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Transhumeral amputees face substantial difficulties in efficiently controlling their

prosthetic limb, leading to a high rate of rejection of these devices. Actual myoelectric

control approaches make their use slow, sequential and unnatural, especially for

these patients with a high level of amputation who need a prosthesis with

numerous active degrees of freedom (powered elbow, wrist, and hand). While surgical

muscle-reinnervation is becoming a generic solution for amputees to increase their

control capabilities over a prosthesis, research is still being conducted on the possibility

of using the surface myoelectric patterns specifically associated to voluntary Phantom

Limb Mobilization (PLM), appearing naturally in most upper-limb amputees without

requiring specific surgery. The objective of this study was to evaluate the possibility

for transhumeral amputees to use a PLM-based control approach to perform more

realistic functional grasping tasks. Two transhumeral amputated participants were asked

to repetitively grasp one out of three different objects with an unworn eight-active-DoF

prosthetic arm and release it in a dedicated drawer. The prosthesis control was based

on phantom limb mobilization and myoelectric pattern recognition techniques, using

only two repetitions of each PLM to train the classification architecture. The results

show that the task could be successfully achieved with rather optimal strategies

and joint trajectories, even if the completion time was increased in comparison with

the performances obtained by a control group using a simple GUI control, and the

control strategies required numerous corrections. While numerous limitations related

to robustness of pattern recognition techniques and to the perturbations generated

by actual wearing of the prosthesis remain to be solved, these preliminary results

encourage further exploration and deeper understanding of the phenomenon of natural

residual myoelectric activity related to PLM, since it could possibly be a viable option

in some transhumeral amputees to extend their control abilities of functional upper limb

prosthetics with multiple active joints without undergoing muscular reinnervation surgery.

Keywords: prosthetics, transhumeral amputation, phantom limb, myoelectric control, pattern recognition,

voluntary phantom limb mobility
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1. INTRODUCTION

People with an upper arm amputation represent a significant
part of the major upper-limb amputees in western countries
(for instance 33% in France André and Paysant, 2006 and 45%
in the United Kingdom National Amputee Statistical Database,
2009). These patients, most of them young active people, are
usually fitted with a functional prosthesis (financed by the Social
Security) composed of several active joints (hand, wrist and
sometimes elbow), allowing them to regain a certain autonomy.
While there have been improvements of prosthetic solutions over
the last years, the situation remains particularly complex for
the common case of transhumeral (i.e., above elbow) amputees.
The control is difficult to learn, remains non-intuitive, and
thus cognitively demanding. Moreover, these prostheses lack
functionality and so do not provide the expected assistance in
Activities of Daily Life (ADLs) (Biddiss and Chau, 2007). This
leads to the development of compensatory strategies involving
the rest of the body, causing shoulder, trunk, and contra-lateral
limb disorders (Ostlie et al., 2011). The consequence is that
transhumeral amputees are more likely to reject their prosthesis
than transradial amputees (Wright et al., 1995; Biddiss and Chau,
2007).

One of the current major issues, common to all levels of
upper-limb amputation, is the growing gap between the available
hardware of arm prostheses, becoming more biomimetic with
numerous active joints (e.g., polydigital hands), and their still
counter-intuitive and sequential control that limit their actual use
(Atkins et al., 1996). For instance, the myoelectric control, which
is the most commonmethod to command an externally-powered
upper limb prosthesis, relies on the use of ElectroMyoGraphic
signals (EMG) from two antagonistic muscles of the residual
limb (generally the biceps and triceps). An on/off strategy
is applied by thresholding the input signals [amplitude and
temporal variations of surface ElectroMyoGrams (sEMG)] that
the patient needs to produce with the equipped muscles. Often,
each active prosthetic joint that composes the substituting limb is
sequentially controlled by the same control inputs. So, despite the
potential possibilities offered by the new biomimetic prostheses
like whole robotic arms (Resnik et al., 2014) or polydigital hands
(Belter and Dollar, 2011), their control remains complex, as it is
far from intuitive, and offers few functional Degrees of Freedom
(DoF) (Castellini et al., 2014).

To overcome these limitations, pattern-recognition
approaches have been developed since the late 60s/70s (Finley
and Wirta, 1967; Herberts et al., 1973; Lawrence et al., 1973)
aiming a more precise decoding of myoelectric signals in order to
improve the recognition of different muscle activation patterns
and thus to control more types of movements. This requires
the use of multiple recording sites, a precise extraction of signal
characteristics (not only amplitude) and a multidimensional
classification architecture. While well established and extensively
studied in research institutions, such approaches have only very
recently been applied commercially to prosthetics control (e.g.,
COAPT system, http://www.coaptengineering.com/).

One way of feeding pattern recognition myoelectric control is
to rely on sEMG activities of the residual limb associated with
phantom limb movement (PLM) execution. Indeed, voluntary

PLM have recently been shown to be controlled as intact
limb movements (Raffin et al., 2012a,b; Garbarini et al., 2018),
with associated muscle activities that vary with the type of
executed PLM (Reilly et al., 2006; Raffin et al., 2012a; Jarrasse
et al., 2017b). This approach has been quite extensively studied
for below-elbow amputees whose residual limb usually still
contains the muscles that mobilized the fingers before the
amputation, and, therefore, provide an adapted measurement
site together with relatively strong myoelectric signals. While
first attempts of adaptation of these approaches to above-
elbow amputees date back to the 70s with pioneering work like
(Wirta et al., 1978), several studies recently tried to revive such
approach using updated classification techniques, specifically
of phantom-limb-mobility-related EMG signals (Jarrasse et al.,
2017b; Gaudet et al., 2018), even extended to individual
finger movement decoding (Jarrasse et al., 2017a). Also, recent
work on the treatment of phantom limb pain with help of
virtual reality (e.g., Ortiz-Catalan et al., 2016) illustrates the
possibility of decoding these PLM-associated EMG patterns
measured on the residual limb of transhumeral amputees.
Yet, after transhumeral amputation, PLM-related myoelectric
activity is measured over muscle groups of the residual
limb which -before amputation- were not naturally related
to the missing limb (i.e., hand and wrist), and, therefore,
inevitably more complex to decode. So, daily life phantom-
based prosthetic control is more challenging, especially without
reinforcing PLM-associated sEMG signals through muscular
reinnervation surgery (Kuiken et al., 2007). One might, for
example, expect an influence of the fatigue associated to PLM
generation and of the remaining mismatch between the actual
PLM movements and the ones generated in reaction by the
prosthesis (the velocity and range of motion of these PLM being
generally limited) (De Graaf et al., 2016), on the number of
possible PLM that the patients can execute the one after the
other.

Most studies on the development of more natural prosthetic

control approaches based on PLM decoding (Powell et al., 2014;

Atzori et al., 2016; Jarrasse et al., 2017b; Gaudet et al., 2018)
have so far been conducted on offline pattern recognition of

pre-recorded myoelectric sequences, or either using simple
computer interface control of performing simple free motions

using a real prosthesis. To our knowledge, no experiments

involved the completion of a functional task during which the

prosthesis had to be controlled using real time decoding of PLM

while the participant controlled the interaction with objects. The

objective of this study is thus to evaluate the possibility for

transhumeral amputees to use a PLM-based control approach to

actually perform a set of more realistic functional tasks with an

unworn prosthetic arm with numerous active DoF (elbow, wrist

rotator, polydigital hand with two different types of grasping).

Such a task will challenge the precision of control and the fatigue

associated to PLM execution (De Graaf et al., 2016), and will offer

a first evaluation of the “interaction” between “phantom activity”

and the prosthetics with tasks in the “real world”. We present in

this paper the results of an experiment during which two patients

had to voluntarily mobilize their phantom limb to have an arm

prosthesis mimicking the phantom movement.
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FIGURE 1 | (Left) Global view of the experimental setup during one of the functional tasks of grasping an object (here the foam tennis ball) and releasing it in the

dedicated container, with the arm prosthesis controlled through the associated mobilization of the phantom limb. (Right) Photo of the setup being used with P2.

2. MATERIALS AND METHODS

The prosthesis (Figure 1) was composed of an active elbow, a
wrist rotator and polydigital hand, attached to a fixed support
placed close to the residual limb. A direct control mapping
was used to associate a phantom movement of one joint
to a movement of the same prosthetic joint. Eight different
movements of the elbow, wrist (rotation), hand and pinch were
used within this experiment. We first evaluated the pattern
recognition architecture performance in amputees, and then
analyzed the grasping task performance through differentmetrics
(timing, optimality of sequences, kinematics) in comparison
with performance obtained by three non-amputated (control)
participants performing the same task with a simple computer
interface.

2.1. Participants
Since this is a preliminary study, a limited number of
participants were tested. Two participants (in the 35–55 age
range) with a unilateral transhumeral amputation of traumatic
origin were selected to participate to the study. Three healthy
participants (in the 25–27 age range) were recruited as a
control group to perform the grasp and release task through a
simplified computer GUI control. This study was carried out in
accordance with the recommendations of the Université Paris
Descartes ethic committee CERES (N◦IRB 20151900001072),
which had approved the protocol. All participants provided
written informed consent to participate in the study, and both
patients gave written permission for publication of photographs
for scientific and educational purposes. The protocol was
performed in accordance with the Declaration of Helsinki.

The selection of the two amputated participants was based
on the level of amputation (only transhumeral amputees), their
control ability of a mobile phantom limb (i.e., the possibility
to perform several different types of phantom movements),
the absence of phantom and residual limb pain, and the

availability of the participants during the recording period. The
first participant (P1), because of an injured plexus brachial
leading to limited muscle contraction amplitudes, has never
been fitted with a myoelectric prosthesis. On the contrary, the
second participant (P2) is daily using a myoelectric prosthesis
composed of a motorized Utah© elbow, an active wrist rotator
and a polydigital hand (iLimbUltra, Touch Bionics ©), controlled
by two electrodes placed over his biceps and triceps muscle
(the control-switching between joints being achieved through a
co-contraction of both muscles). Table 1 resumes demographic
data.

The amputated participants were followed-up at the Louis
Pierquin Centre of the Regional Institute of Rehabilitation,
Nancy, France. Their voluntary mobilization of phantom limb
had been explored through a questionnaire and a preliminary
evaluation in order to make clear distinctions between residual
limb sensations, phantom pain, phantom sensations, and most
importantly, betweenmobility of the residual limb and that of the
phantom limb (Touillet et al., 2018). Both participants reported
a good feeling and control of their phantom hand, including
separate whole hand and pinch (thumb and index) opening and
closing, wrist rotation and flexion/extension of the phantom
elbow.

2.2. Experimental Setup
2.2.1. Upper Limb Prosthetic Platform
The upper limb prosthetic used for this experiment (see Figure 2)
was designed using modified commercially available prosthetic
parts: a Fillauer© Hosmer E-TWO electric elbow, a conventional
electric wrist rotator from Ottobock© (model 10S17), and a
Robolimb polydigital hand from Touch Bionics© possessing 6
active joints (one per finger flexion plus the thumb rotation).
This prototype was attached directly to a dedicated support
frame made of aluminum profiles, which was adjusted to place
the prosthetic elbow close to the phantom elbow joint position.
The overall prosthetic system was controlled by an embedded
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TABLE 1 | Demographic data concerning the 2 amputated participants.

Participant Elaps. time Amput. side Dom. ? Amput. type Amput. cause Pain treat. Prosthesis

P1 34 years Left No 1/3 arm Left traumatic No None or aesthetic

P2 4 years Left No 2/3 arm Left traumatic No Myoelectric

M, male; Dom. ?, Dominant limb prior to amputation; Elap. time, Elapsed time since amputation. “Pain Treat.”, pain treatment. “Prosthesis” indicates the type of prosthesis the patients

usually wears.

FIGURE 2 | The arm prosthesis prototype includes a motorized elbow (1), an

embedded controller based on a Raspberry Pi 3 (2), an electronic wrist rotator

(3), and a Touch Bionics Robolimb (4).

Raspberry Pi 3 which drives the elbow and wrist joints through
a dedicated position/velocity motor controller (Roboclaw Motor
Controller from Ion Motion Control©), and the polydigital hand
through a generic serial connection. A dedicated C++ program
was developed (running at a frequency of 100 Hz on the Jessie
OS© from Debian Linux©) to receive movement instructions
(received from a wifi socket connection), to control the active
joints accordingly (with respect to a set of predefined parameters
like joint velocities), to monitor the kinematic activity and to
store recorded data in files.

To monitor the kinematic activity of the upper-limb
prosthetic, a motion capture dataglove (VMG 30 from Virtual
Realities LLC© relying on piezoelectric technology) was placed
over the prosthetic hand. Thanks to a dedicated calibration
phase (performed once for each patient), the prosthetic fingers
activity were recorded at 25 Hz. This glove was also fitted with
two Inertial Measurement Units (IMU, 9 degrees-of-freedom)
allowing us to track both the elbow flexion and wrist rotation
kinematics at a similar frequency.

Based on previous individual recordings of intact arm
kinematics when mimicking their PLM (De Graaf et al., 2016),
the joint velocities of the prosthesis were pre-set as follows: 15°/s
for the elbow flexion/extension velocity (slow compared to the
natural adopted 105°/s measured in healthy subjects Farthing
and Chilibeck, 2003), 40°/s for the wrist rotation and 2.6 s for
complete opening or closing the whole hand.

2.2.2. Surface EMG Recordings From the Residual

Limb Muscles
A dedicated electrophysiological signal-recording system
(Eegosports from ANT-Neuro©, The Netherland) with bipolar

FIGURE 3 | View of the residual limbs with the connected six optimal (P1,

left), respectively initial twelve (P2, right) pair of electrodes.

shielded channels at 24-bit resolution was used to record sEMG
muscle activities from the participant’s residual limb at a 1 kHz
frequency. Because of the variability in residual limb length and
muscle anatomy due to the level of amputation, the scheme of
electrodes placement had to be adapted for each participant (see
Figure 3). Twelve pairs of sEMG electrodes (Ambu© BlueSensor
Ag/AgCl snap bipolar electrodes with a 1.25-cm-diameter
circular contact and a 2 cm inter-electrode distance (center
point to center point) were initially placed on each participant to
measure activity on various parts of the residual biceps, triceps,
deltoid and sometimes trapezoidal and pectoralis major muscles.
No specific skin preparation was used before placing the active
electrodes on the residual limb.

The recorded sEMG signals were then filtered with a
[10 Hz ; 400 Hz] third-order bandpass Butterworth filter and a
notch filter to remove the power line 50 Hz noise (Q factor of 35).
A filter approach exploiting the properties of the Principal
Component Analysis (derived from Kvas and Velik, 2008) was
then applied to the first sEMG recordings for the training of the
pattern recognition algorithm. This analysis resulted in the initial
selection of an optimal set of 6 pairs of electrodes (maximizing
the classification results) among the 12 channels initially placed.
Once this optimization was performed, the set was used for the
whole experimental session.

2.2.3. Classification Architecture
As shown on Figure 4, the classification of given phantom
limb movements cannot only rely on amplitude analyses of
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FIGURE 4 | P1 typical sEMG patterns associated to the voluntary mobilization of the phantom limb recorded by the six selected electrodes when performing

successively 8 different phantom limb movements.

sEMG bursts, a method often used for the study of voluntary
limb movements with well defined sEMG electrode placement
according to SENIAM recommendations (Hermens et al., 2000).
Additional features of sEMG signal characterizing its frequency
and complexity aspects are needed for optimal classification. We
used the BCI2000 software suite to develop a global control
architecture on a desktop computer running Windows 7 (Intel
Core i5-4690K (3.5 GHz) with 16 Go DDR3). BCI2000 is
a general-purpose software suite designed for brain-computer
interface (BCI) and was used here to run in parallel three
principal modules: one acquisition driver to acquire the sEMG
data (at a 1 kHz frequency), one Matlab classification algorithm
script (executed every 128 ms), and one graphical user interface
(C++ with Qt) which was also broadcasting in real time
the classification output to the network, in order to transmit
the kinematic instructions to the prosthesis. A generic Linear
Discriminant Analysis (LDA) classifier (Englehart et al., 1999)
running on Matlab© (relying on the “fit discriminant analysis
classifier” function of the Statistics Toolbox) was used to classify
the myoelectric activities. The features were computed from the
sEMG using a 512-ms-sliding analysis window with a 128-ms-
overlap between successive windows. Among the wide variety of
features that have been investigated in the literature (Phinyomark
et al., 2013), we selected those known to be the most efficient
and robust for the classification of sEMG with LDA: the root
mean square (RMS) value (Oskoei and Hu, 2008), the first 4
autoregressive coefficients (AR) (Zardoshti-Kermani et al., 1995;
Tkach et al., 2010), the zero crossing and the sample entropy
(Richman and Moorman, 2000) of the sEMG were extracted
from each channel and used to create the feature vector. No
dimensionality reduction nor post-processing methods was used.

Only the confidence value of the classifier was used to filter the
algorithm output: if classification confidence was below 95%, no
movement instruction was sent to the prosthesis.

2.3. Protocol
2.3.1. Amputees’ Protocol
The participant was comfortably seated in a dedicated chair, fitted
with an armrest on the non-amputated side and a head rest.
The arm prosthesis, attached to its rigid support, was placed
approximatively at the location of the phantom arm of the subject
(see Figure 1). Once the electrodes were placed on the subject’s
residual limb, the session started with a training phase, was then
followed by a phase of preliminary assessment of the classification
and PLM-based prosthesis control, and ended with the object
grasping task. During all three phases, the sEMG signals were
recorded and the whole recording session was videotaped and
lasted for about 120 min for each participant. The three protocol
phases will now be detailed.

2.3.1.1. Training of the classifier
The participant was asked to successively perform once 8 selected
phantom movements (8 movements: Elbow Flexion (EF) and
Extension (EE), Wrist Pronation (WP) and Supination (WS),
hand, resp. Pinch Closing (HC, resp. PC) and Opening (HO,
resp. PC) with a few seconds of rest after each movement.
This sequence was repeated once to get 2 demonstrations per
movement. The experimenter was in charge of verbally asking
the subject to execute a given movement and thus determined
the rythm of the performance. No instruction was given about
the amplitude and the velocity of the gesture, only the need of
repeatability was mentioned. It is important to highlight that this
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FIGURE 5 | The objects used for the grasping task. From the left to the right,

a cylinder made from Balsa wood from the kit of objects from the SHAP (Light

et al., 2002) (diameter 60 mm, weight 30 g), a compliant foam tennis ball

(diameter 70 mm, weight 12 g), and a clothespin from the Rolyan Graded

Pinch Exerciser kit (model Yellow, 1 lb Pinch Exerciser, weight 20 g).

brief initial individual training of the classifier was then used for
the whole experiments.

2.3.1.2. Preliminary assessment of the classification and

PLM-based prosthesis control
After a rapid data treatment, the training phase of the classifier
was followed by a preliminary assessment of the classifier
performance. During this phase, while the online classification
algorithm was running, the participant was asked to induce
given movements of the prosthesis through the phantom limb
mobilization. The participant performed a randomized set of
PLM (12 repetitions of the 8 selected gestures) during which the
movements of the prosthesis reflected the PLM that were detected
by the classifier. Once the movement instruction provided by
the experimenter, the participant had 5 s to perform the task.
Within this time period, a failed trial could be followed by a
second one. Once a trial was considered as successful, or when
it lasted more than 5 s, the experimenter asked the participant
to relax before giving the next PLM to perform. In order to
avoid incompatible successions of actions, a pseudo-randomized
list of 12*8 for P1 (reduced to 6*8 for P2, see results) PLM was
performed with intermediate resting periods of a few minutes
every 20 movements.

2.3.1.3. Grasping task
After 10–15 min of passive recovery, the protocol ended by a
grasping task performance with the arm prosthesis that included
a randomized set of 3 grasping repetitions of 3 different objects
(shown in Figure 5 through the same control mode.

The chosen object was placed such that it could be caught by
the prosthetic hand (i.e., position within the circle centered on the
elbow prosthesis and which radius was equal to the hand/elbow
length). The object had to be reached, grasped, detached from
its support (velcro fixation requiring approximatively a 3 N
force to be detached), brought back to the extended-arm
posture and released in a dedicated bucket. Before the start of
each trial, the prosthesis was automatically brought back to a
standardized initial posture, i.e., elbow fully extended, wrist in
pronosupination with the hand palm aligned with the saggital

plane, and fully open hand. The final/release positions was
similar, i.e., elbow fully extended and hand opened but without
particular constraint over the wrist orientation. The participants
had the opportunity to perform two trials with each object to
train before the real grasping task phase started. The object
presentation was not randomized and always started with the
simplest object to grasp (cylinder) and finish with the toughest
(clothespin).

2.3.2. GUI Control by Healthy Participants
In order to appreciate the performance obtained by the patients
with such a control and setup, which remains very different
from a natural limb control (especially because it does not
allow simultaneous movements), the three healhty participants
were asked to perform the exact same experiment but with
the prosthesis being controlled through the use of a graphical
interface on a computer screen and a mouse (each of the eight
movements of the prosthesis being activated by a specific button
on the graphical interface). So, no classification of EMG was
necessary to control the prothesis.

2.4. Metrics
The online performance during the preliminary assessment of
the classification and PLM-based control was analyzed using a
Matlab© script to automatically determine within the 5 s interval
allocated to each task (i.e., performing one specific gesture with
the prosthesis), the exact starting time of the participant action
(when the classifier detected a change from the inactivity with
a confidence over 95%) and its end (last time instant of the
classifier output detection of an activity until the end of the 5
s time period). The confusion percentages were then calculated
over these previously selected times of action, based on the ratio
between the time of action and the time during which the correct
movement was performed.

For the grasping tasks, the prosthetic arm joints were extracted
from the worn motion capture glove: the embedded wrist IMU
was used to compute both elbow flexion and wrist prono-
supination angles. Full elbow extension was defined as a null
flexion angle, while the palm parallel to the saggital plane (with
the thumb pointing forward) defined the 0°posture for the wrist
prono-supination. The hand closing level was averaged by the
closing level of the three last fingers (from medium to little). The
pinch closing level was defined as the closing level between the
thumb and the index (which came into contact at around 30% of
the pinch closing level because of the associated thumb rotation).

Task duration was defined as the time elapsed since the first
activation detection by the control architecture (different from
the “resting state”) until the object impact after falling into the
receiving container.

3. RESULTS

3.1. Preliminary Evaluation of Classification
Performance and PLM-based Control
The confusion matrices for the participants to the preliminary
evaluation of online control of the prosthesis are shown in
Figure 6, indicating an averaged successful recognition score of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 November 2018 | Volume 6 | Article 164

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Jarrassé et al. Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees

FIGURE 6 | Confusion matrix of online control of the prosthesis for P1 (12 repetitions of the 8 movements, i.e., 92 movements, performed) and P2 (6 repetitions of the

8 movements, i.e., 48 movements, performed). Confusion matrix color scale is normalized across methods and increases from white to black as a function of

increasing classification rate.

88.5% for P1 and 86.9% for P2. The amputated participants
performed, respectively, 12 and 6 repetitions (since P2 was
subject to muscle fatigue, the number of repetitions was dropped
by half) of the 8 different movements of the prosthesis. For P1,
only 92 movements were considered (4 movements among the
96 performed were removed because of some misunderstanding
of the participant, invalidating the action). Principal confusions
can be observed, respectively, between hand and pinch closing
and opening: for P1, 15.7% of the pinch closing actions are
considered as hand closing actions, and 8.4% of the hand
openings are confused with pinch openings; for P2 rather
large confusions exists between hand opening closing (14.9%),
and also between hand and pinch opening (15.5 and 14.1%).
Interestingly, these pinch/hand confusions were consistent with
the sensations reported by the participants who indicated that
they had difficulties in preventing the enrollment of the three
other phantom fingers when performing pinch actions.

3.2. Grasp and Release Task Performances
3.2.1. Performance Overview
Representative scenarios of participant P1 (one of the three
repetitions) of the three grasping tasks are shown in Figure 7.
The profiles of joint kinematics and the associated classification
output are shown in Figure 8. For the cylinder and ball, the
participant P1 was able to perform the task following generic
grasping strategies without performing numerous unnecessary
and parasitic motor actions with the prosthesis. For the
clothespin, he had more trouble stabilizing the elbow at the
correct height (with numerous control jumps in the classifier
output) to be able to grasp it (Figure 8C). As shown on the joint
position profiles of Figure 8, the kinematics of the prosthetic

joints is directly impacted by the classifier output changes,
so even a limited (in time) misclassification leads to rather
important oscillations of the prosthesis (especially at the elbow
joint, due to the lever arm effect on the hand position) which
perturbed the task and delayed its completion.

3.2.2. Task Duration
The duration of the first grasping phase and the total task
duration (time to grasp, bring back, and release the object) are
shown in Figures 9A,B, for each of the three objects averaged
over the two amputated participants using their prosthesis, and
over the 3 control participants performing the task by sequential
control through the GUI. The first phase durations for the
patients are globally longer than those obtained for the healthy
participants. For the cylinder the difference is small (average of
11.3 s for the amputees vs. 8.3 s for the controls), but for the ball
(26 s vs. 18.7 s) it is longer, and even more for the clothespin
(32.5 s vs. 16.8 s), the latter requiring a precise positioning of
the fingers through precise manipulation of elbow and wrist. In
comparison, the return and release times are shorter (except for
the cylinder) and are showing little discrepancies between the two
groups (see Figure 9B). Interestingly, the return and release of
the ball required an extended time for amputated participants
(18 s instead of 7.4 s). Part of the reason is that these participants
at the end of the return movement added a wrist rotation before
opening the hand (as shown in Figure 7 with the action 8) in
order to prevent a possible bouncing of the ball outside of the
container whereas the controls did not bother about that.

Although the total grasp-and-release time is shorter for the
controls than for the patients, the relation between the total
grasp-and-release time and the needed number of actions to
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FIGURE 7 | Visualization of representative grasping sequences of P1.

complete the task is rather similar. Indeed, Figure 10 shows the
equations of the best fitting linear relation is close for the two
groups.

3.2.3. Averaged Kinematic Profiles
Figure 11 presents the averaged joint kinematic profiles of both
elbow and wrist joints, normalized in time and averaged between
repetitions and participants for the two groups and the three
objects. It can be seen that, independently of the durations, a
similar elbow path strategy is used by the two groups, with a
straight flexion extension for the cylinder, a visible intermediate
step for the wrist adjustment for the ball, and a limited flexion
for the clothespin which was grasped by the prosthetic finger tips
and not its palm. The wrist path differed between the two groups
(along with the variability within groups, more pronounced in
amputees), with unnecessary wrist rotation appearing in the
grasping of the cylinder by the amputated participants (possibly
due to pattern recognition errors), a more segmented path for
the clothespin, and, for the two last objects, no return to the
initial wrist orientation for control participants. As expected, the
trajectories of the control group are smoother than those of the
amputated participants, essentially because of the instability of
PLM control.

3.2.4. Optimality of Control Sequences
The optimal sequences of motor actions to perform the grasping-
releasing tasks of the three objects are shown in Table 2.
In order to evaluate the quality of the prosthesis control in

performing these three tasks, we calculated the averaged number
of sequence steps used by the amputees (phantom limb control
through classification) and the healthy participants (“button
control”). The prosthesis control is considered as optimal when
the sequence number corresponds to the theoretical minimal
number of sequences listed in Table 2. Any increased number
therefore can be due to a control error (possibly because
of an erroneous classification), to a discontinuous movement
(for example an elbow flexion discomposed in several flexion
submovements), or to an alternative sub-optimal motor strategy.
This index actually gives an overview of the global performance
of both groups of participants and the control architecture (LDA
classifier) since it is more likely to quickly increase with a
classification architecture rather than with a direct control.

The amputees control of the prosthesis was suboptimal
compared to the control group performance (11 actions vs. 4 for
the cylinder, 35 vs. 14 for the ball and 33 vs. 14 for the clothespin)
(Figure 9C). For the two latter objects, even the healthy subjects
were not able to fully optimize their sequence of gestures (mean
of 14 sequences instead of the optimal values of 6 for the ball and
7 for the clothespin, respectively).

4. DISCUSSION

Two transhumeral amputated participants have been asked to
repetitively grasp three different objects with an unworn active
eight-DoF prosthetic arm and release them in a dedicated
drawer, thanks to a prosthesis control based on phantom limb
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FIGURE 8 | Representative profiles (associated to the 1–9 action indexes shown on Figure 7) of participant P1 for grasping and releasing the three objects

(A: cylinder, B: ball, C: clothespin). Recognized phantom movements (output of the classification algorithm) are shown for each task, along with the associated

measured kinematic variations of the 4 joints: elbow and wrist angles, and percentages of closing of hand and pinch. The action indexes (from 1 to 9) are related to

the similar indices shown on Figure 7.

mobilization and myoelectric pattern recognition techniques,
with a classifier trained using only two repetitions of each
PLM. The participants successfully achieved the tasks, even
if the completion times were increased (in comparison with
the performances obtained by a control group using a simple
GUI control) and the control strategies required numerous
corrections.

The recognition rate averaged over all movements revealed
to be rather high (on the average 86.4% for the two amputated
participants) indicating that they were able to control 8 different
prosthetic movements with a limited set of 6 electrodes placed
over their residual upper-arm limb. The main confusions
appeared between the hand and pinch actions. However,
this confusion did not directly alter the grasp and release
performances since even the precise clothespin grasping could be
performed with the whole hand instead of a pinch.

Although successful, this online recognition and control
rate remains slightly lower than the latest classification rate of

over 90% reported in the literature (Al-Timemy et al., 2013;
Farina et al., 2014). Yet, first, these latter results were obtained
on transradial amputees mobilizing their residual hand and
wrist muscles. It is noteworthy to recall that the present study
was performed with transhumeral amputees, for whom the
phantom limb phenomenon is probably related to cortical and/or
neuromuscular reorganization after the amputation (Wu and
Kaas, 2000; Qi et al., 2004; Gagné et al., 2011), making it more
unstable compared to transradial phantom limbs. Indeed, after
transradial amputation, depending on the level of amputation
(the length of the stump directly conditioning the degree of
presence and usability of residual extrinsic hand muscles), the
muscles involved in finger, hand and wrist actions can still
be present. In that case, the neuromuscular reorganization is
probably less important. Second, none of these two participants
mobilize their phantom limb in their daily living activities, so the
used PLM were fully unusual and untrained. One might expect
that training of PLM-execution probably stabilizes the associated
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FIGURE 9 | (A) Averaged time (± standard error) to grasp the three different objects for the amputated participants controlling the prosthesis with their phantom limb

(blue), as well as for the healthy participants by sequential control through a dedicated GUI (red). (B) Averaged time (± SE) to return and release the three different

objects for the two groups. (C) Averaged number of actions for completing the 3 “grasp and release” tasks.

FIGURE 10 | Total grasp-and-release time as a function of the number of actions needed to complete the task for all trials and objects and for each patient (in red)

and healthy control (in blue). Each symbol represents one trial. The best fitting linear relation and their equations use the same color code.

sEMG patterns, reduces cognitive fatigue and finally improves
the robustness of this control approach. Such improvements have
indeed been recently reported for the control of PLM of forearm
amputees (Powell et al., 2014).

This recognition rate of the PLM still allowed the two
amputated participants to successfully perform the functional
grasp-and-release tasks. And this remains a rather encouraging
performance especially when considering the limited training of
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FIGURE 11 | Plots of the averaged joint kinematic profiles of both elbow and wrist joints, normalized in time and averaged between repetitions and participants for the

amputated (blue) and control (red) participants, and the three objects. Standard error is represented by the transparent envelopes around the curves.

TABLE 2 | Optimal sequences of motor action for completing each grasp and

release task.

Objects Balsa cylinder Foam ball clothespin

Optimal

sequences

Flex the elbow and

stop it

at the final height

Supinate the wrist

to orient

the palm facing

the top

Supinate the wrist

to orient

the palm facing

the top

Close the hand

over the object

Flex the elbow and

stop it

at the final height

Flex the elbow and

stop it

at the final height

Fully extend the

elbow

Close the hand

over the object

Correct the wrist

orientation to

face the clothespin

with pinch

Open hand to

release object

Fully extend the

elbow

Close the pinch

over the object

Pronate the wrist

back

to initial orientation

Fully extend the

elbow

Open hand to

release object

Pronate the wrist

back

to initial orientation

Open hand to

release object

Optimal

number of

sequences

4 6 7

the participants compared to the several days (or weeks) sessions
usually required in upper-limb amputees to master a simple
(but constraining in terms of muscular contraction amplitudes)

myoelectric control of active wrist and hand prostheses. Their
kinematic strategies (as shown in Figure 11 and action-to-time
ratio (as shown in Figure 10were rather similar but the durations
for the two complex grasps (ball and clothespin) were extended
in comparison with those obtained by the control participants in
their simplified -but still sequential- control task. When looking
into detail the movement sequences of the prosthesis, it appeared
that the major task difficulty lies in the grasping part of the
task, which is not surprising since the grasping is only possible
with a precise positioning of the hand. The return and release
phase increased in amputees because of an additional wrist
reorientation phase at the end before releasing the object. This
was probably due to the fact that the amputated participants were
more conscientious and wanted to have the object not bouncing
out of the bucket, whereas the control participants did not bother
about this.

Several reasons can be responsible for the longer durations
and the higher number of actions needed for completing the
task, the most important probably being the control delay
induced by the classification of the PLM. Precise positioning
of the segments of the prosthesis required a precise temporal
control of the activation of the corresponding movements, which
was clearly different between the tasks for the two groups.
Indeed, the PLM-based control architecture induced additional
delays of up to 512 ms because of the windowing and filtering
effect of the classification algorithm. This clearly increased the
difficulty to stop the elbow flexion at the desired height and
possibly induced the flexion/extension oscillations observed for
the elbow joint, shown in Figure 8 for the clothespin task. This
delay can probably be decreased by the reduction of the sliding
window time to 256 ms and the associated overlap to 64 ms,
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by the optimization of the set of features (the sample entropy
being computationally time-consuming) and by using compiled
programming languages.

Another reason for the reduced performance of the amputated
participants is that the task was more complex for them (i.e.,
precise and reproducible mobilization of their phantom limb)
than for the control participants (simply acting over a mouse),
and, moreover, prolonged phantom limb mobilization induces
fatigue (De Graaf et al., 2016), which influenced the sEMG
signals and thus reduced the rate of successful classification of
the PLM. This might have caused the increase of durations
and number of actions for the ball and clothespin objects
(which were presented after the cylinder). Finally, the patients
reported that they had to concentrate when performing the
PLM (specially to prevent from performing “unusual” corrective
actions which would have perturbed the classifier) and to perform
clear separations (i.e., a time of inactivity) between the different
PLM to maximize the recognition rate. This also contributed
to increasing the task durations. Yet, interestingly, even the
durations of the control group are extended when compared to
the time it takes to grasp and release the objects with an intact
arm (below 5 s). This suggests that, more than the complexity
of phantom limb mobilization, the impossibility of performing
simultaneous actions is one of the main causes of the prolonged
durations needed to perform these grasp-and-release tasks.

The obtained results show that amputated participants were
able, after a very short appropriation of all task requirements
(i.e., 2 repetitions for training, 8 preliminary repetitions of each
PLM and two preliminary trials of each grasp-and-release task),
to manage the rather complex interaction between their PLM,
the associated actions of the prosthesis and, through it, their
physical interaction with objects and the environment. The PLM-
based control revealed to be rather intuitive. This is confirmed
by the fact that the patients never used their PLM in daily
life and still were able to control the prosthesis without any
beforehand training. Moreover, the patients instinctively tried
to correct unplanned actions generated at the prosthesis level
with adapted phantom movements (as we do with intact limbs)
but unfortunately not known by the classifier. This intrinsic
limitation of the pattern recognition techniques that can only
recognize specific and known (trained) PLM, still limits the
intuitiveness and naturalness of the approach.

Obviously, in the current state of the control architecture,
the control performance can be expected to be reduced with
a worn prosthesis. Indeed, the current limited robustness of
pattern recognition techniques is a major obstacle, particularly
when they have to be used in realistic scenarios including a
worn prosthesis. This will generate additional constraints such
as pressure and sweating, along with a mobile residual limb
generating non-“phantom limb related” muscle contractions.
These factors will affect the sEMG signals and thus decrease
the PLM detection rate. Yet, this is a generic problem in
the field of pattern recognition of electro-physiological signals,
and numerous solutions are actually developed that could
compensate for the listed issues. Examples of these solutions are
(1) robustness to electrodes shift (Muceli et al., 2014; He and Zhu,
2017), (2) use of osseointegration (Ortiz-Catalan et al., 2014) to

eliminate the problem of the stump/socket physical connection,
(3) electrode implantation (Mastinu et al., 2017) minimizing the
issue with skin impedance and movements, and of course (4)
more robust architectures of pattern recognition, integrating the
stump posture (tracked through IMUs for example) to integrate
the actual arm posture in the signal classification (Lauretti et al.,
2016).

This work demonstrates the effectiveness of a bio-
inspired system successfully conjugating the advantages of
an underactuated, anthropomorphic hand with a PCA-based
control strategy, and opens up promising possibilities for the
development of an intuitively controllable hand prosthesis.

Despite the above-mentioned difficulties, our two patients
were able, without any beforehand PLM-training, to control 8
different movements of a prosthesis in a more efficient, simple,
and dexterous way that conventional (dual-site) myoelectric
control can offer.While TMR is now becoming a generic solution
for transhumeral amputees to increase their control capabilities
over (or simply allow the use of) prosthesis with more than 2
active DoF (i.e., when an active elbow is added to the prosthetic
wrist and hand), the preliminary results obtained in this study
and other research teams exploiting the natural myoelectric
activity related to PLM, pushes toward a reconsideration of the
possibility of extracting more control signals without undergoing
invasive surgical procedures. Obviously, TMR is providing an
interesting way of stabilizing and reinforcing the myoelectric
patterns related to PLM. This eases the decoding of myoelectric
activities and is possibly one major key to overcome the issue
of the perturbations generated by the wearing of the prosthesis.
Nonetheless, recent “realistic” use of TMR in transhumeral
amputees, controlling a 3-active-DoF-prosthesis through pattern
recognition (Hargrove et al., 2017), still required either the use
of a 15-electrodes-array placed over the stump (as described
in Tkach et al., 2014), or the use of the conventional signal
control switch to control the wrist when a direct control with
a set of 4 electrodes was used. Therefore, there seems to be
a real interest in pushing further our understanding of the
phenomenon of natural (i.e., without TMS) residual myoelectric
activity related to PLM. This could possibly be a viable option
in some transhumeral amputees desiring to control 3 active
joints.

The transhumeral amputees who were recruited in the study
had received no prior training with the PLM-based-control
approach. Better results, in terms of precision and completion
times, can be expected with regular PLM-training. Furthermore,
improving the control of the prosthetic joints (especially the
elbow involved in numerous and rather long displacements),
with exponential velocity and smoothened acceleration profiles
to restore human-like movement properties (isochrony and
minimization of the jerk (Viviani and Flash, 1995) will have
a positive effect on the controllability. Bio-inspired approaches
minimizing the control dimensionality through mechanical
underactuation and models of finger joint synergies (as proposed
by Magenes et al., 2008 or Matrone et al., 2010) could
strongly enhance amputees’ abilities in object manipulation tasks.
Finally, providing additional sensory feedback to the participant,
especially concerning the interaction of the prosthesis with the
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environment could be a game changer in helping amputated
persons in performing such tasks, whatever control technique is
used. For instance, artificially provoking phantom limb referred
sensations, as recently tested in (Osborn et al., 2018), could be a
relevant technique, particularly when prosthesis control is PLM-
based. More amputated participants will be included in future
experiments in order to reinforce the first results presented here
and investigate the influence of phantom limb mobility training
on the control performance. In such way, the often occurring
mobility of the phantom limb might become useful instead of
something to hide or ignore.
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