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This study presents a comparison between the performances of two Finite Element

(FE) solvers for the modeling of the poroelastic behavior of highly hydrated collagen

hydrogels. Characterization of collagen hydrogels has been a widespread challenge since

this is one of the most used natural biomaterials for Tissue Engineering (TE) applications.

V-Biomech® is a free custom FE solver oriented to soft tissue modeling, while Abaqus®

is a general-purpose commercial FE package which is widely used for biomechanics

computational modeling. Poroelastic simulations with both solvers were compared to

two experimental protocols performed by Busby et al. (2013) and Chandran and Barocas

(2004), also using different implementations of the frequently used Neo-Hookean

hyperelastic model. The average differences between solvers outputs were under 5%

throughout the different tests and hydrogel properties. Thus, differences were small

enough to be considered negligible and within the variability found experimentally from

one sample to another. This work demonstrates that constitutive modeling of soft

tissues, such as collagen hydrogels can be achieved with either V-Biomech or Abaqus

standard options (without user-subroutine), which is important for the biomechanics and

biomaterials research community. V-Biomech has shown its potential for the validation

of biomechanical characterization of soft tissues, while Abaqus’ versatility is useful for

the modeling and analysis of TE applications where other complex phenomena may also

need to be captured.

Keywords: biomechanics, biomaterials, biomedical engineering, soft tissues, collagen, finite element solvers

INTRODUCTION

Since collagen is a natural biomaterial, intrinsically biocompatible and biodegradable,
collagen-based hydrogels are widely used in tissue engineering (TE). These collagen hydrogels
can be used as a scaffold as they present an advantageous host for cell migration, proliferation
and differentiation (Cen et al., 2008; Sharabi et al., 2014). Collagen applications vary from nervous
system models to anticancer drugs testing, since collagen is used as a scaffold or as a membrane for
electrophysiological protocols (Deponti et al., 2014). Several research groups worked on collagen
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characterization, which is still a challenge, due to its complexity
and wide-range of applications (Roeder et al., 2002; Castro et al.,
2016). Collagen fibers are known to be anisotropic and have
great influence on cartilaginous tissues and structures, such as
the annulus fibrosus of the intervertebral disc, which leads to
non-linear modeling approaches (Caner et al., 2007; Marini and
Ferguson, 2014; Wismer et al., 2014; Long et al., 2016). For
hydrogels, the most accurate modeling approaches include poro-
viscoelastic theories considering their multiphasic behavior and
time-dependency (Busby et al., 2013; Xu et al., 2013; Castro et al.,
2016). Collagen modeling is challenging and has been discussed
over the years, namely in what concerns to compressibility,
fiber contribution and biphasic behavior, so this work intends
to present different alternatives for the biomaterials research
community.

In this work, experimental characterization of collagen
hydrogels reported by Chandran and Barocas (2004) and Busby
et al. (2013) is reproduced with two different Finite Element
(FE) solvers, namely the custom poroelastic solver V-Biomech R©

presented by Castro et al. (Castro et al., 2014, 2016) and
commercial FE package Abaqus R© 6.13 (Dassault Systèmes
Simulia Corp., USA). Other FE solvers, such as FEBio (free) or
COMSOL (commercial), could also be considered for poroelastic
modeling. As an example, some studies have already compared
the behavior of Abaqus and FEBio for contact problems (Meng
et al., 2013, 2017; Galbusera et al., 2014), while FEBio developers
have also validated their calculations against Abaqus (Maas et al.,
2012). V-Biomech has already shown good accuracy for biphasic
osmotic swelling problems, also when compared with Abaqus-
based models (Castro et al., 2014).

Historically, there has been a discussion on Abaqus ability to
model complex strain-dependent poroelastic problems without
additional user-defined subroutines (Prendergast et al., 1996;
van der Voet, 1997; Wu et al., 1998). Such subroutines are still
required for osmotic swelling or fibrillar modeling (Barthelemy
et al., 2016; Fallah et al., 2016), but this work intends to evaluate
the performance of one open-source poroelastic FE solver (V-
Biomech, free to download1) and “out of the box” (without using
user-defined subroutines) commercially available FE package
Abaqus on the already challenging task of modeling the highly
non-linear behavior of collagen hydrogels. This also leads to the
comparison of different implementations of the Neo Hookean
model, in order to evaluate if relevant differences are raised
by compressible and incompressible formulations. Ultimately,
this work aims to contribute to the definition of a framework
for other in vitro and in silico combined works that make use
of related soft biomaterials or hydrogels (Girton et al., 2002;
Silva-Correia et al., 2011; Freutel et al., 2014; Chaudhuri et al.,
2015).

MATERIALS AND METHODS

The FE simulations replicated the protocols of the ramp-hold
confined compression experiments of Chandran and Barocas

1https://github.com/INSIGNEO/VBiomech

(2004) and Busby et al. (2013). The first group used cuboid
hydrogel samples of 3 × 3 × 15mm, with 0.30% of bovine
collagen concentration (by weight). The protocol was divided
into compression and relaxation stages: (i) 10% compression
during 100 s and, (ii) compression hold for 2,000 s. The latter
group used cylindrical samples with a radius of 8mm and
a height of 5mm, and considered hydrogels with 0.20, 0.30,
and 0.40% of rat-tail collagen concentration (by weight). The
protocol was also divided into compression and relaxation stages:
(i) 5% compression during 10 s and, (ii) compression hold for
290 s.

The FE modeling strategy (meshes, boundary conditions
and materials) was the same for both V-Biomech and Abaqus,
regardless of the intrinsic specifications of each solver. It must
also be highlighted that only standard modeling options were
chosen, i.e., no alterations were made on V-Biomech for these
specific tests (Castro et al., 2014, 2016; Cortez et al., 2017) and
no user-defined subroutines were added to Abaqus. The major
setup difference is on the graphical interfaces: while Abaqus has
the option between its full graphical interface or input/output file
generation, V-Biomech simulations are solely defined through
dedicated input files for mesh, boundary conditions, material
constitutive modeling and output requests. V-Biomech pre-
and post-processing operations are preferentially performed on
GiD R© 12.0.7 (CIMNE, Spain).

The FE meshes were generated with GiD and then exported
to each solver. Both models (Figure 1) used quadratic 10-node
tetrahedral elements: the cuboidal model consisted of 203,401
nodes and 144,000 elements, whereas the cylindrical model
consisted of 119,890 nodes and 83,787 elements.

The boundary conditions (Figure 2) for both protocols were
implemented as bottom and lateral confinement (X- and Y-axis)
with a compression applied at the top (Z-axis). Fluid exudation
was allowed through the top by using a null pore pressure
condition.

Collagen hydrogels were modeled as hyper-poroelastic
(Noailly et al., 2008; Kalyanam et al., 2009; Castro et al., 2016),
using the following variations of the Neo-Hookean hyperelastic
model:

WNH (C) = C10

(_
I 1 − 3

)

(1)

WNH (C) =
G

2
(I1 − 3) − G(ln J)−

G

3
(ln J)2 +

K

2
(ln J)2 (2)

WNH (C) = C10

(_
I 1 − 3

)

+
1

D1
(J − 1)2 (3)

V-Biomech makes use of the standard incompressible model
(Equation 1, ahead referred as NH1) dependent on C10
(stiffness parameter, related to shear modulus), and also
of the compressible model detailed by Bonet and Wood
(Bonet and Wood, 1997) (Equation 2, ahead referred as
NH2), which depends on shear (G) and bulk (K) moduli.
The model implemented in Abaqus (Equation 3) adds to
this the D1 parameter (compressibility parameter, related to
bulk modulus) to define generic compressibility. C is the left
Cauchy-Green deformation tensor, J is the determinant of
the deformation gradient tensor, I1 is the first invariant of
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FIGURE 1 | FE models used in this study: (A) Cuboidal model to mimic Chandran and Barocas (2004) samples; (B) Cylindrical model to mimic Busby et al. (2013)

samples.

C and, finally,
_
I 1 is the deviatoric component of the latter.

As so, V-Biomech presents a clear distinction between
compressible and incompressible modeling strategies,
while Abaqus provides a generic Neo-Hookean model by
default.

The strain-dependent permeability [K∗ (J)] was considered
through van der Voet model (van der Voet, 1997; Castro et al.,
2014; Taffetani et al., 2014):

K∗ (J) = K∗
0 J

M (4)

K∗
0 is the zero-strain hydraulic permeability and M is a

dimensionless nonlinear permeability parameter.
Knapp et al. (1997) identified a Poisson’s ratio range of 0.2–

0.3 for collagen hydrogels, while previous work with dynamic

rheology experiments (Castro et al., 2016) suggested that
the higher Poisson’s ratio values (closer to 0.5) would be a
better fit. Since confined compression experiments are more
sensitive to the fluid exudation and constitutive properties of
the solid components of the hydrogels (Knapp et al., 1997;
Laity et al., 2000; Chandran and Barocas, 2004; Kalyanam et al.,
2009), the constitutive properties of the collagen hydrogels
were based on 0.2 Poisson’s ratio value (Busby et al., 2013;
Castro et al., 2016). Further details on material modeling
can be found in Castro et al. (2016). A summary of the
parameters used for the constitutive models is given in
Table 1.

The numerical output compared was longitudinal effective
stress (σezz ) plots vs. time at the bottom layer of the samples. It
must be highlighted that longitudinal stress (σzz) which can be
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FIGURE 2 | Schematic representation of the boundary conditions applied in this study.

TABLE 1 | Constitutive properties of the different collagen hydrogels (Busby et al., 2013; Castro et al., 2016).

Collagen concentration(%) K∗

0 (m4/Ns) M G (kPa) C10 (kPa) K (kPa) D1 (kPa)

0.20 1.70 × 10−10 1.8 0.3375 0.1688 0.4500 4.444

0.30 1.20 × 10−10 2.1 0.3750 0.1875 0.5000 4.000

0.40 0.80 × 10−10 3.5 0.4500 0.2250 0.6000 3.333

extracted from Abaqus by default does not represent the actual
effective stress (σe), given to the biphasic configuration of the
material. To obtain the effective stress, one needs to output both
pore pressure (p) and the required stress component, being the
effective stress calculated as follows:

σezz = p− σzz (5)

Four confined compression simulations were performed
with Abaqus: one with the cuboid model (0.30% collagen
hydrogel) and three with the cylindrical model (0.20, 0.30,
and 0.40% collagen hydrogels). Analogously, eight simulations

were performed with V-Biomech, corresponding to the
two different Neo-Hookean models available. The emphasis
was on evaluating and comparing the performance of the
solvers under different testing configurations and material
properties.

RESULTS

Figure 3 shows the comparison between the experimental stress
curve of Chandran and Barocas (2004) and the numerical
calculations with V-Biomech (VB NH1 and VB NH2) and
Abaqus (denoted as ABQ). The mechanical behavior of collagen
under confined compression is reproduced similarly with both
solvers. The experiments showed slower stress relaxation than the

numerical models. The peak stress values of the FE calculations
are closer to those reported by Chandran and Barocas (2004)
than the stress relaxation values. It must be highlighted that no
experimental standard deviation was provided. Peak stress values
fromVBNH1 were on average 19% higher than the experimental
results, and on average 13% lower at the end of the test. VB
NH2 calculations were 6% higher in peak stress and 16% lower
in relaxation stress. Finally, in what concerns to Abaqus, the peak
stress value was 4% higher than the experimental results, while
the relaxation stress was 18% lower. It is worth noting that the
average absolute difference is virtually null between Abaqus and
VB NH2 models.

Figures 4–6 plot the comparison between the evolution
of the experimental stress curves of Busby et al. (2013);
(knowing that the average standard deviation of the
experimental results is ±5%) and the analogous numerical
calculations with V-Biomech and Abaqus. Overall, these
plots show similar patterns to those previously observed
in Figure 3, namely that the numerical simulations
predicted a slower stress decrease than what occurred in
the experiments (Busby et al., 2013). This is seen across all
hydrogel groups and it is also independent of the FE solver
chosen.

For the 0.20% group (Figure 4), VB NH2 and ABQ have
shown peak stress values 3% higher than the experimental results,
while the relaxation stress was 4% lower for VB NH2 and
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FIGURE 3 | 0.30% collagen hydrogel during 2,100 s stress relaxation test. The

experimental data of Chandran and Barocas (2004) is here compared with

numerical calculations using V-Biomech and Abaqus: (A) Stress relaxation

over time; (B) Peak and end effective stress values.

5% lower for ABQ. For VB NH1, the peak stress value was
7% higher, while the relaxation stress was 2% lower. Hence,
differences in this case are inside the ±5% standard deviation of
the experiments, being 4% in average for the three models.

For the 0.30% group (Figure 5), VB NH2 and ABQ have
shown peak stress values 10% higher than the experimental
results, while both relaxation stress values were under 1% of
difference to the reference. VBNH1 has shown a peak stress value
14% higher than the experimental results, whereas the relaxation
stress was 2% higher. The numerical peak stress values are outside
the ±5% standard deviation of the experiments, but the three
models are again producing similar results.

Finally, for the 0.40% group (Figure 6), using VB NH1
model, the calculated peak stress value was 39% higher than the
experimental results, and the relaxation stress was 4% higher at
the end of the test. VB NH2 has shown 35 and 2%, while ABQ has
shown 33 and 1%, correspondingly. As so, the average differences
ranged from 17% for ABQ to 21% for VB NH1.

DISCUSSION

This work shows that different modeling options can be
equally accurate when one is interested in understanding

FIGURE 4 | 0.20% collagen hydrogel during 300 s stress relaxation test. The

experimental data of Busby et al. (2013) is here compared with numerical

calculations using V-Biomech, and Abaqus: (A) Stress relaxation over time; (B)

Peak and end effective stress values.

and replicating collagen hydrogels’ behavior, namely in
what concerns to solid mechanical model and fiber content
evaluation.

The differences compared to the average experimental results
in Busby et al. (2013) increased when the collagen concentration
was increased, for the three models. VB NH1 has shown
4% average difference for 0.20%, 5% for 0.30%, and 18% for
0.40% (overall average of 11%). For VB NH2, the calculated
average differences were 4% for 0.20%, 8% for 0.30%, and
21% for 0.40% (overall average of 9%). Lastly, differences
observed with Abaqus were 4% for 0.20%, 5% for 0.30%,
and 17% for 0.40% (overall average of 9%). The overall
average differences were vastly influenced by the larger offset
observed for the 0.40% collagen concentration hydrogel. It
is then possible that the conversion from aggregate modulus
to Young’s modulus [please refer to Busby et al. (2013)
and Castro et al. (2016) for further details] may be losing
accuracy when the collagen concentration was increased (or
for deformations above 10%). Nevertheless, the 2% average
difference between the calculations with the three models is
lower than the standard deviation of the experiments in Busby
et al. (2013) (±5% average across the three collagen hydrogels
groups), which most likely means that such differences are not
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FIGURE 5 | 0.30% collagen hydrogel during 300 s stress relaxation test. The

experimental data of Busby et al. (2013) is here compared with numerical

calculations using V-Biomech, and Abaqus: (A) Stress relaxation over time; (B)

Peak and end effective stress values.

significant for comparing the accuracy of each model against the
experiments.

The three models showed similar trends in determining the
longitudinal effective stress over time: faster stress relaxation
than in Chandran and Barocas (2004), but slower in all the
three collagen hydrogels groups investigated in Busby et al.
(2013). The experimental conditions are likely to have played
in a role in such findings, with particular emphasis for the
possibility of friction to occur on the cuboid setup used in
Chandran and Barocas (2004), thus impeding the water to flow
out in ideal conditions and creating stress accumulation. The
comparison with Chandran and Barocas (2004) is then limited
by the “ideal” conditions predicted in the numerical models,
i.e., friction or interface phenomena were not considered in
this work, but could have enhanced the reproduction of the
experiments and therefore reduced the calculated differences
(11% for Abaqus and VB NH2). It must be highlighted that
the intrinsic incompressibility of VB NH1 is the most probable
cause for this model to be more distant to the reference
(16% average difference) than the other two models, since
a lower Poisson’s ratio was used. Even though, the overall
average differences are not significantly apart from the other
two models. No standard deviation information was provided
in the work of Chandran and Barocas (2004), but the average

FIGURE 6 | 0.40% collagen hydrogel during stress relaxation tests. The

experimental data of Busby et al. (2013) is here compared with numerical

calculations using V-Biomech, and Abaqus: (A) Stress relaxation over time; (B)

Peak and end effective stress values.

absolute difference between VB NH1 and the other models
(∼5%) may be considered as acceptable and is aligned with the
good agreement observed in the comparison with Busby et al.
(2013).

CONCLUSIONS

V-Biomech presents the advantage of being a free tool (Castro
et al., 2014), which can be modified through its source code
if new challenges are presented. The option for different
compressible and incompressible models is justified with the
potential accuracy increment in soft tissue modeling. On
the other side, Abaqus presents the advantage of being able
of simulating other complex nonlinear phenomena (such as
contact or large deformation) that occurs in advanced TE
applications. This solver may also be expanded through user-
defined subroutines.

The power of choice over free and commercial FE packages
is an advantage for the scientific community interested in
numerical modeling and characterization of soft tissues.
It is shown here that the standard poroelastic modeling
options presented by both solvers allowed for accurate
constitutive modeling of collagen hydrogels, which is
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highly relevant to study other hydrogels, soft tissues and
TE applications.
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