiate coagulation cascade (Ikeda et al., 1997; Ritis et al., 2006;
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Kourtzelis et al., 2010). Thus, there is a close cross-talk between
the complement system and the coagulation pathway mediated
by the generated C5a (Oikonomopoulou et al., 2010).

Therefore, the analysis of complement activation is a highly
relevant criterion in the legislation for testing biomaterials
intended for blood contact. According to ISO 10993-4
(International Organization for Standardization, 2000), the
complement activation can be analyzed by detection of C3a, C5a,
Bb, iC3b, C4d, C3-, or C5-convertase, and the C5b-9 complex in
whole blood, as well as the 50% complement hemolytic activity
(CH50) (Costabile, 2010). Most frequently, the concentration
of anaphylatoxins C3a and C5a as well as the C5b-9 complex is
determined using ELISA (Kopp et al., 2002; Sperling et al., 2007;
Engberg et al., 2011). Furthermore, in a recent study, Endgberg
and colleagues proposed that the ratio between the binding of C4
and its inhibitor C4BP should be considered as a predictor for
the evaluation of the hemocompatibility (Engberg et al., 2015).

PLATELET ACTIVATION

Platelets are present in large quantities in the blood and under
physiological conditions, they circulate in a quiescent state for
7–10 days. The adhesion and activation of platelets is prevented
by an healthy endothelial monolayer, which acts as a barrier
between blood and tissues and has antithrombogenic properties
by the release of e.g., nitric oxide (NO) and prostaglandin I2
(PGI2) (Brass et al., 2013; Golebiewska and Poole, 2015; Frohlich,
2016). The damage of endothelium leads to the exposure of the
underlying subendothelial collagen to the blood. In addition,
damaged endothelial cells secrete von Willebrand factor (vWF),
which can bind to the collagen in the exposed subendothelial
layer and mediate the adhesion of circulating platelets (Yau et al.,
2015) to form a seal at the damaged area.

The exposure of biomaterial to the blood can result in
an undesired activation of platelets and consequently lead
to thrombotic complications. Thus, the analysis of platelet
activation is an important part of hemocompatibility tests.
The contact of blood with foreign surfaces immediately leads
to the adsorption of plasma proteins, especially fibrinogen,
immunoglobulins, fibronectin, vitronectin, Factor XI and XII,
vWF, HMWK, and PK to the biomaterial surface (Long
et al., 2016). Particularly, fibrinogen, vWF, fibronectin, and
vitronectin induce the adhesion of platelets via interaction
with the most frequent integrin receptor αIIbβ3 glycoprotein
IIb/IIIa (GPIIb/IIIa) on the surface of platelets and lead to the
activation of platelets. Subsequently, platelets release bioactive
molecules from their alpha and dense granules. Each platelet
contains ∼50–80 alpha granules and ∼3–6 dense granules
(Fitch-Tewfik and Flaumenhaft, 2013). The dense granules
contain proaggregatory factors such as adenosine diphosphate
(ADP), adenosine triphosphate (ATP), histamine, serotonin
[5-hydroxytryptamine (5-HT)], polyphosphates, and bivalent
cations Mg2+ and Ca2+ (Meyers et al., 1982). ADP can
activate neighboring platelets via binding to two different
purinergic receptors on platelets, known as P2Y1 and P2Y12

(Wijeyeratne and Heptinstall, 2011). These platelets can activate

further platelets passing by and lead to the adhesion and
aggregation of neighbored platelets. Finally, the thrombi is
stabilized by fibrin. Alpha granules contain hemostatic proteins,
such as vWF, fibrinogen, Factor V, Factor IX, and plasminogen,
chemokines (e.g., platelet factor 4 (PF4), SDF-1α), and growth
factors (e.g., VEGF, PDGF). Furthermore, large amounts of β-
thromboglobulin (β-TG) are released from alpha granules after
the activation of platelets, which lead to leukocyte recruitment
(Brandt et al., 2000; Frohlich, 2016). In addition, alpha granules
also contain integral membrane protein P-selectin, which is
translocated to the plasma membrane after the activation of
platelets (Frenette et al., 2000). P-selectin glycoprotein ligand-1
(PSGL-1) expressed on leukocytes can interact with P-selectin
and lead to the activation of neutrophils (Sreeramkumar et al.,
2014). Furthermore, the released polyphosphates can activate
Factor XII and lead to the initiation of the intrinsic coagulation
pathway (Müller et al., 2009).

The activation of platelets can be determined according to
ISO 10993-4 bymeasuring released contents from alpha granules,
such as β-TG or PF4 using ELISA (Mayer et al., 2009; Teligui
et al., 2016; Stoll et al., 2017) and detection of P-selectin (CD62P)
or activated GPIIb/IIIa receptor with PAC-1 antibody using flow
cytometry (Theoret et al., 2011; van Velzen et al., 2012).

ACTIVATION OF LEUKOCYTES

Besides coagulation, complement, and platelet activation, the
activation of leukocytes and the occurrence of respiratory burst
can be analyzed to evaluate biomaterial-induced inflammatory
response. Thus, the generation of reactive oxygen species (ROS)
and the release of PMN elastase are the mainly determined
parameters for leukocytes activation. The activation of leukocytes
leads to a respiratory burst (Dahlgren and Karlsson, 1999), which
is the result of an enhanced oxygen metabolism, and results in
generation of ROS (superoxide anion (O−

2 ), hydrogen peroxide
(H2O2), hydroxyl radical (HO•) and singlet oxygen (1O2). Thus,
the ROS generation can be detected (Roesslein et al., 2013)
using chemiluminogenic (Nygren et al., 2000) or fluorogenic
substances (Ferrer et al., 2013). Furthermore, the release of
elastase from PMNgranulocytes, especially from neutrophils, can
be quantified by ELISA (Zimmermann et al., 2007). Additionally,
PMN elastase activity can also be measured by the proteolytic
cleavage of a synthetic substrate and the release of a fluorophore,
which can be easily quantified by fluorescence (Gramegna et al.,
2017).

The activation of leukocytes leads to the increased expression
of CD11b on the cell surface via translocation of the CD11b
from intracellular granules to the plasma membrane. Thus, the
detection of CD11b expression on the surface of leukocytes using
fluorescence-activated cell sorting (FACS) can give additional
information on activation of leukocytes (Gorbet et al., 1999).
Furthermore, the production of neutrophil extracellular traps
(NETs) is a recently described mechanism of neutrophils for
host defense (Brinkmann et al., 2004; Delgado-Rizo et al.,
2017). During NETosis, the nuclear material is released in form
of a meshwork of chromatin by activated neutrophils to the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 July 2018 | Volume 6 | Article 99

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Weber et al. Hemocompatibility of Blood-Contacting Biomaterials

FIGURE 3 | Scanning electron microscopic (SEM) analysis of synthetic vascular graft surface after the blood contact. Arrows indicate the adhered platelets as well as

the resulting 3D-fibrin meshes due to activation of blood coagulation. The analyses were performed in our working group and the data has not been published before.

extracellular space (Noubouossie et al., 2017). Several proteins
adhere to the NETs, such as histones and components with
antimicrobial activity, e.g., elastase andmyeloperoxide (Delgado-
Rizo et al., 2017). Besides the ability to trap bacteria, NETs ability
to promote thrombosis was demonstrated in animal models (Brill
et al., 2012).

ANALYSIS OF BIOMATERIAL SURFACES

The adsorption of proteins to the surface of biomaterials is the
initial step directly after the blood contact. Subsequently, adhered
proteins initiate the adhesion and activation of platelets on the
surface. These platelets can further activate neighbored platelets
and at the last step the thrombi are stabilized by the generation of
a fibrin network.

The activation of platelets is a very fast process of ∼180ms
(van Oeveren, 2013) and different morphological appearance
of platelets can be detected on material surfaces depending on
varying states of activation: (1) unactivated platelets: round,
discoid shaped without pseudopodia, (2) partially activated
platelets: dendritic with early pseudopodia, (3) moderately
activated platelets: spread-dendritic with irreversible long-
dendritic extensions, (4) fully activated platelets: fully spread
(Park et al., 1990).

The adhesion and activation of platelets lead to a cytoskeletal
rearrangement and therefore to a morphological change of
platelets on the biomaterial surface with extensive formation
of pseudopodia. Afterwards, the spreading of platelets and the

release of vasoconstrictive substances, such as thromboxane
and PDGF, as well as contents of stored granules occur.
Finally, the aggregation of platelets and the generation of
a fibrin network can be analyzed using scanning electron
microscopy (SEM) (Zhang et al., 2017) (Figure 3). Thus, in
several studies, the surface thrombogenicity of biomaterials
was examined by characterization of cell morphology and

spreading using SEM (Balasubramanian and Slack, 2001; Aguilar
et al., 2002). Furthermore, using fluorescently labeled antibodies
against specific receptors, the adhered cells and the cell density
can be detected using fluorescence and confocal microscopy
(Nguyen et al., 2016). In recent years, microgravimetric analyses
using quartz crystal microbalance (QCM) were also applied to
investigate the platelet adhesion and activation (Sinn et al., 2010;

Fatisson et al., 2011; Kunze et al., 2014). Moreover, Hanson
and colleagues used surface plasmon resonance (SPR) based
flow chamber device to detect platelet-surface interactions and
blood coagulation (Hansson et al., 2007). Furthermore, Zhao
et al. (2011) used SEM and transmission electron microscopy
(TEM) to investigate the effect of different sizes of nanoparticles
on hemolysis and the mechanism behind the lysis of red
blood cells. The group demonstrated that a small proportion of
small type of mesoporous silica nanoparticles (MSNs) adsorbed
to the surface of erythrocytes without any alteration of cell
membrane or morphology. In contrast, the adsorption of large
type MSNs to the erythrocytes induced a strong local membrane
deformation and resulted in internalization of particles and
hemolysis.
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CONCLUSION

The interaction of biomaterials with blood leads to cellular
as well as humoral reactions, which can result in an
unwanted inflammation and activation of coagulation and/or
fibrinolysis. Thus, the development of biomaterials with an
improved hemocompatibility increases the tolerability and
minimizes unwanted side effects, such as thrombus formation.
Therefore, during the development of new blood-contacting
medical devices, not only the mechanical and chemical
characteristics should play an important role, but also the

hemocompatibility. Furthermore, to prove the safety and
reliability of new products, hemocompatibility analyses should
include appropriate references and follow the ISO 10993-4
standard.
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