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Background: Physical activity (PA) is essential in stroke rehabilitation of hemiparetic

patients to avoid health risks, and moderate to vigorous PA could promote patients’

recovery. However, PA assessments are limited to clinical environments. Little is known

about PA in unguided free-living. Wearable sensors could reveal patients’ PA during

rehabilitation, and day-long long-term measurements over several weeks might reveal

recovery trends of affected and less-affected body sides.

Methods: We investigated PA in an observation study during outpatient rehabilitation

in a day-care center. PA of affected and less-affected body sides, including upper and

lower limbs were derived using wearable motion sensors. In this analysis we focused on

PA during free-living and clinician guided therapies, and investigated differences between

body-sides. Linear regressions were used to estimatemetabolic equivalents for each limb

at comparable scale. Non-parametric statistics were derived to quantify PA differences

between body sides.

Results: We analyzed 102 full-day movement data recordings from eleven hemiparetic

patients during individual rehabilitation periods up to 79 days. The comparison between

free-living and clinician guided therapy showed on average 16.1% higher PA in the

affected arm during therapy and 5.3% higher PA in the affected leg during therapy.

Average differences between free-living and therapy in the less-affected side were below

4.5%.

Conclusion: We analyzed PA of patients with a hemiparesis in two distinct rehabilitation

settings, including free-living and clinician guided therapies over several weeks and

compared MET values of affected and less-affected body sides. In particular, we

investigated PA using individual regression models for each limb. We demonstrated

that wearable motion sensors provide insights in patient’s PA during rehabilitation.
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Although, no clear PA trends were found, our analysis showed patients’ tendency to

sedentary behavior, confirming previous lab study results. Our PA analysis approach

could be used beyond clinical rehabilitation to devise personalized patient and

limb-specific exercise recommendations in future remote rehabilitation.

Keywords: IMU, acceleration, stroke, rehabilitation, metabolic equivalent, effect size

1. INTRODUCTION

Physical activity (PA) is essential to maximize rehabilitation
outcome of patients after stroke. Continuous sensor-based PA
measurements could help to evaluate the recovery process,
devise exercise adaptations, and investigate PA trends. Research
suggested that PA of moderate and high intensity promotes
stroke recovery, contribute to increased health and well-being,
and reduces the risk of follow-up strokes (Gordon et al.,
2004; Baert et al., 2012; Moore et al., 2013). Verschuren
et al. (2015) and Paul et al. (2016) showed that stroke
patients tend to sedentary behavior with light PA reducing
rehabilitation efficiency and hence delay recovery. However,
little is known about the gradual recovery process over weeks,
months, and even years and how potential recovery trends
could be evaluated in rehabilitation without specific tests and
assessments. Assessing PA of patients after stroke in free-living
is challenging, even in controlled rehabilitation settings, e.g.,
hospitals and clinics, activity patterns remain unclear (Field
et al., 2013; Lacroix et al., 2016). So far, PA was primarily
evaluated based on observation and subjective self-reports,
rendering PA assessments unreliable (Billinger et al., 2014). In
contrast, longitudinal sensor-based measurement could be used
for PA quantification, support devising rehabilitation strategies
and exercise recommendations, and facilitate recovery trend
investigation, thus provide valuable insights in patients’ recovery
process. Moreover, PA differences between the affected and less-
affected body side of upper and lower body extremities across
multi-week rehabilitation period have not been investigated.
Comparing body sides and body parts could reveal activity
patterns and behavior related to functional limitations and
movement compensation mechanisms. Therefore, analysing
all extremities separately could facilitate targeted therapy to
enhance motor functionality. We aim to utilize wearable
sensors and linear regression to estimate MET equivalents,
which could lead to PA analysis beyond clinical rehabilitation
settings.

PA is typically expressed in units of energy or activity
counts, however, these units are not comparable. In contrast,
metabolic equivalents (MET) quantify PA intensity on a relevant
and comparable scale (Jette et al., 1990). To separate intensity
levels, distinct thresholds were used. For example, Garber
et al. separated very light (≤ 2.0MET), light (≤ 2.0–3.9MET)
and moderate-to-vigorous (≥ 3.0MET) intensities for healthy
people (Garber et al., 2011). MET measurements were usually
derived using a mobile spirometer and a close-fitting face-
mask (Verschuren et al., 2016). However, spirometry might be
suited for lab-controlled, short-term measurements only, e.g.,

treadmill-walking. Wearable sensors were increasingly used for
practical PA measurement (Plasqui et al., 2005; Parkka et al.,
2007; Kozey et al., 2010; Rand and Eng, 2012). Tieges et al. (2015)
used a thigh-worn sensor to assess sedentary behavior based
on posture and PA measurements in a realistic rehabilitation
setting. Fortune et al. validated Shimmer sensor-based MET
estimation with an indirect calorimetry reference system in
rheumatic patients, yielding a correlation of 0.82 (Fortune
et al., 2011). Mortazavi et al. demonstrated that sensors placed
closest to the primary location of movement resulted in
the most accurate MET estimation during soccer exergaming
in healthy participants (Mortazavi et al., 2013). However,
activity patterns considering individual extremities in patients
after stroke were not investigated. In this work, we used
an established regression-based approach to estimate MET
equivalents.

In stroke rehabilitation, where recovery can be a gradual
process over weeks, months or even years, binary test decisions of
significance might be insufficient to capture subtle changes over
time, e.g., PA differences between the affected and less-affected
side (Sullivan and Feinn, 2012). Hence, the measure of effect
size (Hentschke and Stüttgen, 2011) could be used to quantify
subtle differences between body sides on a continuous scale.

Although advantages of wearable sensors and their potential
in healthcare have been found, few studies quantified the
outpatients’ PA to demonstrate free-living viability of sensor-
based measurement (Dobkin and Dorsch, 2011; Iosa et al.,
2012). In this work, we measured the outpatients’ PA in
day-long recordings in a day-care center. The patient-specific
rehabilitation programmes and exercises were designed by
therapists and not modified for this study. Our analyses
provide insight into patients’ PA, which could be used
to personalize PA investigation in future remote free-living
monitoring. In particular, this paper provides the following
contributions:

1. We analyzed PA in free-living and therapy and investigated
differences in affected and less-affected body sides of the
upper an lower body using body-worn motion sensors to
obtain insights in patient behavior during an out-patient
rehabilitation process.

2. In an evaluation study, we recorded a total of 102 recording
days over several weeks from eleven outpatients after
stroke or brain tumor extraction to evaluate PA differences
on a interpretable scale using regression-estimated MET
equivalents. In addition, we compared average PA differences
using two non-parametric statistical tests, determining
significance and effect size, respectively.
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3. We discuss clinical implications and limitations and illustrate
how wearable sensors could be used in free-living to reveal
activity patterns and evaluate recovery trends.

2. METHODS

We describe an observation study including participants, study
design, sensor data recording, and expected observations. We
subsequently describe the PA calculation, the MET estimation,
and statistical methods used.

2.1. Evaluation Study
2.1.1. Participants
Eleven patients with a hemiparesis were included in our
observation study (5 females, aged 34–75 years, 56 ± 13
years, 4 wheelchair users, 48–335 days post-stroke), Table 1

contains detailed patient information. Patients were excluded
if presenting additional motor function impairments caused by
other/additional neurological diseases. Study participants visited
routinely the rehabilitation clinics’ day-care center at Reha
Rheinfelden, Switzerland during a study period of up to 79 days.
All study participants signed a written consent form before data
recordings began. The Swiss Ethics committee of the canton
Aargau, Switzerland approved the study (Application number:
2013/009). As part of the standard rehabilitation programme,
each patient was routinely assessed by clinicians at the begin
and shortly before the discharge, using the Extended Barthel
Index (EBI). The EBI is a clinical assessment to estimate
the patients’ level of independence in accomplishing daily
activities. Due to the longitudinal rehabilitation process where
patients focused on the training of daily activities to improve
independence, we expected increasing EBI scores. The EBI
consists of 16 categories including mobility (walking and stairs),
transfers (e.g., from bed to a chair and back), feeding, dressing,
and similar. Scores from zero (patients need full support) to
four (patients do not require support) were used to assess
each category. Table 1 includes the average EBI scores for the
complete assessment and the subcategory walking. The average
EBI score for the complete assessment at the begin of the standard
rehabilitation programme was 55.5 ± 6.3, the average EBI score
at the end of the rehabilitation was 59.2 ± 4.6. The subcategory
walking showed on average an increase of 0.5 scores.

2.1.2. Study Design
All patients received a personalized therapy schedule according
to their expected needs, considering the level of independence
and health state. Patients followed daily routines and trainings
according their therapy schedules, but had free time too. The
day-care center focused on re-integration into free-living, where
outpatients train activities of daily living (ADL) to promote
independence after the rehabilitation, e.g., during socializing,
laying tables and kitchen work, cleaning, computer work, leisure,
resting, and similar. In addition, patients received individualized
clinician-guided therapies, e.g., physio-, ergo- and water-therapy.
In this study, patients were accompanied and observed by
study examiners for 2–3 times per week. The study examiners
followed the patients for up to eight hours per recording

day and annotated observed patient activities using Android
smartphones and the open-source CRNTC+ framework. For the
study, an annotation catalogue including a total of 51 activity
primitives was specified. Activity primitives included walking,
walking up/downstairs, sitting, arm and leg flexion/extension,
arm and leg rotation, writing, reading, using phone, drinking,
and similar, to describe patient activities, clinician guided
therapy exercises and unguided training exercises in the gym
(Derungs et al., 2018a). During the recordings, including
free-living and clinician guided therapies as well as gym
training and vibration sessions, the study examiners marked
starting and ending of activities using the smartphone-based
annotation tool. Subsequently, data annotations were approved
after data post-processing by two study examiners. In addition,
we specified typical activity routines, such as eating/leisure,
cognitive training, medical fitness, kitchen work, motor training,
and resting as reference for potential subsequent behavior
description. The study time spread over 1–3 months per
patient (39.5 days on average, 79 days maximum), included
9.3 recording days on average per patient, and a total of 102
recording days. During free-living, patients performed various
ADL without guidance. Therapy included clinician guided
exercises, which were devised according patients’ needs and
daily health conditions. For example, if patients felt unwell,
had pain or expressed discomfort, therapy was adapted by the
clinician, e.g., including relaxation exercises to ease the patient’s
pain. Patients’ therapy schedules, activities, and incidents were
documented daily in case reports according clinical guidelines,
including strolls, sports, resting phases, or when patients felt
unwell.

The distinction between free-living and clinician guided
therapy was motivated by the primary rehabilitation goal,
i.e., to gradually transfer from acute treatment to outpatient
rehabilitation and finally to independent free-living without
clinician guided therapy. During the rehabilitation process,
patients were only supervised by clinicians during physio- and
ergo-therapy, contrary to free-living when patients followed
ADL without guidance. The outpatient rehabilitation at the
day-care center promoted ADL in free-living in a controlled
environment. Beside free-living, clinician guided therapies were
inherent part of the regular rehabilitation strategy, supporting
patients in targeted re-learning of functional motor tasks, e.g.,
grasping, reaching, standing up, and sitting down. Hence, the
standard rehabilitation settings free-living and clinician guided
therapy were considered for our observation study to reveal PA
insights.

Although patients were encouraged to exercise in the gym, the
unguided training was not mandatory, hence patients’ training
commitment was not guaranteed. Similarly, vibration training
was not part of the standard rehabilitation programme. Further,
we considered follow-up fitness and vibration training after the
clinical rehabilitation unlikely. Few times sensors were detached
during the rehabilitation, i.e., during water therapy and lymph
drainage massages. As a consequence, we excluded the non-
standard gym training, vibration sessions, and when sensors were
detached for this PA analysis, and summarized these activities as
other activities (excluded).
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TABLE 1 | Patient information.

ID Cause of

impairment

Locomotion

[type]

Gender Affected

[side]

Age

[years]

Rehab

[days]

Rec.

[days]

DAS

[days]

EBI*

compl

EBI

1compl

EBI*

walk

EBI

1walk

1 Stroke Wheelchair M Left 57 79 11 335 51 +8 1 +1

2 Stroke Walk M Right 47 18 8 135 63 +1 4 0

3 Stroke Wheelchair M Right 53 77 10 164 51 +10 0 0

4 Stroke Walk F Left 52 16 7 295 60 +1 4 0

5 Stroke Walk F Left 74 35 10 134 50 +7 2 +1

6 Stroke Walk M Left 38 66 11 90 63 +1 3 +1

7 Stroke Wheelchair M Right 64 28 9 164 56 +3 0 0

8 Brain tumor Walk M Left 34 28 11 84 64 0 4 0

9 Stroke Walk F Left 72 30 7 116 48 +5 2 +2

10 Brain tumor Wheelchair F Left 68 30 9 274 48 +9 0 0

11 Brain tumor Walk F Left 55 28 9 152 57 0 4 0

Mean 56.3 39.5 9.3 176.6 55.5 3.6 2.2 0.5

SD 13.1 23 1.5 85.3 6.3 4.0 1.7 0.7

Locomotion describes the patients’ mobility (walker or wheelchair user), Rehab is the rehabilitation duration, Rec. is the number of study recording days, DAS are the days after stroke

or brain tumor extraction (duration between stroke event or brain tumor extraction and rehabilitation entry). EBI scores at rehabilitation entry are denoted as, EBI⋆ compl for complete

assessment; EBI⋆ walk for subcategory walking. EBI score differences between the first and last assessment are denoted as, 1compl for complete assessment; 1walk for subcategory

walking.

2.1.3. Expected Observations and Measurements
So far, little is known about PA in free-living (Buma et al.,
2013; Waddell et al., 2017). Hence, this study was designed
to obtain insights in patients’ PA which could be used to
personalize exercise recommendations for follow-up training
in free-living. We expected higher PA in the affected arm
during clinician guided therapy than in free-living, as the
regular training focused on improving functional limitations
on the affected body side. In contrast to therapy, higher PA
was expected in the less-affected arm during free-living, as
patients tend to use the unimpaired side to overcome functional
limitations (Lang et al., 2007; Michielsen et al., 2012). In addition,
we expected smaller differences between lower extremities in
free-living and therapy compared to the upper body, because
restoring upper body functionality was prioritized in this study.
Moreover, bi-pedal locomotion, sitting, and resting activities
were expected to influence affected and less-affected leg equally,
resulting in higher similarity compared to the upper body. The
EBI sub-score for walking, see Table 1, further suggested that
improvements in motor functions were expected in the upper
extremities, as differences in the subcategory walking were on
average 0.5 scores between begin and end of the rehabilitation.
In general, we hypothesized that patients become more active
during the rehabilitation, in particular during the clinician
guided therapy. We further expected that increasing PA could
lead to improvements in ADL and independent living, related to
an average EBI score improvement of 3.6 scores. Therefore, we
analyzed PA and recovery trends using sequentially distributed
boxplots.

2.1.4. Sensors and Data Recording
Motion data were recorded using Shimmer3 inertial
measurement units (IMU) sensors (L xWxH = 51 × 34 ×

14 mm3), consisting of 3-axis accelerometer, 3-axis gyroscope,
and 3-axis magnetometer. The IMUs were configured to sample
and log accelerometer (±4 g), gyroscope (±1,000 dps) and
magnetometer (±1 Ga) data with 50 Hz to the sensors’ internal
SD-card. To calibrate the IMUs for these sensor ranges and
to obtain optimal accuracy, we followed the Shimmer 9DoF
calibration guidelines1. Each IMUwas calibrated separately using
the Shimmer calibration stand and corresponding calibration
parameters were stored on the IMU and used for subsequent
data processing. When patients arrived in the morning at the
clinic, we attached in total six IMUs to both wrists, upper arms
and thighs, using Velcro straps. Sensors were only temporary
removed for water therapy or lymph drainage massages, and
finally detached at the end of the day. Sensors were regularly
checked by the study examiners during recordings to avoid
variation in sensor orientation or position. Patients were not
asked to perform sensor orientation and position checks. For
the PA analysis described in this work only acceleration data
derived from wrist- and thigh-worn IMUs were considered.
Sensor positions are illustrated in Figure 1.

2.2. Physical Activity Analysis
We detail our PA analysis and motion intensity estimation,
describe the MET estimation approach and subsequent statistical
analysis as illustrated in Figure 1. MATLAB2 and the MES
toolbox (Hentschke and Stüttgen, 2011) were used.

2.2.1. Motion Intensity Calculation
Motion data from both wrist and thigh-worn IMUs were time-
synchronized and merged according to their time stamps. For

1Shimmer 9DoF Calibration Application User Manual Rev. 2.2a, 2013.
2MATLAB, Release 2013b, The MathWorks, Inc., Natick, MA, United States.
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FIGURE 1 | Patient monitoring and PA analysis. Sensor placement at writs and thighs are highlighted (S1, S2, S3, and S4). Acceleration sensor data are

pre-processed to separate motion data derived in free-living and therapy using annotated routine labels. Subsequently motion intensity (I) is derived for each extremity.

MET equivalents are estimated from motion intensity using linear regression models to divide intensity levels in categories light, moderate, and vigorous according

distinct thresholds. In this work, we used the MET conversion to assess PA intensity on a relevant and comparable scale. We were interested in comparing PA

between extremities, rather than estimating absolute MET equivalents. Finally, average PA differences between body sides in free-living and therapy were evaluated

using non-parametric statistics, including the Mann–Whitney U-test and the Measure of effect size.

subsequent PA analysis, wrist-worn sensors were denoted as
upper and thigh-worn sensors as lower. Sensor data from left
and right body side were re-labeled with Aff (affected, impaired
side) and NonAff (less-affected, healthy side). To separate free-
living and therapy, and excluding fitness training in the gym
and vibration training, we used annotated activities and routines
to derive PA. We filtered the x-, y-, and z-acceleration using
a high-pass filter with a cut-off frequency of 0.7Hz similar to
Ohkawara et al. (2011). Subsequent, motion intensity (I) was
derived according to Equation ( 1):

I =
√

accx2 + accy2 + accz2 (1)

Motion intensity I was derived according to Zhang et al.
(2012). For further data processing, we used g-values, thus
divided the motion intensity by the gravitational force using
the reference value 9.80 m

s2
3. Motion intensity calculations

according to Equation (1), using 3-axis accelerometer data were
described in published literature using different terminology,
e.g., synthetic acceleration (Tsukahara et al., 2016), magnitude of
acceleration (Ohkawara et al., 2011; Mortazavi et al., 2013), or
norm (Zihajehzadeh and Park, 2016).

2.2.2. MET Estimation
In this work we usedMET equivalents as an interpretable scale to
quantify PA for each extremity independent of specific activities
or therapy exercises. It is clear that MET equivalents estimated
from one extremity includes bias. However, compared to an
arbitrary energy unit or activity counts, we considered MET
equivalents as interpretable. Moreover, instead of evaluating
absolute MET equivalents, we were interested in comparing PA

3Average of Swiss gravity zones according https://www.metas.ch/metas/de/home/

dok/gravitationszonen.html

differences between the affected and less-affected body sides
during free-living and therapy. MET equivalents were estimated
using motion intensity derived from both wrist and thigh-worn
sensors.We applied individual regressionmodels for each limb to
account for functional limitation and compensation mechanisms
influencing affected and less-affected sides movement differently.
Figure 2 illustrates our MET estimation approach.

Personalized regression models were first built, using the
annotated activities sitting and walking, derived from each
patient. In an iterative process over all recording days we
extracted the day with the first sitting an walking instance. In
case of several instances per day, we selected the sitting and
walking instance with the longest duration. Subsequently, we
derived the mean motion intensity of these instances which we
used as baseline to determine the regression parameters α and
β . Similar to Ohkawara et al. (2011), we used a linear regression
model to estimate MET equivalents based on motion intensity
derived from acceleration data according to the Equation (2):

MET = αp + βp × I (2)

where p refers to individual wrist- or thigh-worn sensors at
affected and less-affected body sides, α and β denote offset and
slope of the linear regression, respectively.

To derive the linear regressionmodels’ parameters α and β for
the baseline, we used reference MET equivalents for sitting (1.04
MET) and walking (2.52 MET). The reference MET equivalents
were based on mobile gas-analyser measurements derived from
patients after stroke in a lab-controlled study (Verschuren et al.,
2016).

Subsequently, a non-overlapping sliding windowing
of 1min was applied to derive MET estimates per limb
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FIGURE 2 | Illustration of the personalized MET estimation using linear regressions. Example data shown from recording day two of patient ID4 (walker). (A,B)

Illustrate x-, y-, and z-acceleration data derived from wrist- and thigh-worn sensors of affected and less-affected body sides, and upper and lower body, respectively

during sitting and walking. (C) Visualizes the regression model for each limb. Acceleration data in m
s2

were further processed to derive the motion intensity in g-values.

Reference MET equivalents were used to derive α and β using linear regression. (D) Shows the motion intensity for each limb derived during a complete recording day

including free-living and clinician guided therapy. A non-overlapping windowing extracts data of 1min epochs to estimate MET equivalents. (E) Illustrates estimated

MET equivalents for each limb. Free-living and clinician guided therapy settings are highlighted for the upper and lower body affected and less-affected side.

during free-living and clinician guided therapy. Our pre-
investigation showed that a non-overlapping windowing
of 1min provide sufficient information about the MET
equivalents’ data distribution for statistical PA analysis
between body sides and rehabilitation settings. Moreover,
different windowing lengths were used for PA analysis, ranging
from 10 s for real-time measurements (Ohkawara et al.,
2011) to 1min for activity routine analysis (Crouter et al.,
2006).

MET estimation in free-living is challenging, especially
in longitudinal recordings over several months. Further,
MET estimation based on activity type requires activity
classification for subsequent regression parameter selection.
Even in a clinical environment, activity classification is
difficult due to patients functional limitations and variances
in motions execution, as well as patient-individual therapy
programmes. Hence, for this PA analysis we estimated
MET equivalents without the need of classifying free-living
activities and therapy exercises. Instead, we used a single
regression approach, which was considered suitable for this

PA analysis and could be used in further remote monitoring
settings.

For the subsequent PA analysis, we separated activity levels
into light, denoted as L (PA ≤ 2.0MET), moderate, denoted
as M (PA ≤ 2.0–3.0MET) and vigorous, denoted as V (PA
≥ 3.0MET) (Garber et al., 2011). We used linear regression
equations (Crouter et al., 2006; van Hees et al., 2009) to
estimate MET equivalents based on acceleration data only, hence
a power-efficient implementation in resource-limited wearable
systems are feasible. Moreover, power-demanding sensors, such
as gyroscopes or computation-intensive algorithms could be
avoided. Even if IMUs are implemented, switching of sensors like
gyroscopes substantially reduces system energy consumption.

2.2.3. Statistical Analysis
PA differences between body sides and body parts were
analyzed using the non-parametric Mann–Whitney U-
test (Wilcoxon Rank-sum test) (Vickers, 2005) with a 5%
significance level (α = 0.05) and Cohen’s U3 Measure of effect
size (MESU3) (Hentschke and Stüttgen, 2011) to account for
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non-normal data distributions. The Rank-sum test evaluates
the null hypothesis (H0) that MET equivalents of affected
and less-affected body sides have equal medians, against
the alternative hypothesis (H1) that they have not, using an
arbitrary α-value. The Rank-sum test results in rejection (h = 1)
or acceptance (h = 0) of H0. In contrast, MESU3 evaluates the
magnitude of effects between two distributions on a continuous
scale ranging from 0 to 1. Therefore, the continuous scale could
reveal subtle changes during the gradual recovery process.

3. RESULTS

3.1. Physical Activity Overview
The PA distribution derived from sensor data during the
rehabilitation period is summarized in Figure 3 for each patient.
In total, 638.6 h of sensor data were derived from all patients,
including 492.3 h (77.1%) of free-living and 86.9 h (13.6%)
recorded during therapy. In total 59.3 h (8.9%) of recording
were not considered in the analysis, of which 40.3 h (6.3%) were
recorded in gym sessions, 2.5 h (0.4%) in vibration training, and
16.6 h (2.6%) when sensor were detached. Gym and vibration
training were not part of the standard rehabilitation programme,
hence excluded. For example, only four vibration sessions for
ID1 and ID7, three for ID3, two for ID2, ID4, ID6, ID8, and
ID11 and no sessions for ID5, ID9, and ID10 occurred during
all recordings. On average, the vibration sessions accounted for
1.2% (44min) for patients ID1, ID3, and ID7; 0.49% (13.5min)
for ID2, and less than 0.032% (1min) for ID4, ID6, ID8, and ID11
for the complete rehabilitation duration. Gym training accounted
between 1.6% (52min) for ID3 and 13.7% (8.5 h) for ID11 for the
complete rehabilitation duration.

Figure 4 illustrates exemplarily the PA during a recording day
for the walking patient ID9 using MET equivalents. We observed
mostly higher intensity in the less-affected upper body compared
to the affected side. Further, ID9 showed mostly light activity
below 2 MET equivalents in the lower body. Visual inspection
of both PA time-series graphs suggested high similarity between
body sides.

Histograms in Figure 5 show the PA distribution during
the complete rehabilitation process of ID9 exemplarily. During
free-living the patient’s affected hand showed mostly light
to moderate activity, whereas the less-affected side included
segments of vigorous intensity. During therapy, we observed
increased activity of the affected side up to vigorous intensity
level. During therapy, the less-affected body side showed a PA
distribution similar to free-living, including vigorous intensity.
For the lower body, similar distributions can be observed for
affected and less-affected side in free-living and during therapy.
We attributed the similarity in lower body sides to bi-pedal
locomotion and postures including body sides equally. Lower
body PA differences suggested subtle compensation mechanisms
compared to the upper body. However, the majority of PA was
categorized as light to moderate.

3.2. Physical Activity and Motion Intensity
To investigate intra- and inter-patient PA variation, MET
equivalents were estimated for each day of the rehabilitation
period and visualized sequentially as boxplots. Figure 6 illustrates

the daily estimated MET distribution during the rehabilitation
period for patient ID9 exemplarily. For example, PA of
patient ID9 was on average 22.5% higher in the less-affected
side (1.78MET) compared to the affected side (1.38MET)
during free-living. During therapy sessions we observed an
increased average PA of 1.75MET in the affected side of the
upper body. The affected and less-affected upper body sides
showed similar PA intensity during training with an average
MET equivalents difference below 1%. During therapy we
observed days with higher MET equivalents on the upper body’s
affected side compared with the less-affected side (recording days
15, 24, and 31). The lower body limbs showed similar MET
equivalents on affected and less-affected sides with differences
of 2.6% (free-living) and 4.5% (therapy). Illustrations of daily
differences between body sides derived in free-living and therapy
during the recording period of all patients are included in the
Supplementary Material, see Figures S1, S2.

Table 2 summarizes estimated average MET equivalents for
each patient during the complete rehabilitation duration. For
each patient, except ID4, we observed higher or similar MET
equivalents in the upper body’s affected side during therapy,
compared to free-living. For the less-affected upper body side,
eight patients including ID1–4, and ID7–10, showed higher or
similar MET equivalents during free-living compared to therapy.
For the lower body, average values for each patient were similar
between affected and less-affected sides during free-living and
therapy. Mean values of upper body’s affected side indicated
that patients benefit from therapy session due to increased
MET equivalents compared to free-living. The upper body’s less-
affected side, and the lower body showed similar average MET
equivalents across all patients, independent of the rehabilitation
setting. Table 2 includes the PA comparison between affected
and less-affected body sides in free-living and therapy. In free-
living, PA was on average 28.4% higher in the less-affected arm
compared to the affected arm. In therapy, PA was on average
15.4% higher in the less-affected arm compared to the affected
arm. Further, PA of the affected armwas on average 16.1% higher
during therapy compared to free-living. In contrast, PA of the
affected leg was on average only 5.3% higher during therapy
compared to free-living.

3.3. Statistical Analysis
Statistical analysis included significance evaluation and
measuring effect size. Average differences between body
sides and body parts are summarized in Table 3. All patients
showed statistical significant differences in upper body MET
equivalents when comparing affected and less-affected sides
during free-living (Rank-sum test, p < 0.05). All patients, except
ID4 showed higher PA intensity in the affected side. Further, all
patients (except ID6 and ID11, both walkers) showed significant
differences between body sides during free-living in the lower
body too. For all patients, the PA intensity was higher or equal in
the less-affected side compared to the affected side.

MESU3 during free-living supported the Rank-sum test
decision of significance for the upper and lower body in 10
patients. For patient ID4, MESU3 resulted in 0.45 (upper
body) and 0.53 (lower body) during free-living, indicating
no difference between body sides, contrary to significant test
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FIGURE 3 | Motion data distribution during the complete rehabilitation period for all patients (ID1 to ID11). Settings: free-living (when patients performed everyday

activities), therapy (when patients attended clinician guided therapies), and other activities. Other activities were excluded from the analysis, covering times for irregular

training, e.g., vibration sessions, fitness training in the gym, as well as times where the sensors had been detached.

FIGURE 4 | Example of physical activity in MET equivalents of recording day 6 of patient ID9 (walker). Letters L, M, and V denote thresholds for light, moderate, and

vigorous activity intensity, respectively. Arrows indicate higher activity intensity in the affected side compared to the less-affected side.

decisions derived by the Rank-sum test. Average MESU3 values
further confirmed that differences between body sides were
higher in free-living (0.79 ± 0.17 for affected side; 0.64 ± 0.1
for less-affected side) compared to differences found during
therapy (0.64± 0.13 for affected side; 0.55± 0.06 for less-affected
side). During therapy when the affected body side was trained,
measures of effect size remained close to the neutral value of 0.5.
Neutral MESU3 values contradict significant test results, i.e., for
upper body (ID1) and lower body (ID3, ID5, ID6, and ID10).

4. DISCUSSION

4.1. Physical Activity
We investigated PA using MET equivalents to obtain insights
in patient activity during a longitudinal rehabilitation process
over several weeks. In particular, we compared affected

and less-affected body sides and body parts during free-
living and therapy. In general, PA was higher or similar
in the less-affected side compared to the affected side.
By distinguishing free-living and clinician guided therapy
we created two distinct rehabilitation settings for this PA
analysis. The free-living setting including unguided ADL,
relates to a natural environment, patients will likely face
after the clinical rehabilitation. In contrast, fitness training
in the gym and vibration training were considered unlikely
in patients’ daily life following the clinical rehabilitation.
Moreover, vibration training, which was not part of the
standard rehabilitation programme, would not add valuable
insights on individual limbs and differences due to the
passive vibration of the complete body. Also, the PA analysis
of unguided fitness training was not considered beneficial
to investigate patients progress and potential recovery
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FIGURE 5 | Histograms of PA in MET equivalents for affected and less-affected upper and lower body for patient ID9. The distribution show PA derived from

free-living and therapy during the complete rehabilitation period of patient ID9. PA distributions show a positive skew, indicating mostly light intensity, corresponding to

sedentary behavior. The y-axis is log-scaled to emphasize small values in the distribution. Letters L, M, and V denote thresholds for light, moderate, and vigorous

activity intensity, respectively.

FIGURE 6 | PA in MET equivalents for affected and less-affected upper and lower body for patient ID9. To optimize readability, first and third quartile are shown.

Notches represent median MET equivalent values.

trends. Consequently, vibration and fitness training was
excluded.

Our results are in line with previous published study results,
though, activity intensity of limbs was typically quantified
as duration of use or non-use using a threshold. For
example, Michielsen et al. (2012) quantified the duration
of upper limb use in chronic stroke outpatients during a
24 h recording period using accelerometers. Results showed
considerable non-use of the affected side compared to the
less-affected side. A threshold was fitted to the acceleration
signal to distinguish use and no-use. Similarly, Lang et al.
(2007) investigated affected and less-affected upper limbs using
wrist-worn uni-axial accelerometers during a 24 h assessment
and found that patients with hemiparesis used both body
sides substantially less than healthy controls. The regression-
based approach presented in this work was derived to evaluate
PA on a continuous scale using MET equivalents, hence
subtle changes and differences between body sides can be
quantified.

As expected, patients included in this study, showed often
higher intensity in the upper body’s affected side during therapy
compared to free-living. Higher PA during therapy could indicate
patients’ movement potential, thus help devising personalized
exercise recommendations and target planing to increase PA of
the affected side. Based on the analysis between affected and
less-affected arms, Bailey et al. (2015), suggested that increasing
activity of the less-affected side might increase the activity of the
affected side due to the bilateral nature of everyday tasks. Beside
therapy, which trains the affected side, exercises during free-
living, including bi-manual tasks could further promote recovery
in the affected side.

Our analysis showed differences in PA between therapy and
free-living independent of age, EBI scores, and days since stroke.
Variances in patient therapies and individual behavior suggested
that personalized therapy strategies could best fit patient-specific
needs, hence maximize recovery outcome. Results from this
PA analysis align with our previous work, demonstrating that
particularly walking behavior was influenced by the therapy
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TABLE 2 | Average MET equivalents for affected and less-affected upper and lower body sides during free-living and therapy.

Free-living Therapy Aff vs. Less-Aff Free-living vs. Therapy

Difference [%] Difference [%]

Aff NonAff Aff NonAff Aff NonAff Aff NonAff Free-living Free-living Therapy Therapy Aff NonAff Aff NonAff

ID Upper Upper Lower Lower Upper Upper Lower Lower Upper Lower Upper Lower Upper Upper Lower Lower

1 1.14 1.64 1.04 1.08 1.41 1.53 1.10 1.15 30.6 4.3 7.9 4.1 19.3 −7.1 6.2 6.0

2 1.19 1.59 1.09 1.14 1.23 1.47 1.09 1.13 24.8 4.3 16.5 3.2 2.9 −7.8 0.4 −0.7

3 1.16 2.10 1.01 1.06 1.36 1.86 1.15 1.13 44.7 4.7 27.1 −2.0 14.3 −13.1 12.4 6.3

4 1.33 1.24 1.05 1.05 1.03 1.16 1.01 1.01 −7.0 0.0 11.8 0.0 −29.3 −6.6 −4.3 −4.3

5 1.76 2.17 1.08 1.10 2.51 2.40 1.17 1.22 19.2 1.8 −4.6 3.9 30.1 9.5 7.8 9.8

6 1.13 1.47 1.10 1.11 1.34 1.58 1.13 1.13 23.2 0.7 15.0 −0.6 15.7 6.7 2.9 1.6

7 1.16 2.42 1.05 1.09 1.47 2.07 1.13 1.13 52.2 3.3 28.7 0.0 21.5 −17.0 6.5 3.4

8 1.30 1.53 1.09 1.10 1.42 1.47 1.12 1.13 14.8 1.3 3.2 0.3 8.2 −4.3 3.1 2.1

9 1.38 1.78 1.11 1.14 1.75 1.75 1.14 1.20 22.5 2.6 0.1 4.5 21.0 −1.8 3.0 4.9

10 1.29 3.62 1.08 1.11 1.84 2.98 1.18 1.21 64.3 2.9 38.5 2.9 29.5 −21.4 8.6 8.6

11 1.87 2.42 1.13 1.14 3.32 4.46 1.28 1.30 22.7 0.5 25.7 0.9 43.5 45.7 11.9 12.3

Mean 1.34 2.00 1.07 1.10 1.70 2.07 1.14 1.16 28.4 2.4 15.4 1.6 16.1 −1.6 5.3 4.5

SD 0.25 0.67 0.04 0.03 0.67 0.94 0.07 0.07 19.4 1.7 13.4 2.2 18.7 18.2 5.0 4.8

Average differences in MET equivalents were compared between affected and less-affected body sides during free-living and therapy in columns marked with “Aff vs. NonAff.” In addition,

differences in MET equivalents were analyzed for each limb during free-living and therapy in columns marked with “Free-living vs. Therapy.”

TABLE 3 | Statistical analysis of differences between affected and less-affected body sides for MET equivalents during free-living and therapy.

Free-living Therapy

Rank-sum test [h] Rank-sum test [h] MESU3 MESU3 Rank-sum test [h] Rank-sum test [h] MESU3 MESU3

ID Upper body Lower body Upper body Lower body Upper body Lower body Upper body Lower body

1 1** 1** 0.90 0.75 1* 1** 0.51 0.60

2 1** 1** 0.83 0.69 1** 1** 0.76 0.62

3 1** 1** 0.98 0.80 1** 1** 0.78 0.50

4 1** 1** 0.45 0.53 1** 1** 0.61 0.60

5 1** 1** 0.70 0.62 0 1* 0.53 0.54

6 1** 0 0.78 0.54 1** 1* 0.65 0.47

7 1** 1** 0.99 0.69 1** 0 0.81 0.50

8 1** 1** 0.68 0.60 0 0 0.51 0.50

9 1** 1** 0.76 0.64 0 1** 0.45 0.62

10 1** 1** 1.00 0.66 1** 1** 0.81 0.54

11 1** 0 0.64 0.49 1** 0 0.58 0.55

Mean 0.79 0.64 0.64 0.55

SD 0.17 0.10 0.13 0.06

The Rank-sum test evaluates the null hypothesis (H0 ) that MET equivalents of affected and less-affected body sides have equal medians, against the alternative hypothesis (H1 ) that

they have not, using an arbitrary α-value. Hence, the Rank-sum test results in a rejection or acceptance of H0 and is marked with 1 and 0, respectively. Significance analysis results

for p < 1% are marked with **, for p < 5% marked with *. Measure of effect size (MESU3) values range from 0 to 1. A MESU3 value of 0.5 indicates that there is no effect between

affected and less-affected sides.

schedule, patient-individual habits, and patients’ daily health
condition rather then patient-specific characteristics, rendering
generalization difficult (Derungs et al., 2018a). In addition, we
estimated increased range of motion in the affected arm during
clinician guided therapy compared to free-living (Derungs et al.,
2018b). In contrast, the bi-pedal locomotion of walkers and

reduced leg movement in wheelchair users, led to similar leg PA
in free-living and therapy.

Thresholds to separate distinct intensities vary across different
published studies, thus comparing absolute MET equivalent
levels derived in this work with related work appeared
inappropriate. A tendency toward light PA was evident in the
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present study. Our observation relates well to previous studies
describing sedentary behavior among patients after stroke.
Paul et al. (2016) showed that sedentary time was higher in
patients after stroke compared to healthy controls, measured for
seven consecutive days using an accelerometer-based wearable
sensor. Moreover, Moore et al. (2013) showed that PA reduced
immediately after the stroke and remained below recommended
levels. Sedentary behavior was observed up to six months post-
stroke. Our approach is sensitive to estimate PA in individual
limbs to indicate sedentary behavior in free-living and therapy.

4.2. Physical Activity—Is There a Recovery
Trend?
So far, clinical assessment scores to describe the recovery
progress were estimated using classification or regression
methods (Derungs and Amft, 2018). However, the scores
considered specific motor tasks only and generalization to free-
living remains unclear. Buma et al. (2013) emphasized that
the first six month are crucial for upper limb recovery and
skill-learning. Hence, measurements ranging from 24 h to one
week (Moore et al., 2013; Bailey et al., 2015) seem insufficient. In
previous work, we demonstrated that the EBI score of this study
population could be estimated without specific tests considering
distinct activity primitives (Derungs et al., 2015). In this analysis
we qualitatively analyzed if increasing PA intensity in individual
limbs could indicate a recovery trend during the rehabilitation.
We found recording days, where patients showed higher PA
intensity in the affected side compared to the less-affected side.
However, PA varied daily in body sides and body parts across all
patients due to individualized therapy, and patients’ condition.
A clear recovery trend with increasing PA was not found.
Contrary, our results confirmed a tendency to sedentary behavior
in patients after stroke, independent of free-living or therapy.

4.3. Statistical Analysis
Verschuren et al. (2015) described MET equivalent values
below 1.5MET as sedentary behavior. However, definitions
for separating intensity levels in patients after stroke vary.
Hence, we analyzed PA differences between body sides, avoiding
comparing absolute MET equivalent values. The non-parametric
Mann-Whitney U-test was suitable for non-normal distributed
data. However, the binary significance test is not sufficient to
measure subtle changes during the rehabilitation, even when
considering p-values. On the other hand does a non-significant
test result not imply an ineffective rehabilitation because small
sample size and measurement variability may affect the statistical
result (Page, 2014). Our analysis included the MESU3 to measure
the magnitude of differences between affected and less-affected
sides. MESU3 supported mostly test decisions derived using the
Mann–Whitney U-test. Hence, assessing PA differences during
stroke rehabilitation should include the MESU3, to quantify
subtle changes on a continuous scale.

4.4. Clinical Implications and Limitations
Long-term monitoring and trend analysis of patients after stroke
in rehabilitation and free-living is challenging. For example,
validating MET estimation algorithms require lab-controlled

settings, reference systems and scripted activities (Staudenmayer
et al., 2015). In particular, acquiring ground truth of patients’
activities limits free-living validation. Validation including
breath-by-breath spirometry is similarly infeasible due to the
high patient burden. In contrast, regression methods based
on acceleration measurements are independent of data-based
training (Ohkawara et al., 2011; Mortazavi et al., 2013). Our
results provided insights on the differences in activity patterns
of all extremities.

Although we defined inclusion criteria to analyse PA in a
homogeneous study population, the influence of impairments
and other factors, e.g., age, days after stroke, EBI scores,
mood, pain, etc., were not monitored in this observation study.
However, previous analysis, including the same study population,
suggested that patient-specific therapy schedules and therapy
programmes influenced the patient’s upper extremity range of
motion (Derungs et al., 2018b) and mobility behavior (Derungs
et al., 2018a) independent of age, days after stroke or EBI scores.

In modern stroke rehabilitation, exercises and therapy
is adapted to each patient’s needs and health conditions.
Consequently, assessing PA is challenging, in particular in
remote monitoring. Nevertheless, increasing PA is essential to
avoid subsequent strokes and co-morbidities, e.g., cardiovascular
diseases might be reduced when adapting rehabilitation exercises
to higher PA intensities (Usui and Nishida, 2015). Billinger et al.
(2014) suggested peak exercise training including intensities up
to 5 MET equivalents. Exercise recommendations for patients
after a myocardial infarction could be integrated in stroke
rehabilitation and controlled continuously using PA feedback
derived from wearable sensors.

External motivation, i.e., gaming exercises (Kafri et al., 2014)
or virtual reality (Subramanian et al., 2013), should be integrated
into the daily rehabilitation programme. Gaming and continuous
sensor-based PA evaluation could be used as supportive
rehabilitation tool. For example, sedentary patients could play
balance games where standing postures are required, bi-manual
ADL tasks should be encouraged in free-living. However, patients
might bemotivated during the clinical rehabilitation, transferring
approaches to free-living for continuous PA quantification are
required. Motivation methods that could promote PA and thus
recovery should include objective, sensor-based evaluation of
understandable health recommendations (Baert et al., 2012).

The population size was limited in this study. Our
approach including wearable motion sensors could facilitate
PA monitoring in larger study populations to investigate how
PA is influenced across different levels of impairments (Kollen
et al., 2006). Further, unobtrusive, textile-integrated sensors, e.g.,
as described by Harms et al. (2009), could be helpful for PA
monitoring of hemiparetic patients, as they may not be able to
handle sensors separately.

5. CONCLUSION

We investigated PA intensity of eleven hemiparetic patients
during a longitudinal outpatient rehabilitation period of several
weeks. We compared affected and less-affected body sides and
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body parts during a standard rehabilitation programme in a day-
care center, including free-living and clinician guided therapy
settings. In this analysis, we focused on PA of each limb using
wrist- and thigh-worn sensors. PA intensity was estimated in
MET equivalents rendering interpretation comparable, hence
patients’ performance can be assessed quickly by clinicians.

We demonstrated that wearable motion sensors provide
insights in patients’ PA intensity during rehabilitation. In
particular, we showed that PA during unguided ADL tasks in
free-living differs from therapy settings, where patients follow
clinician guided exercises. We confirmed previous published
lab-study results indicating that sedentary behavior prevails
in patients after stroke. No recovery trend was observed.
The differences between free-living and therapy were observed
although special, non-standard training sessions were excluded.
Results showed on average higher PA intensity during therapy
compared to free-living; 16.1% in the affected arm and 5.3% in
the affected leg. Differences between therapy and free-living were
below 4.5% in the less-affected arm and leg.

We expect that wearable sensors could enable longitudinal,
remote PA evaluation of each limb beyond clinical rehabilitation
settings to quantify intensity and devise personalized exercise
recommendations for free-living.
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