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Flapping �ight is the most power-demanding mode of locomotion, associated
with a suite of anatomical specializations in extant adult birds. In contrast, many
developing birds use their forelimbs to negotiate environments long before acquiring
“�ight adaptations,” recruiting their developing wings to continuously enhance leg
performance and, in some cases, �y. How does anatomical development in�uence
these locomotor behaviors? Isolating morphological contributions to wing performance
is extremely challenging using purely empirical approaches. However, musculoskeletal
modeling and simulation techniques can incorporate empirical data to explicitly examine
the functional consequences of changing morphology by manipulating anatomical
parameters individually and estimating their effects on locomotion. To assess how
ontogenetic changes in anatomy affect locomotor capacity,we combined existing
empirical data on muscle morphology, skeletal kinematics,and aerodynamic force
production with advanced biomechanical modeling and simulation techniques to analyze
the ontogeny of pectoral limb function in a precocial groundbird (Alectoris chukar).
Simulations of wing-assisted incline running (WAIR) usingthese newly developed
musculoskeletal models collectively suggest that immature birds have excess muscle
capacity and are limited more by feather morphology, possibly because feathers grow
more quickly and have a different style of growth than bones and muscles. These results
provide critical information about the ontogeny and evolution of avian locomotion by (i)
establishing how muscular and aerodynamic forces interface with the skeletal system to
generate movement in morphing juvenile birds, and (ii) providing a benchmark to inform
biomechanical modeling and simulation of other locomotor behaviors, both across extant
species and among extinct theropod dinosaurs.

Keywords: bird, avian, locomotion, ontogeny, development, mu sculoskeletal modeling, wing-assisted incline
running, �ight
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INTRODUCTION

Darwin described “survival of the �ttest,” illustrating how
organisms with certain forms might better perform certain
functions and have greater �tness, such that form and function
are closely linked (Darwin, 1859). Geneticists are exploring
“arrival of the �ttest”: how novel phenotypes are added to the
pool of individuals that encounter selective forces (Gilbert and
Epel, 2009). What happens in between these two modes of
�tness? We can identify genetic events involved in producing
some spectacular adaptations in adults—Darwin's “organs of
extreme perfection,” and we have examined how adults that
possess such features survive and reproduce. Yet the intermediate
stages that bridge embryonic genotypes and adult phenotypes
(i.e., post-hatching/postnatal ontogeny), or extinct and extant
bauplans(i.e., evolution), are often an enigma in functional
morphology. What is the advantage of half of a wing or
only part of an eye? These types of questions have long
fascinated evolutionary biologists (Mivart, 1871), and are also
very relevant—though less studied—in developing organisms
(Heers and Dial, 2012). This “dilemma of incipient stages”
(Gould, 1985) is particularly striking among birds and their
theropod dinosaur ancestors.

Flapping �ight is the most power-demanding mode of
locomotion (Alexander, 2002), and its origin among theropod
dinosaurs marks one of the great anatomical transformations
in vertebrate history. Whereas early-diverging theropods had
no wings and more generalized musculoskeletal anatomies (e.g.,
Coelophysis), extant adult birds have large wings, hypertrophied
pectoral muscles, and robust, channelized skeletons that
presumably represent adaptations or exaptations for meeting
aerial requirements (Gill, 1994; Evans and Heiser, 2004). Between
these two extremes lies a succession of animals characterized by
increasingly bird-like traits, including “protowings” of various
sizes and “transitional” musculoskeletal morphologies [e.g.,
Caudipteryx(Qiang et al., 1998), Anchiornis(Hu et al., 2009; Xu
et al., 2009)]. This �ightless to �ight-capable progression is well
known but di�cult to interpret, because functional attributes of
transitional features are challenging to reconstruct.

Though less renowned, an equally dramatic �ightless to �ight-
capable transformation occurs in extant developing birds. Most
birds hatch without any semblance of a wing, and the �rst
wing feathers acquired result in small protowings that are less
aerodynamically e�ective than the wings of adults (Dial et al.,
2006, 2012; Heers et al., 2011). Compared to adults, immature
birds also have small wing muscles (Heers and Dial, 2015), and
less channelized skeletons with smaller bony processes for muscle
attachment (Heers and Dial, 2012; Heers et al., 2016). These
extensive morphological changes rival and in many ways mirror
those that occurred during the evolution of �ight in extinct
dinosaurs (Heers and Dial, 2012). How do such changes in�uence
wing-based locomotion?

Growing evidence demonstrates that precocial—and
sometimes altricial—birds use their wings to negotiate
environments early in ontogeny, long before acquiring the

Abbreviations:WAIR, wing-assisted incline running.

anatomical hallmarks of advanced �ight capacity (Dial et al.,
2006; Heers and Dial, 2012). These juveniles recruit their
developing wings to enhance leg performance and eventually
�y. For example, �edglings �ap their rudimentary wings to (i)
increase foot traction and ascend steep inclines [wing-assisted
incline running, i.e., WAIR (Dial, 2003)], (ii) control aerial
descents (Dial et al., 2008; Evangelista et al., 2014), (iii) swim
(Thomas, 1996) or “steam” across water (Dial and Carrier, 2012),
and/or (iv) increase jump height (Heers and Dial, 2015). In
some species, such as the Chukar Partridge (Alectoris chukar),
precocial �edglings can even �y, and display adult kinematics
months before acquiring mature wings and musculoskeletal
apparatuses (� 18–20 vs.� 60–100 days) (Heers and Dial, 2015).
Thus, on both ontogenetic and evolutionary time scales, there
is a gradient of �ight capacity and the degree of anatomical
specialization necessary for adult-like, “avian” locomotion is not
clear.

Much of this uncertainty stems from the di�culty in
experimentally determining how speci�c morphological features
contribute to locomotion. Across species, extant adult birds may
not o�er enough variation in anatomy and aerial performance
to clearly reveal form-function relationships, because most
volant adults share a similar array of anatomical specializations.
Morphology varies much more through ontogeny but wings,
muscles, and skeletons develop simultaneously and can only
be altered to certain extents (e.g., trimming feathers, muscle
denervation). Consequently, using empirical approaches to
isolate morphological contributions to �ight capacity and to
extrapolate these form-function relationships to extinct animals
is extremely challenging.

In contrast, modeling and simulation approaches can
augment empirical studies by isolating and elucidating form-
function relationships in ways that are not possible working
with live subjects. These approaches build on empirical work
by using computed tomographic (CT) scans and dissections
to construct digital musculoskeletal models that are paired
with kinematic, kinetic, and physiological data to simulate
locomotion. Once the validity of the framework is assessed
(e.g., by comparing �nal computer simulation outputs with
in vivo data), models and simulations can identify how changes
in each input (e.g., anatomy, kinematics) independently a�ect
function (e.g., locomotor performance). For instance,Holzbaur
et al. (2005)constructed a musculoskeletal model of the human
forelimb and simulated muscular force development for muscle-
tendon con�gurations representing pre- and post-surgery
conditions to predict the e�ects of tendon transfer surgery,
with good success. Similarly,O'Neill et al. (2013)adjusted
muscle origins in a chimpanzee (Pan troglodytes) model to assess
relationships between muscle attachment sites and moment
arms. More sophisticated predictive simulation studies have
also been conducted, such as estimating how aTyrannosaurus
rex might have moved using forward dynamics (Sellers et al.,
2017). A theoretical modeling and simulation framework to
investigate avian wing biomechanics can likewise be established
by constructing musculoskeletal models and simulating
locomotion using di�erent anatomical and/or biomechanical
inputs (Figure 1).
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FIGURE 1 | Modeling overview. Colors indicate different types of dataused as simulation inputs or outputs; techniques used to collect or simulate each type of data
are italicized. SIMM, Software for Interactive Musculoskeletal Modeling; XROMM, X-ray Reconstruction of Moving Morphology. The drawing of a propeller apparatus is
modi�ed from Crandell and Tobalske (2011).

To better understand the independent contributions of
di�erent morphological specializations to avian locomotor
performance, here we combined existing data on muscle
morphology, skeletal kinematics, and aerodynamic force
production to construct musculoskeletal models of an avian
wing at di�erent ontogenetic stages. Simulations of WAIR were
then used to analyze pectoral limb function in models of “baby”
(7–8 days post-hatch), “juvenile” (18–20 days post-hatch),
and adult (> 100 days post-hatch) Chukar Partridges. These
precocial ground birds are a model species for locomotor
ontogeny. Although adult chukars use their wings for a variety of
locomotor behaviors, WAIR is one of the few �apping behaviors
used at all stages of ontogeny and represents a challenging and
particularly important behavior for developing birds in many
species (Dial et al., 2015). Behaviors like WAIR allow incipiently
volant juveniles to reach otherwise inaccessible elevated refuges,
and seamlessly transition from leg-based terrestrial locomotion

to wing-based aerial locomotion by recruiting their wings
and legs cooperatively. Similar behaviors may have played an
important role during the evolution of avian �ight, because
immature birds and pennaraptoran theropods have many
features in common and are (or were) both in the process of
acquiring “�ight adaptations” and �ight capacity (Heers and
Dial, 2012).

We used our musculoskeletal models and simulations to
examine how anatomical specialization in�uences the mechanics
of �ap-running on 65� inclines by testing the following
hypotheses concerning relationships between wing capacity and
skeletal, muscle, and feather morphology:

H0: musculoskeletal and feather morphology equally limit
locomotor capacity (the ability to perform a speci�c behavior,
i.e., WAIR) in developing chukars.If this null hypothesis is
not rejected, then the pectoralis (main downstroke muscle) and
supracoracoideus (main upstroke muscle) should be maximally,
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or close to maximally, activated during simulations of WAIR.
High activations are expected because immature chukars would
be recruiting their muscles to maximal levels to �ap their
wings as fast as possible, to produce as much aerodynamic
force as possible. This prediction assumes that (i) WAIR is
a challenging behavior for developing chukars, and that (ii)
bigger or better muscles would not allow developing chukars
to �ap more quickly and produce more aerodynamic force
(i.e., muscles are not more limiting than feathers). Previous
work demonstrates that WAIR is indeed a di�cult behavior for
immature chukars [65–70� D maximum angle of ascent in 6–
8 day chukars (Dial, 2003; Heers et al., 2016)]. Assumption (ii)
is justi�ed because even though 6–8 day old chukars use higher
wingbeat frequencies during controlled aerial descents (Jackson
et al., 2009), they do not appear to increase wingbeat frequency to
increase aerodynamic force output and ascend steeper inclines.

H1: feather morphology limits locomotor capacity more
than muscle morphology in developing chukars.In this case,
relatively low activations of the pectoralis and supracoracoideus
during simulations of WAIR would suggest that feathers, and
potentially other factors such as skeletal anatomy or neurological
development, limit performance more than muscle morphology.
Feather limitation would be supported if the pectoralis
and supracoracoideus are less-than-maximally activated when
aerodynamic force requirements are increased to adult levels
during simulations of WAIR. Skeletal limitations could be
checked by adjusting muscle attachment sites to re�ect the
development of bony processes and by simulating di�erent
degrees of skeletal channelization (e.g., limits to joint ranges of
motion), whereas EMG recordings on live birds are required to
assess neurological development (seeTobalske et al., 2017).

In conjunction with previous work, testing these hypotheses
o�ers insight into ontogenetic and potentially evolutionary
construction of the avian body plan, by establishing how muscles,
skeletal tissues, and feathers interact with each other andthe
environment to accomplish locomotor tasks during �ightlessto
�ight-capable transitions.

MATERIALS AND METHODS

Model Development
We built three detailed musculoskeletal models of the chukar
forelimb using CT scans, Maya (Autodesk; http://autodesk.
com/), SIMM (Musculographics, Inc, CA; http://www.
musculographics.com/), and custom scripts in Matlab software
(Mathworks; https://www.mathworks.com/). Model building
consisted of three basic steps: (i) using CT scan data to construct
digital skeletal models comprised of rigid segments (bones)
articulated by joints, (ii) adding muscles based on dissections
and skeletal landmarks, and (iii) determining segment mass,
center of mass, and inertial properties. This general work�ow
followed prior studies (e.g.,Hutchinson et al., 2005; Charles
et al., 2016; Otero et al., 2017) but is explained in full here.

Skeletal Models and Segment Properties
We used previously constructed skeletal models, as describedin
Baier et al. (2013)and Heers et al. (2016). In brief, we CT or
microCT scanned the carcasses of one 7–8 day old bird (“baby”

model; mass 34.6 g), one 18–20 day old bird (“juvenile” model;
mass 84.8 g), and one adult female (“adult” model; mass 500 g)
(adult females slightly smaller than adult males, but otherwise
similar; individuals in “baby” and “juvenile” age classes not
distinguishable by size or sex). Mesh models of individual bones
were segmented from CT scans using Amira 4.0 (Thermo Fisher
Scienti�c; https://www.fei.com/) or Osirix 4.0 32-bit (Rosset
et al., 2004), and imported into Maya to create a skeletal “puppet”
(Gatesy et al., 2010) with a hierarchy of joint coordinate systems
(Grood and Suntay, 1983). Joint coordinate systems for the pelvis
(whole body motion) and sternal, coracosternal, shoulder, elbow,
and wrist joints were de�ned using inertial axes and anatomical
landmarks, as inBaier et al. (2013), with 3 translational and
3 rotational degrees of freedom per joint (Heers et al., 2016).
Movement at any given joint (e.g., shoulder joint) caused motion
of the distal bone de�ning the joint (e.g., humerus) as well as
motion of all downstream elements (elbow joint, ulna, radius,
wrist joint, manus). For full details, see (Baier et al., 2013; Heers
et al., 2016).

In addition to constructing the joint hierarchy, we used
CT scans (one bird per age class) to quantify distribution of
mass and account for inertial e�ects. We imported image slices
from each scan into Mimics software (Materialise, Inc.; Leuven,
Belgium), used density thresholds to isolate the animal from its
surroundings and to visualize the muscles and skeleton, then
digitally segmented the animal into hind limb, sternum (trunk),
coracoid, brachial, antebrachial, and manual segments (feathers
removed;Figure S1). Using a custom script in Matlab (Allen
et al., 2013) and assuming a segment density of 1,060 kg m� 3,
we then calculated the mass, center of mass, and inertial tensor
for each segment, based on its volume. Finally, we scaled each
segment mass so that the sum of all segment masses matched
the total body mass of the specimens used to develop the models
(baby segments scaled by 1.31: total mass 34.6 g; juvenile
segments scaled by 1.03: total mass 84.8 g; adult segments
scaled by 1.11: total mass 500 g). Scaled mass, center of mass,
and inertial tensor for each segment were included as model
parameters.

Muscle Architecture
Following step (i), we added representations of muscle-tendon
units to the skeletal models using SIMM software. A total of
30 muscles were modeled, representing all of the major muscles
acting around the shoulder, elbow, and wrist joints. Individual
muscle-tendon actuator dynamics were de�ned using Hill-type
models (Zajac, 1989; Millard et al., 2013). For the “Millard
Equilibrium Muscle” employed here, the force developed by a
muscle and transmitted through tendon to bone (f M ) depends
on (i) the size and �ber architecture of the muscle, which dictates
its maximum isometric force (f M

o ), (ii) the level of activation,
ranging from 0 to 1 (a), (iii) the active force-length curve,

normalized by optimal �ber length (f L
�
QlM

�
), (iv) the force-

velocity curve, normalized by maximum contractile velocity

(f V
�
QvM

�
), (v) the passive force-length curve (f PE

�
QlM

�
), and (vi)

the pennation angle (� ):

f M D f M
o

�
afL

�
QlM

�
f V �

QvM �
C f PE

�
QlM

��
cos. � / (1)
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Calculations of maximum isometric force (i) are based on
dissections and detailed below. With respect to (ii)–(vi), the Hill
model used here:

� Models muscle �ber performance using an active force-
length curve (iii), force-velocity curve (iv), and passive force-
length curve (https://simtk.org/api_docs/opensim/api_docs/
classOpenSim_1_1Millard2012EquilibriumMuscle.html)

� Models tendon elasticity using a force-length curve consisting
of a non-linear toe region and a linear region with a slope set
such that tendon strain is 4.9% of tendon slack length at the
maximum isometric �ber force

� Assumes a constant muscle volume and varies� to maintain
constant muscle height (no muscle bulging)

Parameters for (iii)–(v) were determined by �tting experimental
data (see Figure 3 inMillard et al., 2013). The total force
developed by muscle �bers is assumed to scale up from the
force produced by a single �ber, which in turn is assumed to
depend only on two time dependent states: �ber activation and
�ber length. To avoid numerical singularities during simulation
and reduce simulation time, minimum activation is assumed to
be 0.01, maximum pennation angle is restricted (� < 84.26� ),

and f L
�
QlM

�
> 0 (Millard et al., 2013). Finally, a time delay

between excitation (e.g., �ring of a neuron) and muscle force
development is included, modeled as a �rst-order di�erential
equation with activation and deactivation time constants of 10
and 40 ms, respectively (Millard et al., 2013).

Though included in our Hill model implementation, dynamic
muscle properties (e.g., activation-deactivation dynamics, �ber
force-velocity relationships) are not used in static simulation
approaches such as OpenSim's static optimization routine
(section Simulations). In addition, as detailed in the section
Muscle Physiology, OpenSim's static optimization routine
assumes a rigid tendon and results in arti�cially stretched or
shortened muscle �bers for behaviors involving large ranges of
motion, such as �apping. We therefore opted to not incorporate
force-length relationships in our simulations. Consequently, in
our simulations, muscle force development is solely dictated
by the size and �ber architecture of the muscle (i.e.,f M

o ), and
the level of activation. Muscle pathways (Table S1) and �ber
architecture (Table S2) were determined through dissection or
measurements based on dissection (digital scales� 0.0001 g;
ImageJ� 0.1 mm; ImageJ� 0.1� ), as detailed below.

Origins and insertions
We dissected 3 (baby, juvenile) or 4 (adult; two males and
two females) birds per age class to obtain muscle pathways
and physiological cross-sectional areas. All procedures were
approved by the Institutional Animal Care and Use Committee
(IACUC) at the University of Montana (specimens fromHeers
and Dial, 2015) or the Ethics and Welfare Committee at the
Royal Veterinary College (URN 2013 1228). To de�ne muscle
pathways, we isolated each muscle during dissection, and added
markers to the skeletal model in Maya at the position of each
origin and insertion. Each marker was then associated with the
proximal joint of the bone to which it was attached, so that

the position of the marker was de�ned in the same coordinate
space. We transferred these origin or insertion coordinatesto
the musculoskeletal model in SIMM to create each muscle (3D
visualization is easier with Maya, hence the Maya to SIMM
work�ow), then added wrapping surfaces and/or via points (Delp
and Loan, 2000; Delp et al., 2007) between them, where necessary,
to prevent muscles from passing through bone and to maintain
muscle paths that matched those of the dissected bird (Figure 2;
Table S1).

Because we did not detect variation in origin and insertion
positions or muscle pathways across age classes or individuals,
we gave all models identical origins, insertions, and pathways,
thus eliminating the possibility of having simulation outputs
in�uenced by di�erences in the modeled positions of origins and
insertions. To do this, we transferred origins and insertions of
the adult model to the baby and juvenile models, in Maya, by
(i) scaling each bone in the adult model (with associated origins
and insertions) to the size of each bone in the baby or juvenile
model, (ii) aligning bony landmarks, and (iii) insuring that bones
made contact at joints. We scaled the length and width of each
adult bone by calculating scaling factors (baby- or juvenile-to-
adult ratios) based on measurements of bone lengths and widths
in fresh adult, juvenile, and baby skeletons, to account for the
presence of cartilage that could not be detected by CT scans and
thus not visualized in our skeletal models. Origin and insertion
positions were consistent with previously published data on other
galliforms (Hudson and Lanzillotti, 1964).

Although many �ight muscles have broad origins and/or
insertions, for this analysis we modeled all muscles with a single
point origin and single point insertion. To assess the e�ects of
modeling large muscles as a single muscle with a path through the
center of the volume of the muscle vs. multiple smaller muscles
with di�erent origins and paths, we compared simulations of
WAIR where the pectoralis muscle was modeled as a single
muscle with simulations where the pectoralis was modeled as
three smaller muscles, in the adult model.

Optimal �ber length and average pennation angle
One additional adult bird was dissected to measure �ber
lengths and pennation angles (measuring lengths and angles
required removing and photographing individual muscles,
which prevented accurate measurement or calculation of other
parameters). Fiber length and orientation (pennation angle)are
important determinants of muscle strain (changes in length)
and stress (force per unit physiological cross-sectional area).
To determine the optimal �ber length [taken as the fascicle
length of the muscle at rest (Zajac, 1989) and assuming �ber
length to be equivalent to fascicle length] and average pennation
angle of each muscle, we �rst cut and gently removed each
muscle at its origin and insertion. We then photographed the
muscle from a perpendicular distance of� 60 cm with a ruler
for scale, and used ImageJ (NIH; https://imagej.nih.gov/ij/) to
measure the pennation angles and lengths of 1-6 muscle �bers,
depending on the amount of �ber variation. For parallel-�bered
muscles, we generally took one measurement, in the middle of the
muscle; for pennate muscles, we took up to three evenly spaced
measurements on either side of the central tendon. Averageswere
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FIGURE 2 | Muscles. Origins, paths, and insertions of the 30 forelimb muscles modeled. Muscles acting mainly at the shoulder are numbered in blue; muscles acting
mainly at the elbow are numbered in green; muscles acting mainly at the wrist are numbered in purple.(A) adult model in anteromedial view,(B) adult model in left
lateral view,(C) adult model in dorsal view.

calculated for muscles with multiple measurements. Pennation
angles were qualitatively consistent with previously published
illustrations of forelimb muscles in galliform birds (Hudson and
Lanzillotti, 1964).

Given that the adult bird on which we measured �ber lengths
and pennation angles (“measured” in Equation 2) was slightly
more muscular than the adult birds we used to construct the
musculoskeletal model (“modeled” in Equation 2; total forelimb
muscle mass of measured bird was 1.18 times greater than average
of modeled birds), we assumed that length is proportional to
mass1=3 and scaled the modeled �ber lengths to� 95% of their
measured value, based on the following equation:

�ber length, modeledD

(�ber length, measured)
�

total forelimb muscle mass, modeled
total forelimb muscle mass, measured

� 1=3

(2)

where total muscle mass is the sum of the masses of the major
forelimb muscle-tendon units (pectoralis, supracoracoideus,
coracobrachialis posterior, latissimus dorsi, scapulohumeralis
caudalis, deltoideus major, tensor propatagialis brevis, biceps
brachii, triceps brachii, all antebrachial muscles).

For baby and juvenile birds, we were unable to clearly
see individual fascicles, either with the naked eye or undera
dissecting microscope. We therefore assumed that across age
classes, pennation angles would be constant, and �ber lengths
would be proportional to muscle lengths:

baby or juvenile �ber lengthD

(adult �ber length, modeled)
�

MTU length, baby or juvenile model
MTU length, adult model

�

(3)

where MTU length is the muscle-tendon unit length (calculated
in SIMM) for the muscle of the �ber in question, averaged over
one wingbeat cycle of WAIR (average kinematics during 60–
65� WAIR for baby and juvenile, 70–80� WAIR for adult, to
standardize for level of e�ort—seeHeers et al., 2016).

Maximum (isometric) muscle force
Following previous studies (Hutchinson et al., 2015and
references therein), we assumed that for each muscle, maximum
isometric force (Fmax, N) is proportional to the physiological
cross-sectional area of the muscle (Aphys, m2):

Aphys D mmusccos(� )L� 1
fo

d� 1 (4)

Fmax D (3.0� 105 N m� 2)(Aphys) (5)

wheremmusc is the mass of the muscle in question [kg; average
mass for 3 (baby, juvenile) or 4 (adult; 2 male and 2 female) birds
(data from Heers and Dial, 2015; supplemented by additional
dissection for previously unmeasured muscles)],� is the average
pennation angle (radians),Lfo is the optimal �ber length (m),d
is muscle density (1,060 kg m� 3 Mendez and Keys, 1960; Brown
et al., 2003; Hutchinson et al., 2015), and 3.0� 105 N m� 2 is
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isometric stress under maximal muscle activation (Medler, 2002;
Nelson et al., 2004).

To check the validity of these calculations, we compared
Fmax of the pectoralis (main downstroke muscle) with force
production measured in pigeons. Very few data are available
on force production by avian �ight muscles, partially because
there is no direct way to measure force production by these
muscles (seeBiewener, 2011). Previous studies using calibrated
strain gauges to estimate force production by the pectoralis in
�ying pigeons have reported forces ranging from 18 to 26 N
(Dial and Biewener, 1993; body mass 301–314 g, pectoralis
mass 28.0–33.9 g) to> 120 N (Soman et al., 2005; body mass
522–593 g, pectoralis mass 46.6–55.8 g). In the smaller pigeons,
pectoralis forces obtained during �ight were well below the
isometric force estimated by supramaximally stimulating the
muscle in anesthetized birds (18–26 N vs. 67 N). Assuming
a similar relationship, maximal isometric force in the larger
pigeons should have been� 260–480 N. We calculated a maximal
isometric force of 231 N for the pectoralis muscle of our adult
chukar (body mass 500 g, pectoralis mass 39.5 g). This value is
intermediate between the pigeons' isometric forces, as would
be expected given that the mass of the chukar pectoralis is
intermediate between that of the two groups of pigeons. Also
consistent with our work, (Yang et al., 2015) calculated a maximal
isometric muscle force of 335 N for the pectoralis of a Golden
Pheasant (Chrysolophus pictus), which is slightly smaller than our
chukar (average body mass 422 g, average pectoralis mass 28.8g)
but has proportionally shorter muscle �bers and therefore a larger
Aphys.

Tendon slack length
Tendon slack length (Lts) is de�ned as the length beyond which
the tendons associated with a muscle begin resisting stretch
and producing force. This parameter essentially determines how
much of the total force that a muscle-tendon unit produces is
produced actively, by the muscle contracting, vs. passively,by
the tendon(s) (series elastic component) being stretched. We
used the algorithm provided byManal and Buchanan (2004)to
calculate a tendon slack lengthLts for each muscle. This algorithm
requires knowledge of the minimum and maximum muscle-
tendon unit lengths (Lmt; length of muscle (Lm) C tendon(s)
(Lt)) across a range of joint motions, the average pennation
angle of the muscle �bers (� ), and the normalized �ber lengths
(Lf �I D instantaneous �ber length (Lf ) / optimal �ber length (Lfo)
at the minimum and maximum values ofLmt) (Figure S2):

LfQD
Lf

Lfo
! Lf D (LfQ)(Lfo) (6)

cos.� / D
Lm

Lf
D

Lm

(LfQ)(Lfo)
! Lm D cos.� / (LfQ)(Lfo) (7)

Lts / Lmt � Lm D Lmt � cos. � / (LfQ)(Lfo) (8)

For the minimum and maximum values ofLmt, we used the
minimum and maximum lengths associated with maximal e�ort
WAIR or ascending �ight (Dfull range of motion; kinematics
from Baier et al., 2013; Heers et al., 2016; values ofLmt calculated

in SIMM), and assumed that the normalized �ber lengths
associated with these minimum and maximum muscle-tendon
unit lengths were 0.5 and 1.5, respectively (Manal and Buchanan,
2004).

Experimental Data
Skeletal Kinematics
Flapping kinematics for WAIR in each age class were taken
from Heers et al. (2016)and Baier et al. (2013)(Videos S1–
S3). These studies quanti�ed translations and rotations for the
“pelvis” (whole body motion), sternum, coracosternal, and all
major forelimb joints (shoulder, elbow, wrist), averaged over the
downstroke and upstroke of two (adults; two trials per bird)
or three (baby, juvenile; one trial per bird) birds. As inHeers
et al. (2016), we chose to use averaged kinematics rather than the
kinematics of one individual for one trial, due to the di�culty
of using XROMM to measure skeletal kinematics in juvenile
birds.

Aerodynamic Forces
Incorporating aerodynamic forces into the models required two
basic steps: (1) empirically measuring total force production, and
(2) estimating the distribution (magnitude and position) of forces
along the wing (steps summarized inFigure 3).

(1) To measure total aerodynamic force production during
WAIR, we dried wings in a mid-downstroke posture and spun
them like a propeller, attached to a force plate via a motor, to
measure both lift and drag [two wings per age class; data from
(Heers et al., 2011) consistent with PIV measurements on live
birds (Tobalske and Dial, 2007)]. To scale the measured forces
to the sizes of our model animals, we multiplied the weight of
each model animal (baby, juvenile, adult) by the aerodynamic
force measured for its age class, expressed as a proportion of body
weight.

(2) To estimate how (scaled) aerodynamic force was
distributed along each wing segment (brachial, antebrachial,
manual), we calculated the proportion of the resultant force that
would be produced by each wing segment:

Resultant forceD 0.5pCRS
�
(• r)2 C VT

2
�

/ S
�
(• r)2 C VT

2
�

(9)

Vertical forceD (resultant force)
�
sin(resultant force angle)

�
(10)

Horizontal forceD (resultant force)
�
cos(resultant force angle)

�
(11)

where the resultant force (N) is the total aerodynamic force
produced by the wing segment (brachial, antebrachial, or
manus) at mid-downstroke,p is air density (1.07 kg m� 3

in Missoula, Montana; where experiments were done),CR
is the coe�cient of the resultant force based on force plate
measurements (amount of force produced per unit surface area
and velocity2, at a given air density; data fromHeers et al.,
2011, n D 2 individuals per age class),S is the surface area of
the wing segment (m2), measured in ImageJ from photographs
(photos from Heers et al., 2011), • is the angular velocity of
the wing, based on high speed video of chukars performing
WAIR (data from Heers et al., 2011), r is the “length” of the
wing segment (distance between shoulder joint and center of
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FIGURE 3 | Aerodynamic force calculations. Stepwise procedure showing how the magnitudes and positions of aerodynamic forces were calculated for each model.
Data in the graph is fromHeers et al. (2011); the drawing of the propeller apparatus is modi�ed fromCrandell and Tobalske (2011). Resulting model inputs are shown
in Table S3.

wing segment at mid-downstroke), andVT is the translational
velocity of the animal during WAIR (data fromJackson et al.,
2009).

Note that Equation (9) assumes angular (�apping) and
translational (running) velocities are perpendicular to one
another—this is a conservative estimation of total wing
velocity that can be applied to future models. Any resulting
discrepancies between the total aerodynamic force calculated
using (Equations 9–11) and the total aerodynamic force
measured by the force plate (Heers et al., 2011) were recti�ed by
scaling.

Following steps (1) and (2), we positioned the aerodynamic
force associated with each wing segment in the proximodistal
center of the segment (atr in Equation 9), in the plane of the
wing (dorsal surface of humerus, ulnaC radius, or manus in mid-
downstroke position), and at the quarter chord length position
(Figure 3; Table S3), because aerodynamic theory predicts that
the magnitude of aerodynamic force production should be
greatest at this position (e.g.,Anderson, 2017).

To check the validity of this work�ow, we compared
the distributions of aerodynamic force in our adult model

with previous work using pressure sensors to determine force
production along the wing of a �ying pigeon (Usherwood et al.,
2005). Modeled and measured forces were consistent. In the
pigeon, aerodynamic force produced at the eighth primary
feather (feather P8; approximately equivalent to manus segment)
was 2–3 times greater than force produced by more proximal
secondary feathers (feathers S1, S7; approximately equivalent
to antebrachial segment). In our chukar model, aerodynamic
force produced by the manual segment was 4.4 times greater
than force produced by the antebrachial segment. Compared to
the pigeon, chukars engaged in WAIR �ap at higher angular
velocities [higher wingbeat frequencies; 18.7 Hz (Jackson et al.,
2009) vs. 8.0 Hz in the pigeon (Usherwood et al., 2005)] and move
(i.e., run) at lower translational velocities [1.57 m s� 1 (Jackson
et al., 2009) vs. 4.46 m s� 1 in the �ying pigeon (Usherwood et al.,
2005)]. Based on these velocity di�erences, and assuming that
angular velocity is proportional to wingbeat frequency and wing
segments are roughly proportional in chukars and pigeons, we
would expect the manual-to-antebrachial force ratio to be� 2
times higher in chukars than in pigeons (aerodynamic force/
.• r/2 C VT

2; see Equation 9).
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Simulations
Following musculoskeletal model construction, we importedour
models and experimental data into OpenSim (Delp et al., 2007)
and used the built-in inverse dynamics and static optimization
algorithms to estimate patterns of muscle activation and force
development. For a given set of kinematics and external
loads (in this case, aerodynamic forces), inverse dynamics
determines the net joint moments required to produce the
motion. Static optimization then resolves net moments into
individual muscle moments (muscle force times muscle moment
arm) at each time step by minimizing the sum of squared
muscle activations. We made three adjustments before running
simulations:

Kinematic Inputs
Model joints must be constrained either by skeletal geometry
and ligaments or by muscles. Previous studies have incorporated
skeletal and ligament constraints by limiting various rotations,
or by de�ning bone translation as a function of bone
rotation, such that muscle activity only a�ects unconstrained
rotations and/or translations. Rather than characterizing soft-
tissue and skeletal constraints that limit translation in each
wing joint—which would have been extremely challenging
given the complexity of the avian forelimb—we instead initially
constrained joint translations to match the experimentally
observed values. Thus, only bone rotations were driven by muscle
activity.

Because our aim was to examine how the avian wing
functions through ontogeny, we focused on the three
main wing joints (shoulder, elbow, wrist); for other body
joints (coracosternal, sternal, pelvis/whole body), we initially
prescribed all translations and rotations to match experimental
data so that the animal's body would be moving at the
correct speed and orientation without requiring additional
muscles in the model to drive those movements. However,
simulations with the prescribed motions and simulations
containing only rotations at the shoulder, elbow, and wrist
(i.e., shoulder, elbow, and wrist translations, and all other
non-wing joint motions, “locked”) yielded very similar results;
thus, to simplify comparisons, here we report on simulations
using only wing rotations. Kinematics were low-pass �ltered at
53–56 Hz.

Reserve actuators, which contribute joint moments if model
muscles are not strong enough (Hicks et al., 2015; Rankin et al.,
2016), were set at an optimal force representing 50% of the
maximum moment (based on inverse dynamics) at a joint in
a given direction, for each model (Table S4); smaller reserve
actuators resulted in simulation failure. Residual actuators were
never used, since the body was “locked” into position.

Aerodynamic Input
To account for the fact that our propeller models only measured
aerodynamic force production at mid-downstroke, we assumed
an inactive upstroke (no aerodynamic force production) and
applied our measured aerodynamic forces to the middle quarter
of the kinematic downstroke, then tapered force to zero using
a linear interpolation in both directions. Thus, in our models,

the beginning of the downstroke—de�ned as the point at which
the tip of the manus began moving closer to the sternum—
produced no aerodynamic force, aerodynamic force increased
steadily up to mid-downstroke and remained constant through
the middle quarter of downstroke, then decreased steadily to
zero at the end of downstroke and remained at zero through
the entire upstroke. Although this was a simplifying assumption,
newly developed techniques for measuring aerodynamic force
production in vivo con�rm that aerodynamic force production
peaks roughly in mid-downstroke and tapers steadily to zero or
nearly zero at the beginning and end of downstroke (Lentink
et al., 2015; Figure S3).

In addition to simulating 65� WAIR underin vivoconditions,
we simulated 65� WAIR for the baby and juvenile models
under �ve theoretical conditions (Table 1) designed to test
our two hypotheses by assessing whether the pectoralis and
supracoracoideus muscles of baby and juvenile birds were
capable of �apping more e�ective, adult-like wings. Treatments1
and 2 were designed to represent a baby or juvenile bird �apping
a wing with adult-like feathers (adult value of aerodynamic force,
in terms of percent body weight and lift-to-drag ratio; no change
in wing size or position of aerodynamic force). Treatments 2,
3, and 4 were designed to represent a baby or juvenile bird
�apping a wing with adult kinematics (adult wingbeat frequency
and adult rotations at the shoulder, elbow, and wrist; all other
kinematics unchanged) and di�erent amounts of aerodynamic
force (in vivo or adult magnitudes). Finally, Treatments 4 and 5
were designed to represent a baby, juvenile, or adult bird �apping
a wing without producing any aerodynamic force, to account for
inertial properties.

Muscle Physiology
OpenSim's static optimization routine assumes that tendons are
rigid and do not stretch. For behaviors involving a large range of
motion, such as �apping, this is problematic because all length

TABLE 1 | Kinematic and aerodynamic manipulations.

Treatment Musculoskeletal
morphology

Magnitude of
aerodynamic force

Kinematics

1 Baby or Juvenile
musculoskeletal
morphology
(unchanged)

Adult aerodynamic force Baby or Juvenile
kinematics
(unchanged)

2 Adult aerodynamic force Adult kinematics

3 Baby or Juvenile
aerodynamic force
(unchanged)

Adult kinematics

4 No aerodynamic force Adult kinematics

5 No aerodynamic force Baby or Juvenile
kinematics
(unchanged)

Adult aerodynamic force (Treatments 1, 2): adult value of aerodynamic force, in terms
of percent body weight and lift-to-drag ratio; no change in wing size or position of
aerodynamic force. Adult kinematics (Treatments 2, 3, 4): adult wingbeat frequency and
adult rotations at the shoulder, elbow, and wrist; all other kinematics unchanged. No
aerodynamic force (Treatments 4, 5): accounts for inertial properties.
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changes must unrealistically occur in the muscle �bers, resulting
in overly stretched or compressed �bers less capable of generating
force. Our preliminary simulations using a rigid tendon resulted
in most of the joint moment being contributed by reserve
actuators, rather than muscles, for all joints and all models. To
remove errors imparted by the assumption of tendon rigidity,
we ignored muscle force-length relationships (muscle physiology
turned “o� ” in OpenSim) and re-ran simulations. This did
not a�ect the timing of muscle activations and substantially
reduced the moments contributed by reserve actuators, but did
not eliminate them completely: reserve actuators still contributed
> 10% of the total joint moment (< 10% desirable; seeHicks et al.,
2015; Rankin et al., 2016) (Figure S4; Table S5).

Additional sensitivity analyses where joint locations, muscle
geometries, �apping kinematics, and aerodynamic force locations
were adjusted within the range observed among chukars or
within the range calculated under di�erent assumptions (e.g.,
joint location determined by joint anatomy vs. joint location
determined by kinematics) could not eliminate the need for the
reserve moments (Table S6). This suggested that the limitation
was inherent to using a static approach, which likely (and
unsurprisingly) cannot completely characterize dynamic muscle
function during �apping. Static approaches are nonetheless a
valuable �rst start that more dynamic approaches can build upon,
and we proceeded with this in mind.

Previous studies have suggested that the storage and release of
elastic energy by tendons and ligaments likely plays an important
role in the high frequency �apping kinematics of birds (e.g.,
Tobalske and Biewener, 2008). These dynamic contributions
cannot be captured by static optimization. Given that peak joint
moments occurred at wing turnaround (upstroke-downstroke
and downstroke-upstroke transitions), we hypothesized thatthe
remaining moments contributed by reserve actuators most likely
represent moments that would be contributed by elastic tendons
/ ligaments that are stretched during downstroke or upstrokeand
then spring back into place at wing turnaround. More complex,
dynamic simulations can test this idea, but are beyond the scope
of this paper. Regardless of the limitations of a static approach,it
is very unlikely that our ontogenetic comparisons would change
with dynamic simulations, because all models were constructed
the same way and thus faced the same limitations associated with
static simulations.

RESULTS

Model Validation
To validate our model and simulations, we compared the
simulated muscle activations, lengths, and forces with empirical
data—when available—from live birds. Simulations with the
pectoralis modeled as a single muscle following a path through
the center of the volume of the muscle vs. simulations with the
pectoralis modeled as three smaller muscles—to account for its
broad origin (see methods)—did not alter the timing of pectoralis
activation but did slightly reduce its average level of activation,
most likely due to the greater range of moment arm values
(Figure S5). This and other modeling decisions (Table S6) would
not a�ect our ontogenetic comparisons, so for the purposes of

this study we herein report results with all muscles modeled as
single muscles.

Timing of Muscle Activations, Length Changes, and
Force Development
Our simulations of WAIR on 65� slopes yielded patterns of
muscle activation that were broadly consistent with patterns
of EMG activity in �ying birds (Figure 4). EMG data are
only available for the pectoralis muscle during WAIR [pigeons
(Jackson et al., 2011b); chukars (Tobalske et al., 2017)]. However,
ascending �ight provides a reasonable comparison because it
has a similar body trajectory to WAIR and comparable �apping
kinematics [chukars show similar directions of movement,
e.g., �exion vs. extension, but greater ranges of motion, in
�ight vs. WAIR (Baier et al., 2013)]. Compared to muscle
activity in pigeons during ascending �ight (Dial, 1992b), our
simulated activations of most forelimb muscles (14 out of 16
for which comparisons were possible) either (a) qualitatively
matched EMG signals recordedin vivo, with no or low o�set in
timing [pectoralis, supracoracoideus, coracobrachialis posterior,
deltoideus major, subscapularis, pronator, supinator (second
peak of activityin vivo very low magnitude), extensor metacarpi
radialis, extensor carpi ulnaris, extensor digitorum communis],
or (b) di�ered only moderately (biceps brachii—simulations
did not capture second EMG burst; triceps—summed activity
of scapulo- and humerotriceps identical toin vivo data, but
model did not discriminate between di�erent heads; �exor carpi
ulnaris—constant but low activity). For the scapulohumeralis
caudalis muscle, our simulations predicted an additional peak
of activity in the juvenile model. For the tensor propatagialis
brevis, our simulations di�ered substantially across age classes
and occurred at di�erent points in the stroke cycle.

For the pectoralis and supracoracoideus (data not available for
other muscles), in addition to similarities in the timing ofmuscle
activation, simulated patterns of muscle-tendon shortening
vs. lengthening and force development were qualitatively
similar to patterns reported for muscle �bers in �ying
(Tobalske and Biewener, 2008) or �ap-running (Jackson
et al., 2011a) pigeons (Figure 5). For both the pectoralis
and supracoracoideus, simulated muscle activation began mid-
muscle-lengthening, consistent within vivo excitations. The
pectoralis and supracoracoideus shortened and lengthened in
opposition to one another, and both muscles began developing
force while lengthening, asin vivo. Peak force occurred when the
muscle-tendon units were relatively long.

Magnitude of Muscle Activations
WAIR is one of the least power-demanding �apping behaviors
for adult birds [pectoralis power output< 60 W kg� 1 compared
to � 60–190 W kg� 1 for various modes of �ight (Jackson et al.,
2011b)]. Thus, we expected activation of the �ight muscles to
be relatively low for the power-generating (shoulder) muscles
in the adult model. On average, all three models had similar
levels of muscle activation, though the baby had slightly higher
peak activations than the juvenile, which had slightly higher
peak activations than the adult (Figure 6; Table S7). For all
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FIGURE 4 | Muscle activations. Simulated patterns of muscle activation during wing-assisted incline running on 65� inclines (red, green, and purple lines) are broadly
similar to the timing of muscle activity during ascending �ight in pigeons (gray bars, fromDial, 1992a); for explanation of exceptions, see text. Here, the
upstroke-downstroke transition is de�ned as the point at which the tip of the manus begins moving downward, and the downstroke-upstroke transition as the point at
which the tip of the manus begins moving upward.(A) Muscles acting at the shoulder joint.(B) Muscles acting at the elbow joint.(C) Muscles acting at the wrist joint.
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FIGURE 5 | Patterns of muscle activation, changes in length, and forcedevelopment. Simulation estimates of muscle activation, shortening vs. lengthening, and force
development are qualitatively similar to patterns reported for �ying (Tobalske and Biewener, 2008) or �ap-running (Jackson et al., 2011a) pigeons. Simulated chukar
data is in purple;in vivo/in vitropigeon data is in gray; solid lines, �ap-running on 65� inclines; dashed lines, ascending �ight. Gray regions indicate simulated shortening
of the pectoralis muscle. Lengths represent muscle-tendonlengths in chukars. Pigeon forces and lengths are expressedas stresses and strains, respectively; pigeon
muscle “activity” is actually muscle excitation (EMG), which precedes activation; axes for pigeon data are not shown. All comparisons are based on adult birds.

FIGURE 6 | Peak and average muscle activations. On average, baby, juvenile, and adult chukars have similar levels of muscle activation (A), though the baby chukar
has slightly higher peak activations than the juvenile, which has slightly higher peak activations than the adult(B). For all age classes, elbow and wrist muscles have
higher average and/or peak activations than shoulder muscles, which have relatively low activations (generally< 0.5) (Table S7). Each bar represents one muscle. The
pectoralis and supracoracoideus are distinguished by lighter brown coloring in the top rows. P, Pectoralis; S, Supracoracoideus; C, Coracobrachialis posterior; c,
Coracobrachialis anterior; Sb, Subcoracoideus; L, Latissimus dorsi; Sc, Scapulohumeralis caudalis; Ss, Subscapularis; Pb, Propatagialis brevis; D, Deltoideus major;
d, Deltoideus minor; B, Biceps brachii; St, Scapulotriceps; H, Humerotriceps; Ps, Pronator sublimis; Pp, Pronator profundus; Sp, Supinator; A, Anconeus; Br,
Brachialis; E, Entepicondyloulnaris; Fc, Flexor carpi ulnaris; Fs, Flexor digitorum sublimis; Fp, Flexor digitorum profundus; U, Ulnimetacarpalis ventralis; Em, Extensor
metacarpi radialis; Ed, Extensor digitorum communis; Ec, Extensor carpi ulnaris; Ep, Extensor pollicis longus; Ei, Extensor indicis longus.

age classes, elbow and wrist muscles had higher average and/or
peak activations than shoulder muscles, which, consistent with
expectations for the adult model, had relatively low activations
(generally< 0.5).

Model Predictions of Muscle Function
Muscle Moment Arms
Moment arms indicate how muscle force is transformed into
limb motion—which joint rotations a muscle should cause
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(or oppose) if activated at a particular point in a locomotor
sequence. To estimate each muscle's maximum movement-
generating potential at the shoulder, elbow, and/or wrist joints,
we multiplied the maximum isometric force (Table S2) by
moment arm estimates at every 1% of the stroke cycle. Almost all
(� 90%) muscle actions were similar across age classes (Table 2).
Di�erences in muscle action across age classes occurred in
7 (out of 30) muscles. At the shoulder, the scapulohumeralis
caudalis had high potential to contribute to humeral elevation
in the adult model but little capacity to do so in the baby and
juvenile models. This muscle could also contribute to humeral
protraction in the adult and baby models, but not in the juvenile
model. At the elbow, the pronator had capacity for antebrachial
supination in the adult and baby but not the juvenile model,
while the humerotriceps had capacity for antebrachial supination
in the baby and juvenile but not the adult. Finally, at the wrist,
the ulnimetacarpalis ventralis had potential to �ex the wrist
in the juvenile but not the adult or baby models, and to supinate
the manus in the adult and baby models, but not the juvenile.
The extensor metacarpi radialis could contribute to manual
abduction in the adult and baby models but not the juvenile,
the �exor carpi ulnaris could supinate the manus in the adult
and baby but not the juvenile model, and the �exor digitorum
could supinate the manus in the baby but not the adult or
juvenile models. All other potential actions were similar across
age classes.

Muscle Function
Whereas moment arms represent the potential for a muscle to
perform an action, inverse dynamics and static optimization
analyses provide timing and intensity of muscle activity andthus
suggest speci�c functional roles for each muscle during wing
�apping. Here, we de�ned the upstroke-downstroke transition
as the point at which the tip of the manus began moving
downward (i.e., closer to the sternum in a transverse plane),and
the downstroke-upstroke transition as the point at which the tip
of the manus began moving upward. However, both transitions
were initiated at the shoulder joint, and progressed proximal
to distal (shoulder: elbow : wrist). Thus, at the start of
downstroke (as de�ned by position of the manus), the humerus
was already being depressed and pronated, and just beginning
to retract. Similarly, at the start of upstroke, the humerus was
already being elevated, whereas the tip of the manus was just
beginning to reverse direction.

Overall, muscle actions determined from muscle moment
arms, simulated muscle activity, and �apping kinematics were
consistent with empirical studies of live birds. As in previous
work (Dial et al., 1991; Dial, 1992a; Poore et al., 1997a; Biewener,
2011; Robertson and Biewener, 2012), the pectoralis and
supracoracoideus emerged in our simulations as the main drivers
of the downstroke and upstroke, respectively. The pectoralis
was active during the upstroke-to-downstroke transition,
acting to decelerate and then depress, retract, and pronate the
humerus (Table S8). The supracoracoideus acted in an opposite
pattern, contracting during the downstroke-upstroke transition
to decelerate and then elevate and supinate the humerus.
Both muscles were aided by the activity of smaller muscles

spanning the shoulder joint. The pectoralis was supplemented
by the coracobrachialis posterior and subcoracoideus (mainly
retraction), whereas the supracoracoideus was supplemented
slightly by the deltoideus major (elevation, protraction). The
scapulohumeralis caudalis (elevation, retraction or protraction,
pronation, stabilization), latissimus dorsi (retraction,elevation,
stabilization), and scapulotriceps (retraction, elevation,
stabilization) assisted both the pectoralis and supracoracoideus.
Most of these simulated functions were consistent with previous
work (Dial et al., 1991; Dial, 1992a; Poore et al., 1997a; Biewener,
2011; Robertson and Biewener, 2012), though some di�erences
were evident (Table S8).

Whereas the pectoralis and supracoracoideus dominated
movement at the shoulder joint, our simulated muscle functions
were more evenly distributed at the elbow and wrist, and muscles
were not distinguished by clear downstroke or upstroke activity.
Between early-to-mid upstroke and early-to-mid downstroke,
several muscles were activated to unfurl the wing by extending
the elbow (scapulotriceps, humerotriceps, �exor carpi ulnaris,
pronator profundus) and then the wrist (extensor metacarpi
radialis, �exor digitorum sublimis, extensor carpi ulnaris).
Simultaneously, the wrist was abducted (extensor carpi ulnaris,
extensor metacarpi radialis), which would allow the primary
feathers to be untucked from their folded position against the
body (Heers et al., 2016). Elbow abduction (anconeus, extensor
metacarpi radialis, extensor carpi ulnaris, supinator, extensor
digitorum communis) occurred as well but preceded wrist
abduction, initiating the downstroke-to-upstroke transition.

Beginning in early-to-mid downstroke, in preparation for
tucking in the wing during the downstroke-upstroke transition,
the elbow (pronator sublimis, extensor metacarpi radialis; small
contributions from brachialis, supinator, anconeus, extensor
digitorum communis, extensor carpi ulnaris) and then wrist
(�exor carpi ulnaris, �exor digitorum profundus) began to
�ex, and the wrist began to adduct (�exor digitorum, �exor
carpi ulnaris). Elbow adduction (pronator, humerotriceps
and scapulotriceps, �exor carpi ulnaris, biceps brachii; small
contributions from entepicondyloulnaris) also occurred but
preceded wrist adduction, beginning in late upstroke and
continuing into mid-downstroke.

Long axis rotation at the elbow and wrist was more complex,
generally acting in opposition (see note on washout inHeers
et al., 2016) and reversing directions several times, which
would allow the bird to �ne-tune the angle of attack along the
wing (Biewener, 2011). Elbow pronation was likely achieved
by the tensor propatagialis brevis and biceps brachii, and
elbow supination by the �exor carpi ulnaris, scapulotriceps, and
humerotriceps. Wrist pronation seemed to be driven by the �exor
carpi ulnaris and �exor digitorum, and wrist supination by the
extensor metacarpi radialis and extensor digitorum communis.

As with the shoulder muscles, the simulated functions of
muscles spanning the elbow and/or wrist were consistent with
data on live birds (Dial et al., 1991; Dial, 1992a; Poore et al.,
1997a; Biewener, 2011; Robertson and Biewener, 2012), with
one informative exception (Table S8). Our models suggested that
the pronator muscles did not actually contribute to pronation
at the elbow: although the pronator profundus and pronator
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TABLE 2 | (A–C) Muscle moment arms and potential functions.

Rotation Age class Ontogenetic differences?
(< 5% in one model and
> 20% in another)Baby Juvenile Adult

(A) SHOULDER MUSCLES

Depression Pectoralis Pectoralis Pectoralis

Elevation Supracoracoideus
Scapulohumeralis caudalis
Latissimus dorsi
Deltoideus major
Scapulotriceps

Supracoracoideus
Scapulohumeralis caudalis
Latissimus dorsi
Deltoideus major
Scapulotriceps

Supracoracoideus
Scapulohumeralis caudalis
Latissimus dorsi
Deltoideus major
Scapulotriceps

Scapulohumeralis caudalis

Retraction Pectoralis
Coracobrachialis posterior
Scapulohumeralis caudalis
Latissimus dorsi
Subcoracoideus
Scapulotrceps

Pectoralis
Coracobrachialis posterior
Scapulohumeralis caudalis
Latissimus dorsi
Subcoracoideus
Scapulotriceps

Pectoralis
Coracobrachialis posterior
Scapulohumeralis caudalis
Latissimus dorsi
Subcoracoideus
Scapulotriceps

Protraction Supracoracoideus
Scapulohumeralis caudalis
Pectoralis
Propatagialis brevis

Supracoracoideus
Scapulohumeralis caudalis
Pectoralis
Propatagialis brevis

Supracoracoideus
Scapulohumeralis caudalis
Pectoralis
Propatagialis brevis

Scapulohumeralis caudalis

Pronation Pectoralis
Scapulohumeralis caudalis

Pectoralis
Scapulohumeralis caudalis

Pectoralis
Scapulohumeralis caudalis

Supination Supracoracoideus
x
Propatagialis brevis
Coracobrachialis posterior
Subcoracoideus

Supracoracoideus
Pectoralis
Propatagialis brevis
Coracobrachialis posterior
Subcoracoideus

Supracoracoideus
x
Propatagialis brevis
Coracobrachialis posterior
x

(B) ELBOW MUSCLES

Flexion Propatagialis brevis
Biceps brachii
Pronator
Extensor metacarpi radialis

Propatagialis brevis
Biceps brachii
Pronator
Extensor metacarpi radialis

Propatagialis brevis
Biceps brachii
Pronator
Extensor metacarpi radialis

Extension Humerotriceps
Scapulotriceps
Flexor carpi ulnaris
Anconeus

Humerotriceps
Scapulotriceps
Flexor carpi ulnaris
x

Humerotriceps
Scapulotriceps
Flexor carpi ulnaris
x

Adduction Pronator
Humerotriceps
Entepicondyloulnaris
Flexor carpi ulnaris
Biceps brachii
Scapulotriceps
Propatagialis brevis

Pronator
Humerotriceps
Entepicondyloulnaris
Flexor carpi ulnaris
Biceps brachii
Scapulotriceps
Propatagialis brevis

Pronator
Humerotriceps
Entepicondyloulnaris
Flexor carpi ulnaris
Biceps brachii
Scapulotriceps
x

Abduction Anconeus
Extensor metacarpi radialis
Propatagialis brevis
Supinator
Extensor carpi ulnaris
Extensor digitorum communis

Anconeus
Extensor metacarpi radialis
Propatagialis brevis
Supinator
Extensor carpi ulnaris
Extensor digitorum communis

Anconeus
Extensor metacarpi radialis
Propatagialis brevis
Supinator
Extensor carpi ulnaris
Extensor digitorum communis

Pronation Propatagialis brevis
Anconeus
Biceps brachii
Humerotriceps
Scapulotriceps
Extensor metacarpi radialis

Propatagialis brevis
Anconeus
Biceps brachii
x
x
Extensor metacarpi radialis

Propatagialis brevis
Anconeus
Biceps brachii
Humerotriceps
x
Extensor metacarpi radialis

Supination Pronator
Flexor carpi ulnaris
Entepicondyloulnaris
Scapulotriceps
x
Humerotriceps

Pronator
Flexor carpi ulnaris
Entepicondyloulnaris
Scapulotriceps
x
Humerotriceps

Pronator
Flexor carpi ulnaris
Entepicondyloulnaris
Scapulotriceps
Biceps brachii
Humerotriceps

Pronator
Humerotriceps

(Continued)
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TABLE 2 | Continued

Rotation Age class Ontogenetic differences?
(< 5% in one model and
> 20% in another)Baby Juvenile Adult

(C) WRIST MUSCLES

Flexion Flexor carpi ulnaris
x
Ulnimetacarpalis ventralis

Flexor carpi ulnaris
Flexor digitorum
Ulnimetacarpalis ventralis

Flexor carpi ulnaris
Flexor digitorum
Ulnimetacarpalis ventralis

Ulnimetacarpalis ventralis

Extension Extensor metacarpi radialis
Extensor pollicis longus
Extensor carpi ulnaris
Extensor indices longus
Extensor digitorum communis
x
Flexor digitorum
Ulnimetacarpalis ventralis

Extensor metacarpi radialis
Extensor pollicis longus
Extensor carpi ulnaris
Extensor indices longus
Extensor digitorum communis
Flexor carpi ulnaris
Flexor digitorum
Ulnimetacarpalis ventralis

Extensor metacarpi radialis
Extensor pollicis longus
Extensor carpi ulnaris
Extensor indices longus
Extensor digitorum communis
x
Flexor digitorum
Ulnimetacarpalis ventralis

Adduction Flexor digitorum
Flexor carpi ulnaris
Extensor metacarpi radialis
Ulnimetacarpalis ventralis
Extensor pollicis longus

Flexor digitorum
Flexor carpi ulnaris
Extensor metacarpi radialis
Ulnimetacarpalis ventralis
Extensor pollicis longus

Flexor digitorum
Flexor carpi ulnaris
Extensor metacarpi radialis
Ulnimetacarpalis ventralis
Extensor pollicis longus

Abduction Extensor carpi ulnaris
Extensor digitorum communis
Extensor metacarpi radialis
Extensor indices longus
Flexor carpi ulnaris
Extensor pollicis longus
Flexor digitorum
Ulnimetacarpalis ventralis

Extensor carpi ulnaris
Extensor digitorum communis
x
Extensor indices longus
Flexor carpi ulnaris
x
x
Ulnimetacarpalis ventralis

Extensor carpi ulnaris
Extensor digitorum communis
Extensor metacarpi radialis
Extensor indices longus
Flexor carpi ulnaris
Extensor pollicis longus
x
Ulnimetacarpalis ventralis

Extensor metacarpi radialis

Pronation Flexor carpi ulnaris
Flexor digitorum
Extensor carpi ulnaris
Ulnimetacarpalis ventralis
Extensor metacarpi radialis
x
Extensor digitorum communis

Flexor carpi ulnaris
Flexor digitorum
Extensor carpi ulnaris
Ulnimetacarpalis ventralis
Extensor metacarpi radialis
Extensor pollicis longus
Extensor digitorum communis

Flexor carpi ulnaris
Flexor digitorum
Extensor carpi ulnaris
Ulnimetacarpalis ventralis
Extensor metacarpi radialis
x
x

Supination Extensor metacarpi radialis
Extensor pollicis longus
Extensor indices longus
Flexor carpi ulnaris
Ulnimetacarpalis ventralis
Extensor digitorum communis
Flexor digitorum

Extensor metacarpi radialis
Extensor pollicis longus
Extensor indices longus
x
x
Extensor digitorum communis
x

Extensor metacarpi radialis
Extensor pollicis longus
Extensor indices longus
Flexor carpi ulnaris
Ulnimetacarpalis ventralis
Extensor digitorum communis
x

Flexor carpi ulnaris
Ulnimetacarpalis ventralis
Flexor digitorum

Potential muscle contributions, determined as a percentage of the total momentat a joint, averaged over the entire stroke cycle. Color codes: bold black, muscle moment � 50% total
moment; black, 50%> moment � 20%; purple, 20%> moment � 5%; red, 5%> moment. “Pronator” includes P. profundus and P. sublimis; “Flexor digitorum” includes F. d. sublimis
and F. d. profundus. “Ontogenetic differences” column refers to muscles in which moments differ across age classes.

sublimis were activated while the elbow was pronating, they had a
supinating moment and thus helped to stabilize against excessive
pronation.

Finally, as in live birds, all of our modeled muscles had a
decelerating and/or stabilizing function at some point during the
stroke cycle. For example, the pectoralis and supracoracoideus
were initially activated when their moment arms opposed the
current shoulder rotations, and thus decelerated the humerus
at the end of the upstroke or downstroke, respectively. The
antagonistic triceps and biceps muscles were sometimes co-
activated, and the �exor digitorum stabilized against abduction
whereas the extensor digitorum communis and extensor carpi
ulnaris stabilized against �exion and adduction at the wrist
(Table S8).

Development of the Avian Flight Apparatus
Joint Moments
Maximum joint moments associated with �ap-running increased
from baby to juvenile to adult, even when accounting for
body size (Figure 7; Table S4). Long-axis rotation moments
were small compared to other motions. At the elbow and
wrist, abduction-adduction moments were generally greater than
those for �exion-extension, re�ecting the high inertial torques
associating with �apping and aerodynamic force production.
Similarly, at the shoulder, elevation-depression moments were
greatest in the adult and juvenile, but protraction-retraction
was greatest in the baby; young chicks tend to �ap in a
more craniocaudal direction than older birds (Heers et al.,
2011).
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FIGURE 7 | Normalized shoulder moments. Moments at the shoulder joint,
standardized by body weight and moment arm lengths of the pectoralis and
supracoracoideus (averaged over one wingbeat); all modelswere simulated
under identical conditions (adult kinematics and no aerodynamic force). Joint
moments increase from baby to juvenile to adult, even when accounting for
body size.

Ontogenetic Limits on Locomotor Capacity: Feathers
vs. Muscles
We initially hypothesized that musculoskeletal and feather
morphology would equally limit locomotor capacity, such that
baby and juvenile chukars would have high muscle activations
(H0). However, in general, the baby and juvenile models had
low simulated muscle activations, particularly at the shoulder
(generally< 0.5) (Figures 4, 6). Activations were higher at the
elbow and wrist, but only slightly higher than activations in the
adult (Table S7). These relatively low activations—particularly in
the power-generating shoulder muscles—suggest that �apping
performance in developing chukars is more limited by other,
non-muscular factors (e.g., feathers or skeletal kinematics).

Kinematic and morphological manipulations (Table 1)
revealed several trends. First, for all age classes, improving
feather and wing quality (represented by increased aerodynamic
forces) increased activation of the pectoralis muscle during
the downstroke (Figures 8C,E,G) but decreased activation of
the supracoracoideus muscle during the downstroke-upstroke
transition (Figures 8D,F,G). Though somewhat counterintuitive,
aerodynamic force helped to slow the wing in late downstroke
and thus reduced the role of the supracoracoideus muscle in
deceleration (reduced activation by 13% in adult model).

Second, for the baby and juvenile models, simulating WAIR
with adult kinematics reduced peak activation of both the
pectoralis (Figures 8C,E) and supracoracoideus (Figures 8D,F),
presumably because adult chukars use a lower angular velocity
during WAIR [61 vs. 66–69 rad s� 1 (Heers et al., 2011)].

Finally, manipulations indicated that the muscles of baby and
particularly juvenile chukar models were capable of �apping
more aerodynamically e�ective wings. Under all conditions
(Table 1), the juvenile model's muscles were able to �ap a
better, more adult-like wing: increasing aerodynamic force to
adult magnitudes increased activation of the pectoralis muscle,
but not much above adult levels of activation (Figure 8E;
reserve actuators unchanged). For the baby model, increasing
aerodynamic force to adult magnitudes increased activation of
the pectoralis muscle much more substantially, above adult levels
but less than maximal [0.023 during mid-downstroke (in vivo)
vs. 0.20 (Treatment 1—baby kinematics) or 0.26 (Treatment
2—adult kinematics)] (Figure 8C; reserve actuators changed by
< 3%). This suggests that baby and particularly juvenile chukars
are capable of �apping more aerodynamically e�ective wings.

Inertial properties contributed to, but did not alter, these
trends. During early-downstroke, when aerodynamic force
production was rising, inertial properties accounted for 71–
78% of pectoralis activation in all three models (Figure 8G,
dashed vs. solid lines). During wing turnaround (downstroke-
upstroke and upstroke-downstroke transitions), pectoralis and
supracoracoideus activations could be attributed almost entirely
to overcoming limb inertia because aerodynamic force was not
being produced. However, as mentioned earlier, aerodynamic
force production reduced supracoracoideus activation by helping
to decelerate the wing in late downstroke. Wing inertia therefore
played a substantial role in determining muscle activation
throughout the stroke cycle. This was particularly true for the
adult model, which experienced greater inertial forces even when
standardizing for body size (Figure 7).

When inertial e�ects were eliminated (Figure 8H), pectoralis
activation in the juvenile model was still low—only slightly
above adult levels—and pectoralis activation in the baby model
was still 2–3 times higher than the adult. Our simulations thus
collectively suggest that the relatively low activations ofbaby, and
particularly juvenile, �ight muscles occurred partially because
developing chukars are small (low wing inertia,Figure 7), and
partially because in developing chukars feather quality (capacity
for aerodynamic force production) limits �apping performance
more than muscle morphology—i.e., baby and especially juvenile
chukars appear to be capable of �apping better, more adult-like
wings (Figures 8C–F).
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FIGURE 8 | Manipulations in aerodynamic force and kinematics: effects on pectoralis (A,C,E,G,H) and supracoracoideus(B,D,F,G) activation levels. Overall,
increasing aerodynamic force production to adult levels (in terms of percent body weight) in the baby and juvenile models increases activation of the pectoralis muscle
during mid-downstroke, but not to high levels (< 0.4, baby; < 0.15, juvenile). Supracoracoideus activation decreases,because increased aerodynamic force
production helps decelerate the wing and prepare for upstroke. (A,B) In vivokinematics and aerodynamic force production;(C–F) baby or juvenile model simulated
with different combinations of aerodynamic force (BF, babyforce; JF, juvenile force; AF, adult force) and kinematics (BK, baby kinematics; JK, juvenile kinematics; AK,
adult kinematics),in vivoactivations for adult and baby or juvenile still shown;(G) in vivokinematics with (solid lines) or without (dashed lines) aerodynamic force
production, pectoralis indicated by lighter colors (red, light green, purple), and supracoracoideus by darker colors(maroon, dark green, indigo);(H) activation due to
aerodynamic force production:in vivokinematics with no aerodynamic force production subtracted from in vivokinematics with adult aerodynamic force production,
to account for ontogenetic differences in inertial properties.
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Compensatory Mechanisms
Given our initial prediction (H0), the underutilized potential of
the baby and especially juvenile pectoral muscles is somewhat
surprising. However, our models and simulations suggest that
chukars acquire a number of compensatory mechanisms by the
time they become �ight capable, such that 18–20 day old juvenile
birds are not hampered by muscle morphology.

Muscle compensation
Proportionally, developing chukars have much smaller muscles
than their adult counterparts, especially for muscles acting
around the shoulder (Figure S6). However, all else being equal,
smaller animals tend to be relatively stronger than larger animals
because the ratio of muscle area (proportional to force) to body
weight declines with size, as does moment arm length relative to
the inertial moments that must be opposed.

In addition, based on our models, juvenile chukars seemed
to compensate for small �ight muscles by having relatively long
moment arms and muscles (Figure 9) compared to baby and
adult chukars, as well as high muscle cross-sectional areasfor
their body weight (Figure 10). The relatively long moment arms
of the juvenile were mainly in the z (elevation-depression or
extension-�exion) and y (protraction-retraction or abduction-
adduction) directions [see (Heers et al., 2016) and references
therein for further explanation of coordinate systems]. These
moment arm increases were at least partially attributable to
the juvenile's proportionally long and/or wide limb bones
(Figure 11A), which allowed for long muscle �bers and shifted
muscle lines of action away from the wing joints. In contrast,
our models suggested that adult chukars have proportionally long
moment arms at the shoulder in the x direction (supination-
pronation). This appears to be the result of an expanded bicipital
crest, exaggerated angle between the head and shaft of the
humerus, and expanded margo caudalis (Figure 11B). All of
these features are absent in developing chukars but allow forlong
moment arms perpendicular to the long axis of the limb in adult
birds.

Given that a muscle's ability to induce joint movement
depends on both its moment arm and its capacity to produce
force (proportional to physiological cross-sectional area),the
proportionally long z and y moment arms and proportionally
high cross-sectional areas of our juvenile model yielded
high potential joint moments for elevation-depression and
protraction-retraction (Figure 12). These high potential joint
moments suggest that the juvenile model was not limited
by the amount of force the muscles could produce in
elevation-depression and protraction-retraction. Plotting muscle
force against muscle activation under a standardized set of
conditions (adult kinematics, no aerodynamic force) supported
this inference: for a given level of muscle activation, force
production in the juvenile model was relatively similar to that
of the adult (sometimes higher, sometimes lower;Figure S7),
indicating that muscles in the juvenile model, though small,were
e�ective for the model's (small) body size.

Feather compensation
Developing chukars have less aerodynamically e�ective feathers
than adults: compared to adults, younger birds produce less

FIGURE 9 | Normalized muscle moment arms and lengths. The juvenile model
tends to have relatively long moment arms and muscle lengthscompared to
the adult and baby models.(A) Moment arms for muscles crossing the
shoulder, elbow, or wrist, averaged over the stroke cycle and standardized by
notarium length. Different lines are for different muscles. Red lines: moment
arm is greatest (most positive or most negative) in the baby model; green:
moment arm is greatest in the juvenile model; purple: momentarm is greatest
in the adult model; gray: no ontogenetic trend. The juvenilehas proportionally
long z (elevation-depression or extension-�exion) and y (protraction-retraction
or abduction-adduction) moment arms, and the adult has longx
(supination-pronation) moment arms at the shoulder.(B) Muscle-tendon unit
(MTU) length through one wingbeat cycle (0–100%), standardized by notarium
length; different colors represent different muscles crossing the shoulder,
elbow, or wrist.

aerodynamic force for their body weight (Figure 3), and
less lift per unit drag (Heers et al., 2011). This is partially
due to small wing size (Dial et al., 2006; Heers and Dial,
2012), and partially due to feather microstructure (Heers
et al., 2011). Previous work has shown that during WAIR,
developing chukars compensate some for their high-drag wings
by �apping with a steep stroke plane angle, such that drag
mainly supports body weight (Heers et al., 2011). 18–20
day old juvenile chukars additionally appeared to compensate
for poorer quality feathers by having relatively long feathers
(Figure S8).

However, feather compensation seemed to be less substantial
than muscle compensation. Our results suggested that long
muscles and long muscle moment arms, coupled with small
body size, allowed the 18–20 day old chukar model to produce

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 18 October 2018 | Volume 6 | Article 140



Heers et al. Building a Bird

FIGURE 10 | Normalized muscle force. Maximum isometric muscle force asa
percentage of body weight, for the pectoralis and supracoracoideus (both
sides of the body). The juvenile model has the highest maximum force, for its
body size.

high muscle forces per unit body weight—greater than those
produced by adults (Figure 10). Simulations also showed that
juvenile and adult chukars activated their muscles to similar
levels (Figure 8; Table S7). Together, these results implied that
juvenile chukars are not hampered by muscle morphology.
In contrast, despite having proportionally long feathers, 18–
20 day old chukars produced less aerodynamic force per
unit body weight than adults (Figure 13). Feather morphology
therefore seemed to limit �apping performance more than
muscle morphology in developing chukars: accounting for body
size, our models suggested that the feathers of immature chukars
produced proportionally less force than their muscles, and
that baby and especially juvenile chukars would be capable of
�apping better, more adult-like wings. Thus, H1 is supported
over H0.

DISCUSSION

Comparison With Live Birds
Overall, our musculoskeletal models and simulations appear to
be reasonable, at least qualitative approximations of the chukar
�ight apparatus, because muscle activity and functional roles are
largely consistent with data from live birds.

Muscle Activity
In general, the timing of simulated muscle activations during
WAIR was very similar to the timing of muscle activity
in live birds during similar behaviors [ascending �ight—
similar body orientation and �apping kinematics (Baier et al.,
2013)] (Figure 4). This was particularly true for the two

FIGURE 11 | Skeletal anatomy.(A) Images of right forelimbs in dorsal view,
standardized by notarium length. The proportionally long moment arms and
muscle-tendon lengths (Figure 9 ) of the juvenile are likely due, at least partially,
to its proportionally long and sometimes wide limb bones.(B) Images of right
humeri (adult, purple; juvenile, green; baby, red), standardized by notarium
length; left images in posterior view, right images in dorsal view. The
proportionally long moment arms of the adult for long axis rotation at the
shoulder (Figure 9 ) are at least partially due to its expanded bicipital crest (#1),
exaggerated angle between the head and shaft of the humerus (#2), and
expanded margo caudalis (#3).

most important �ight muscles, the pectoralis (downstroke) and
supracoracoideus (upstroke), which also shortened, lengthened,
and developed force similarly to �ying and �ap-running
pigeons (Figure 5). For the seven muscles showing di�erences
between simulated andin vivo muscle activity, discrepancies
could be real—due to di�erences in kinematics and/or muscle
morphology (WAIR vs. �ight, chukars vs. pigeons)—or may
re�ect model simpli�cation. For example, muscle origins and
insertions were modeled as points, but many muscles have
broad origins (e.g., scapulohumeralis caudalis originates from
the entire lateral surface of the scapula but was modeled as
a “point” origin midway along the scapula). Limitations of
static optimization might also have contributed to di�erences
between modeled vs.in vivo activations (e.g., optimizing to
minimize squared muscle activations; assuming that prior/future
events in a cycle do not in�uence others; tendon elasticity
ignored). Future analyses can discriminate between some
of these possibilities, but in general, our simulated muscle
activations during WAIR were similar to patterns of muscle
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FIGURE 12 | Maximum potential joint moments. Maximum potential joint moments (positive or negative muscle moment arms (in z, y, andx directions) multiplied by
maximum isometric muscle force, summed for all muscles at each 1% of the stroke cycle, then averaged over the stroke cycleand normalized by notarium length and
body weight) are greatest in the juvenile model for more thanhalf of the possible joint motions. Red bars, baby has the greatest (most positive or most negative) joint
moment; green bars, juvenile has the greatest joint moment;green hashed bars, juvenile and adult have similar joint moments; purple bars, adult has the greatest joint
moment. Row z, elevation (C moments) vs. depression (� ) (shoulder joint) or extension (C) vs. �exion (� ) (elbow, wrist); row y, protraction (C) vs. retraction (� )
(shoulder) or abduction (C) vs. adduction (� ) (elbow, wrist); row x, supination (C) vs. pronation (� ) (all joints). B, baby model (7–8 days); J, juvenile model (18–20 days);
A, adult model (> 100 days) during wing-assisted incline running; AF, adult model during ascending �ight, for comparison.

activity in live birds. This similarity is interesting because the
simulations involved rapid, intense behaviors that would be
expected to be very non-static and hence potentially result in
large discrepancies between experimental (i.e., dynamic) and
simulation (i.e., static) results. Forward dynamic analysis is
beyond the scope of this study but will be done in follow-up
analyses.

Muscle Function
Muscle functions based on simulated muscle activity, moment
arms, and kinematics were also largely consistent with previously
suggested functions (Table S8) (Dial et al., 1991; Dial, 1992a;
Poore et al., 1997b; Biewener, 2011; Robertson and Biewener,
2012). Discrepancies betweenin vivo and simulated functions
occurred in the coracobrachialis posterior, subscapularis,

deltoideus major, and scapulohumeralis caudalis muscles, and
appear to have resulted from kinematic di�erences between
WAIR and �ight. During WAIR, the humerus is kept relatively
elevated and retracted compared to level �ight, which altersthe
moment arms of these shoulder muscles (Table S8). Di�erences
also occurred in the pronator sublimis and pronator profundus,
but our simulations suggest that in birds these muscles
actually oppose rather than cause pronation, due to the unique
orientation of the avian ulna and radius with respect to the
humerus (articulation with humerus rotated compared to human
condition; Table S8). Although the pronator muscle pronates
the forearm in humans, “pronator” is probably a misnomer in
birds. In short, functional discrepancies betweenin vivoand our
simulated data occurred, but likely re�ect kinematic di�erences
between WAIR and �ight or nomenclatural inaccuracies.
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FIGURE 13 | Feathers vs. muscles. (A) Wing area (blue) increases faster than
muscle mass (red; all �ight muscles) or physiological cross-sectional area
(orange), until molt. This suggests that early in ontogeny,muscles must be
“pre-equipped” to �ap bigger and better wings. (B) Consistent with (A),
muscles reach adult levels of performance (maximum force/body weight; red)
more rapidly than wings (force/body weight, fromHeers et al., 2011; blue),
suggesting that muscles are more functionally developed than feathers in baby
and juvenile chukars. Data in(A) represents two wings, and muscles on both
sides of the body.

Magnitude of Muscle Activations
The magnitudes of simulated muscle activations during WAIR
were generally low for all three age classes, particularly atthe
shoulder. This is consistent with previous work demonstrating
that WAIR is an “easy” �apping behavior compared to �ight,
at least for adult birds (Jackson et al., 2011b). However, even
in the adult model the simulated activations of some muscles,
particularly the supracoracoideus (� 0.5; Figure 4), might be
somewhat higher than expected. This is probably due to
simulation limitations, namely the inability of static optimization
to account for dynamic e�ects.

Whereas most �ight muscles are parallel-�bered with short
tendons, the supracoracoideus muscle is pennate with a long
tendon that likely stores a substantial amount of elastic
energy, possibly contributing 28–60% of the net work done
by the supracoracoideus (Tobalske and Biewener, 2008). Static
optimization does not allow for elastic energy storage and
release (Delp et al., 2007; Rankin et al., 2016) and thus

might result in erroneously high activations in muscles like
the supracoracoideus, and/or greater contributions from the
reserve actuators used in our study (Figure S4). It is also
possible that the fast twitch (white/fast glycolytic) muscle
�bers characteristic of chukars and other galliform birds
make their muscles more e�ective than the generic muscles
modeled (e.g., in terms of maximal force per unit area, or
dynamic e�ects not simulated in our static analyses—such
as maximal muscle contraction velocity). Force enhancement
following muscle stretching has been demonstrated for some
vertebrates (Herzog and Leonard, 2002) and may play a role
avian �ight, given that the pectoralis and supracoracoideus are
stretched substantially prior to the downstroke and upstroke,
respectively, but this has not been explored experimentally.
Finally, ligaments or bony restrictions at joints, and dynamic
events such as wing clapping at the end of upstroke, could
reduce active muscle contributions by passively restricting the
range of motion at joints. Future analyses will assess these
possibilities.

Feather vs. Muscle Development
Compared to adults, developing chukars have small wings and/or
less aerodynamically e�ective feathers (Dial et al., 2006; Heers
et al., 2011), proportionally small muscles (Heers and Dial, 2015),
and less specialized skeletons with smaller bony projectionsfor
muscle attachment (Heers and Dial, 2012; Heers et al., 2016).
Immature chukars appear to compensate partially for their
underdeveloped �ight apparatuses in several ways. Our models
showed that because developing chukars are small, they have
low wing inertia (Figure 7). 18–20 day old juvenile chukars
additionally appear to compensate by having relatively long
wing feathers (Figure S8), very low wing loading (Jackson et al.,
2009), and proportionally long muscles with long moment arms
that contribute to high potential joint moments (Figure 12).
However, feather compensation appears to be less substantial
than muscle compensation (Figure 13), and baby and especially
juvenile chukars seem to be capable of �apping better, more
adult-like wings (Figure 8). Thus, locomotor performance in
developing chukars may be limited more by wing morphology
and aerodynamic force production than by muscle morphology.

It is possible that the muscles of young chukars di�er
histologically from the muscles of adults, just as feather
microstructure di�ers between immature and adult chukars
(Heers et al., 2011). If so, the muscles of developing chukars
may not be as e�ective as our simulations would suggest.
However, previous studies indicate that our 18–20 day juvenile
model's muscle physiology likely is accurate. For example,
Jones (1982)observed no di�erence in structural detail or
�ber size in the pectoralis between �edged and adult House
Sparrows (Passer domesticus). The muscle �bers of sparrows
about to �edge (15 days) were adult-like in composition and
organization, though smaller in cross-sectional area (consistent
with smaller muscle mass). Similarly,Ricklefs (1979)found that
the pectoralis of juvenile Japanese Quail (Coturnix coturnix)
had an adult-like water index (indicative of muscle functional
maturity) by the time the birds began to �y (87 or 100% adult
value at 20 and 30 days post-hatch, respectively;C. coturnix
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reported to �y at 30 days but 20 days is probably more
similar to our 20 day old chukars). Finally,Tobalske et al.
(2017)tracked pectoralis function during chukar ontogeny and
found that activation and contractile behavior di�ered in very
young chukars (� 9 days; long EMG duration and lower EMG
amplitude, strain, fractional shortening, and contractilevelocity)
but converged on adult levels between 9 and 20 days post-
hatch.

Collectively, these studies indicate that our 7–8 day baby
model likely overestimates muscle capacity (e.g., maximal force),
whereas our 18–20 day juvenile model is probably accurate in this
regard. Maximum isometric muscle force of the pectoralis muscle
would have to decrease by 83% (functional maturity 17% of adult)
to prevent our juvenile model from �apping at adult levels of
aerodynamic force production. Even newly hatched quails have
water indices that are 50% of the adult value (Ricklefs, 1979),
indicating that juvenile chukars should be able to �ap adult-like
wings even if their muscles are not quite as mature as our models
assumed.

There are at least two reasons why feathers might be expected
to be more limiting than muscles early in chukar ontogeny. First,
wing size increases more rapidly than muscle size in developing
chukars (Figure 13), so muscles must be “pre-equipped” to �ap
better wings. For example, between 8 and 10 days post-hatching,
wing area increased by 82% but muscle cross-sectional area
increased by< 30%. Wing size increases more rapidly than
muscle size until� 50 days post-hatch. At this stage juveniles
molt and replace their poorer quality juvenile plumage with high
quality adult feathers (Heers et al., 2011), and muscle size begins
to increase more rapidly.

Second, unlike adult birds during molt, developing birds must
grow all of their feathers simultaneously, in addition to growing
other body parts. A number of studies [reviewed in (Butler
et al., 2008)] suggest that developing birds probably do not have
enough resources to grow high quality feathers. Whereas bones
and muscles can be continuously modi�ed for improvements
in performance, feathers are not modi�ed after emerging from
the sheath—feather quality does not improve until the juvenile
plumage is molted and replaced by adult feathers (Heers et al.,
2011). Feather development thus may be a case of “something
is better than nothing”: it is likely better to grow a poorer
quality wing quickly than a higher quality wing slowly, and to
compensate by growing longer feathers at 18–20 days and then
molting feathers later on. Muscles and bones are not constrained
by this style of growth.

It is possible that if chukars activated their muscles more
they could increase wingbeat frequency and thereby increase
aerodynamic force production (1 velocity2), such that feathers
would be less limiting than they appear to be. However,
this does not seem to occur. Although 7–8 day old chukars
do use higher wingbeat frequencies during controlled aerial
descents (Jackson et al., 2009), during WAIR they do not
seem to increase wingbeat frequency to increase aerodynamic
output and thereby ascend steeper inclines. This could re�ect
a neurological constraint—chukars adopt adult-level wingbeat
frequencies early in ontogeny (Jackson et al., 2009). Alternatively,
perhaps at higher wingbeat frequencies the more compliant

feathers and/or wing joints of young birds would excessively
deform (Heers et al., 2011, 2016) and result in a less e�ective
wing orientation, such that aerodynamic force production would
not actually increase much and increasing wingbeat frequency
would o�er little improvement to performance. Regardless,
our simulations suggest that baby and particularly juvenile
muscles are strong enough to �ap wings with better quality
feathers.

Implications for the Evolution of Avian
Flight
The fossil record shows that large, bird-like wings evolvedbefore
fully bird-like skeletons (Dececchi et al., 2016; Heers et al.,
2016)—and presumably hypertrophied pectoral muscles—were
acquired. Traditionally, small pectoral muscles were assumed to
preclude non-avian theropods and early birds from producing
signi�cant amounts of aerodynamic force via �apping (Ostrom,
1974, 1976, 1979, 1986; Bock, 1986). However, our results
rea�rm that animals with small body size do not require
hypertrophied �ight muscles for �apping behaviors involving
the cooperative use of wings and legs. As in juvenile chukars,
small, incipiently �ight-capable theropods with relatively bird-
like wings but less derived musculoskeletal anatomies might
have had enough muscle capacity for behaviors like �ap-
running, �apping jumps, and possibly even brief �ight. In
species with larger bodied adults [e.g.,Velociraptor (Turner
et al., 2007a)], it is reasonable to hypothesize that juveniles
were capable of �apping behaviors unavailable to adults (see
Parsons and Parsons, 2015), such that younger animals were
more wing-reliant and older animals were more leg-reliant,
as in extant peafowl [Pavo cristatus(Heers and Dial, 2015)].
Selective pressure for improved wing performance may then
have favored paedomorphosis, which would be consistent with
the small body size (Turner et al., 2007b; Lee et al., 2014)
of paravians and the paedomorphic characteristics [e.g., skulls
(Bhullar et al., 2012)] of avialans. The approach outlined here
provides a framework for constructing musculoskeletal models
of other birds or extinct theropod dinosaurs, and future analyses
addressing the relationship between wing vs. muscle limitations
across a wide range of body sizes, comparing di�erent behaviors
(e.g., WAIR vs. �ight), and exploring the e�ects of muscle origin
and insertion positioning would provide great insight into the
biomechanics and evolution of avian locomotion.

CONCLUSIONS

Our models and simulations allowed us to estimate muscle
function under di�erent combinations of aerodynamic force and
kinematics, in order to better examine how muscles, bones,
and feathers interact with each other and the environment to
accomplish locomotor tasks during bird ontogeny. Although
static approaches are limited in their ability to account for
dynamic e�ects such as tendon elasticity, the simulated patterns
of muscle activation, shortening vs. lengthening, and force
development reported here are broadly similar to patterns
previously reported for �ap-running and �ying birds. A
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static perspective is thus useful for estimating musculoskeletal
biomechanics in �apping chukars, and provides a valuable �rst
start that more dynamic approaches can build upon. Static
simulations o�er several new insights into development of the
avian �ight apparatus and, most importantly, suggest that (i)
feathers are more limiting than muscles in young birds, likely
due to their unique style of growth, and that (ii) small animals
do not need large muscles to produce at least moderate amounts
of aerodynamic force (> 60% of body weight).
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