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Robust devices for chronic neural stimulation demand electrode materials which exhibit

high charge injection (Qinj) capacity and long-term stability. Boron-doped diamond (BDD)

electrodes have shown promise for neural stimulation applications, but their practical

applications remain limited due to the poor charge transfer capability of diamond.

In this work, we present an attractive approach to produce BDD electrodes with

exceptionally high surface area using porous titanium nitride (TiN) as interlayer template.

The TiN deposition parameters were systematically varied to fabricate a range of porous

electrodes, which were subsequently coated by a BDD thin-film. The electrodes were

investigated by surface analysis methods and electrochemical techniques before and

after BDD deposition. Cyclic voltammetry (CV) measurements showed a wide potential

window in saline solution (between −1.3 and 1.2 V vs. Ag/AgCl). Electrodes with the

highest thickness and porosity exhibited the lowest impedance magnitude and a charge

storage capacity (CSC) of 253 mC/cm2, which largely exceeds the values previously

reported for porous BDD electrodes. Electrodes with relatively thinner and less porous

coatings displayed the highest pulsing capacitances (Cpulse), which would be more

favorable for stimulation applications. Although BDD/TiN electrodes displayed a higher

impedance magnitude and a lower Cpulse as compared to the bare TiN electrodes, the

wider potential window likely allows for higherQinj without reaching unsafe potentials. The

remarkable reduction in the impedance and improvement in the charge transfer capacity,

together with the known properties of BDD films, makes this type of coating as an ideal

candidate for development of reliable devices for chronic neural interfacing.

Keywords: neural prosthesis, neural interfaces, implantable electrodes, electrical stimulation, boron-doped

diamond, porous diamond, titanium nitride, electrochemistry
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INTRODUCTION

Nanocrystalline diamond films synthesized by means of
chemical vapor deposition (CVD) represent a unique class of
materials with outstanding physical and chemical properties,
including superior hardness and the ability to resist extreme
corrosive environments (Williams, 2011). Besides these features,
electrically conductive boron-doped diamond (BDD) exhibits
a wide potential window and low background currents, which
make it a fascinating material for electrochemical applications
(Rao and Fujishima, 2000). During the last few decades, BDD
has been employed for the fabrication of electrodes for a wide
range of applications, including electroanalysis (Compton
et al., 2003; Suzuki et al., 2007; Schwarzová-Pecková et al.,
2017), electrosynthesis (Kraft, 2007; Ivandini and Einaga, 2017;
Ashcheulov et al., 2018), and biosensing (Vermeeren et al.,
2009; Zhou and Zhi, 2009; Qureshi et al., 2010; Svítková et al.,
2016). More recently, BDD attracted attention as electrode
material for neurochemical sensing, neural recording, and neural
stimulation applications, both in vitro and in vivo (Hébert
et al., 2014b; Garrett et al., 2016). Studies have shown that
BDD microelectrodes are suitable for the measurement of
bioelectric potentials from cultured mammalian neural cells
(Ariano et al., 2005; McDonald et al., 2017) and from neural
tissue in acute settings (Ho-Yin et al., 2009). BDD holds also
great promise for the fabrication of implantable electrodes
for chronic application, as the material exhibits extraordinary
physical stability, biocompatibility, and resistance to protein
biofouling in vivo (Alcaide et al., 2016b; Meijs et al., 2016a).
However, in contrast to conventional electrode materials, planar
BDD films display relatively lower double layer capacitance, and
high impedance (Swain, 1994; Alehashem et al., 1995). This is a
drawback for neural stimulation applications, as the amount of
charge that can be effectively injected through electrodes with
relatively small contact sites is quite limited.

Several approaches have been proposed to increase the
effective electrochemical area of BDD films as means to
boost the amount of charge that could be transferred through
the interface. In classical top-down strategies, diamond films
are typically etched under a reactive plasma atmosphere to
increase their porosity (Yu et al., 2014). In this direction,
Kiran et al. have demonstrated successful in vitro recording
and stimulation of neural preparations using microelectrode
arrays (MEAs) comprising “nanograss” BDD contact sites (Kiran
et al., 2013). Although this approach has shown to achieve a
moderate increase in the electrode capacitance, the fabrication
method remains complex and time-consuming, compromising
its industrial viability. Alternatively, in bottom-up strategies,
a highly porous substrate is used as a template onto which
thin diamond films are deposited. Some examples within the
various types of porous templates include vertically aligned
carbon nanotubes (Hébert et al., 2014a; Zanin et al., 2014),
TiO2 nanostructures (Siuzdak et al., 2015), and SiO2 fibers
(Petrák et al., 2017; Vlčková Živcová et al., 2018). Accordingly,
BDD electrodes using 3 µm-long vertically aligned carbon
nanotubes as an interlayer template have displayed a significant
increase in charge storage capacity (CSC) and reduction in the

impedance. This improvement in the electrochemical properties
allowed successful stimulation and recording of electrical activity
in excised mouse hindbrain preparations (Piret et al., 2015).
However, integration of carbon nanotubes in implantable neural
probes still faces some concerns, due to the risks of long-term
cytotoxic effects and the mechanical damage that might occur
during implantation (Musa et al., 2012; Liu et al., 2013).

Titanium nitride (TiN) is an attractive material, which can
be applied for the fabrication of porous templates with high
electrochemical surface area (ESA) by simple physical vapor
deposition techniques. Porous TiN coatings have long been
employed for pacemaker electrodes and have also been used
for fabrication of neural stimulation and recording electrodes
(Norlin et al., 2005; Specht et al., 2006; Meijs et al., 2015a). The
porosity of TiN films can be easily controlled by adjusting the
deposition parameters, such as gas composition, flow rate, and
deposition time (Norlin et al., 2005; Cunha et al., 2009). The
pores extend deep into the coating, resulting in a high ESA and
a high CSC (Cunha et al., 2009). In a preliminary study, we have
confirmed the feasibility of fabricating electrodes based on a thin-
film BDD deposited on TiN and shown that these electrodes
exhibited a relatively high CSC due to the wide potential window
typical for BDD (Meijs et al., 2015b).

In this work, the aim is to identify deposition conditions
that would allow fabricating BDD electrodes suitable for neural
stimulation applications. A range of porous TiN electrodes was
fabricated and subsequently deposited with a BDD thin-film.
The morphology, quality, and surface properties of the resulting
BDD/TiN films were characterized. In addition, we assessed
the influence of the underlying TiN film parameters on the
electrochemical performance of the electrodes by means of cyclic
voltammetry (CV), voltage transient (VT) measurements, and
electrochemical impedance spectroscopy (EIS).

MATERIALS AND METHODS

Electrode Fabrication
The test samples were fabricated using a monopolar Ti6Al4V
electrode pin, which belongs to a system intended for genital
nerve stimulation (Martens et al., 2011). Seven types of TiN
coatings were evaluated, which were deposited on the electrodes’
contact sites by reactive DC magnetron sputtering. Deposition
was carried out using an industrial coating unit (CC800,
CemeCon AG, Germany) from two Ti targets (88 × 200mm)
with 99.5% purity in a mixed Ar/N2 atmosphere. In one set of
samples (designated as samples I to V), the N2 flow was varied
from 30 to 300 standard cubic centimeters per min (sccm), while
the deposition time was kept constant at 27.5× 103 s. In another
set of samples (designated as samples III, VI, and VII), the flow
rate of N2 was kept at 180 sccm while the deposition time was
modified. In both cases, the Ar flow was kept constant at 180
sccm.

BDD thin films were synthesized on the TiN layers using
an Astex AX6500 microwave plasma enhanced CVD system.
The TiN-coated electrodes were first immersed in a 0.33 g/L
solution of diamond nanoparticles (3.8 ± 0.7 nm) from Shinshu
University to seed the surface for diamond growth. Hydrogen gas
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with an addition of 1% CH4 was added to the chamber at a total
flow rate of 500 sccm. Tri-methyl boron was added to the gas as
the dopant source, at boron to carbon concentrations of 10,000
ppm. The substrate temperature was maintained at ∼750◦C by
using a pressure of 25 Torr (3.33 kPa) and a microwave power of
2,500W.

Surface Characterization
The TiN thin-films were investigated using scanning electron
microscopy (SEM) (Nova 600, FEI, The Netherlands). Detailed
images of all electrodes were recorded at 80,000×magnification.
For the assessment of film thickness, flat substrates (10× 10mm)
obtained from silicon wafers were coated during deposition of
each batch of electrodes. The silicon substrates were placed in
a manner that ensured an even coating thickness. The coated
substrates were subsequently broken and analyzed by cross
sectional SEM. The thickness was measured via analysis of
the SEM micrographs using Image J (NIH, Bethesda, MD).
Each sample was measured at several locations along the
cleavage to assess for thickness variations. Only small variations
were observed and a unique thickness could unambiguously
be assigned to each sample. The surface morphology of the
BDD/TiN films was analyzed by a FERA3 GM SEM (Tescan,
Czech Republic) with Schottky field emission cathode (FEG-
SEM). Images were taken in the high-resolution mode at the
accelerating voltage of 5 kV to minimize the interaction volume.

Raman spectroscopy of BDD/TiN films was carried out at
room temperature using an InVia Raman Microscope (Renishaw
ApS, Denmark) with the following conditions: wavelength =

325 nm, ×40 Olympus objective, 65µm slits, spot focus, grating
= 2,400 L/mm. A high pressure, high temperature Ib single
crystal diamond was used as a reference for the sp3 Raman peak
position.

Topography and surface roughness over a large area (220 ×

280 µm2) was investigated by an optical profilometer (NewView
7200, ZYGO, Middlefield, CT). In addition, surface roughness
and topography over a small area (5 × 5 µm2) were investigated
by atomic force microscopy (AFM) using a Dimension Icon
ambient AFM (Bruker, Germany) in peak force tapping mode
using Tap150AL-g tips (BudgetSensors, Innovative Solutions
Bulgaria).

Electrochemical Measurements
All electrochemical measurements were carried out in a three-
electrode set-up, using the either the TiN or the BDD/TiN
electrodes as working electrodes (0.06 cm2), a platinum foil
counter electrode (50 cm2), and a Ag|AgCl reference electrode
(1.6 cm2). Measurements were performed in Ringer’s solution at
room temperature.

Cyclic voltammetry was performed by cycling the electrode
potential between the water window limits. These limits were
determined by increasing and decreasing the electrode potential
until an exponentially increasing current was observed using a
sweep rate of 0.05 V/s. Measurements were made at 0.05, 0.1,
0.5, and 1.0 V/s; 10 cycles were recorded at each sweep rate.
The cathodic CSC of the electrodes was found by calculating
the surface area under the zero current axis. The electrochemical

surface area to geometrical surface area (ESA/GSA) ratio was
calculated by dividing the CSC of the porous coatings by the CSC
of the corresponding smooth coating at a sweep rate of 0.05 V/s.

Voltage transient measurements were made using a cathodic-
first bipolar symmetric current pulse with an interphase, during
which no current was applied. Each phase had a phase width of
200µs and the duration of the inter-phase was 40µs. For analysis
of the VTs, theOCPwas set to 0V and the IR dropwas subtracted.
The IR-drop was calculated for each phase by subtracting the
potential at 20 µs after pulse cessation from the last data point
of the respective phase. The pulsing capacitance (Cpulse) was
calculated for each pulse using the following equation:

Istim = Cpulse ×
dV

dt

where Istim is the stimulation current and dV/dt is the slope of
the last 90% of the cathodic phase of the VT. The Cpulse of the
type I TiN electrodes was determined at a current at which safe
potential limits were reached. The Cpulse of the other electrodes
was determined at a stimulation current of 20mA.

Cyclic voltammetry and VT measurements were performed
with VersaSTAT 3 potentio-galvanostat (Princeton Applied
Research, USA). The impedance spectrum was measured
from 0.1Hz to 100 kHz, five points/decade using a sinusoidal
measurement current of 5.0 µA. Impedance spectroscopy was
performed using Solartron, Model 1294 in conjunction with 1260
Impedance/gain-phase Analyzer (Solartron Analytical, UK).
Linear regression analyses of the CSC and Cpulse-values were
performed in Prism 7 (GraphPad Software Inc, La Jolla, CA).

RESULTS

Effect of Deposition Conditions on the
Surface Properties of TiN Films
The influence of deposition parameters on thickness and
morphology of the TiN films was investigated by depositing
films at different partial pressures of N2 while keeping the
deposition time at 27.5 × 103 s. The partial pressure of N2

in the deposition chamber was modified by varying the N2

flow rate. At the lowest flow rate, the TiN films displayed a
relatively smooth surface (Figure 1A). These samples, designated
as type I, were used as substrates for the planar reference
coatings throughout the study. The remaining films, deposited
at N2 flow rates ranging from 120 sccm and above, consisted of
rough surfaces displaying pyramidal-like features whose lateral
dimensions decreased at higher N2 flow rates (Samples II–V,
Figure 1A). The porous TiN films comprise of a highly dense
columnar-type structure, with pyramidal features at the top of
the columns. The typical cross-section profile of porous TiN films
is shown in the Supplementary Figure 1. Thickness displayed
a non-monotonic dependence on the N2 flow rate (Figure 1C).
The maximum film thickness was obtained at 180 sccm (sample
type III), where the partial pressures of N2 and Ar are equal.
Subsequently, the effect of deposition time on thickness and
morphology of films was assessed by depositing films at a shorter
and a longer time interval in relation to sample III (samples VI
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FIGURE 1 | Scanning electron microscopy (SEM) analysis of the seven types of prepared TiN films (I–VII). (A) Effect of varying the N2 flow rate on film morphology. For

this set of samples (I–V), the deposition time was kept at 27.5 × 103 s. Films type I were used as smooth reference coatings. (B) Effect of varying the deposition time

on film morphology, while keeping the N2 flow rate at 180 sccm. (C) Thickness of the films displayed in (A,B). Scale bar in SEM images represents 1µm.

and VII). The column size (Figure 1B) as well as film thickness
(Figure 1C) correlated directly to the deposition time.

Assessment of the Surface Properties of
BDD/TiN Films
Diamond thin-films were synthesized on all types of TiN coating
(I–VII). SEM images (Figure 2A) along with AFM images
(Figure 2B) show the morphology of BDD films grown on four
representative substrates: smooth TiN (type I), and the three
electrodes grown at a growth rate of 180 sccm (types III, VI,
and VI). SEM images revealed that the BDD films had a uniform
coverage on the TiN and displayed a nanocrystalline structure
with a grain size of∼50 nm.Due to the electrode geometry, in situ
BDD-film thickness measurements were not possible, however,
deposition onto silicon substrates at identical conditions resulted
in film thicknesses in the order of the grain size (i.e., ∼50–
70 nm).

The large-scale topography of the diamond films, as measured
using an optical profilometer over an area of 220× 280µm2, was
governed by grooves on the underlying TiAlV substrate, which
are ∼20µm wide and up to 400 nm high. The roughness on
this scale was around 200–350 nm and it was not significantly
influenced by the TiN or the BDD coating. However, the small-
scale topography measured by AFM over an area of 5 × 5 µm2

was mostly governed by the topography of the TiN pyramidal
structure. The roughness of the diamond layer, which measured
on a flat surface was around 30 nm, had only a minimal influence
on the topography of the BDD/TiN films. Figure 2C shows the
RMS surface roughness of the selected sample types before and
after BDD deposition. As the electrode surface is not flat the error
in the estimation of the roughness is ∼20% when measured on
different areas on the pin.

Raman spectroscopy confirmed the synthesis of diamond
films in all TiN substrates. Figure 2D displays the Raman spectra
of BDD films grown on the selected sample types. In all spectra, a
shifted diamond peak is observed at 1,320–1,328 cm−1 as well as
broad features related to sp2 at 1,360 and 1,585 cm−1, i.e., the D
and G bands.

Electrochemical Characterization
The water window potentials were obtained by CV and their
values were typically −0.6 to 0.9V for TiN and −1.3 to 1.2V
for BDD/TiN electrodes (vs. Ag|AgCl). Table 1 summarizes the
cathodic CSC-values which were obtained at a sweep rate of 0.05
V/s. The CSC obtained at a slow sweep rate gives an insight
into the entire ESA of the porous electrodes. Due to the wide
potential window brought by the BDD coating, the CSC of
the BDD/TiN electrodes was consistently higher than the CSC
of bare TiN electrodes. The CSC-values pre- and post-BDD
deposition followed a linear relationship with a slope of 2.2,
indicating that the CSC-values of the electrodes doubled upon
BDD deposition (Supplementary Figure 2). It was also noticed
that the CSC-values were drastically increased in all porous
samples as compared to the smooth reference electrodes, for
which the CSC-values were 0.36 and 7.74 mC/cm2, respectively.
Table 1 includes the ESA/GSA ratio, which reflects the relative
increase in the ESA for each of the porous samples, before
and after BDD deposition. Figure 3A displays representative CV
curves from electrodes type III, VI, and VI, before and after BDD
deposition, where it is possible to observe the relative increase in
the CSC when TiN films become deposited with BDD. As shown
in Figure 3B, the CSC of these electrodes appears to increase
linearly with an increase in the TiN coating thickness. The CSC-
values fit a linear regression with a slope of 6.7 mC/cm2.µm for
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FIGURE 2 | Surface analysis of four representative electrodes (type I, III, VI, and VII). (A) Scanning electron microscopy (SEM) images displaying the uniform coverage

of the nanocrystalline diamond layer. Scale bar represents 1µm. (B) Atomic force microscopy (AFM) height images. Scale bar represents 1µm. (C) AFM surface

roughness measurements from the films displayed in (B) before (bare TiN) and after diamond deposition (BDD/TiN). (D) 325-nm Raman spectra showing the

diamond-related peak between 1,320 and 1,328 cm−1. The spectra have been offset for clarity.

TABLE 1 | Cathodic CSC of the bare TiN and BDD/TiN electrodes obtained at

0.05 V/s.

TiN BDD/TiN

Sample

type

CSC

(mC/cm2)

ESA/GSA

ratio

CSC

(mC/cm2)

ESA/GSA

ratio

I 0.36 – 7.74 –

II 54 150 105 14

III 69 190 143 19

IV 86 238 177 23

V 58 159 136 18

VI 32 89 99 13

VII 107 295 253 33

The ESA/GSA ratios were calculated by dividing the CSC of each of the porous coatings
by the CSC of the smooth reference coatings.

the bare TiN films (r2 = 0.98) and 14.2 mC/cm2.µm for the
BDD/TiN films (r2 = 0.99), but the slopes are not significantly
different (P > 0.05).

Table 2 summarizes the Cpulse for all electrode types, which
was derived from the VT measurements. Except for electrode
type I, the Cpulse of the BDD/TiN electrodes was consistently
lower than the Cpulse of the corresponding TiN electrodes.
Figure 4A shows representative VT measurements on electrodes
type III, VI, and VII, before and after BDD coating. As compared
to the bare TiN electrodes, the lower Cpulse of BDD/TiN
electrodes leads to larger electrode potentials. However, as the

safe potential window for BDD is larger than for TiN, the amount
of charge that can safely be injected will be higher for BDD/TiN
than for TiN. Cpulse displays a negative trend for both TiN
and BDD/TiN electrodes as a function of TiN coating thickness
(Figure 4B). The Cpulse-values fit similar linear regressions, with
a slope of −0.051 mF/cm2.µm for the bare TiN films (r2 = 0.82)
and−0.052 mF/cm2.µm for the BDD/TiN films (r2 = 0.77).

As anticipated, increased film porosity significantly reduced
the impedance of the electrodes (Figure 5). The impedance
magnitudes of the TiN and BDD/TiN porous electrodes were
only different at frequencies below 10Hz. The greatest difference
in impedance magnitude between TiN and BDD/TiN was at
100 mHz, where the BDD electrodes consistently had a higher
impedance than the TiN electrodes. The impedance magnitude
of both BDD and TiN electrodes decreased with increasing
thickness. The lowest impedance magnitude for TiN with and
without BDD coating were obtained using the electrode with the
thickest TiN coating (type VII).

DISCUSSION

A range of porous TiN films, to be used as templates, was
deposited onto test electrodes by means of a physical vapor
deposition. The smooth TiN reference films were fabricated using
a low partial pressure of N2 to ensure a stoichiometric Ti/N ratio
below 0.6, which has been shown to be unfavorable for columnar
growth (Igasaki et al., 1978; Cunha et al., 2009). Formation of
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FIGURE 3 | Cyclic voltammetry measurements of electrodes type III, VI, and VII before (bare TiN) and after BDD deposition (BDD/TiN). (A) Cyclic voltammograms

showing that the safe potential limits are increased in BDD/TiN electrodes as compared to the bare counterparts. The potential limits are the same within the two

electrode groups. (B) Cathodic charge storage capacity (CSC) of the electrodes as a function of the underlying TiN film thickness, showing that CSC-values were

consistently increased after BDD deposition. Data from samples type III, VI, and VII are shown in red, green, and blue, respectively. Dotted lines represent the linear

regression of the CSC-values.

TABLE 2 | Pulsing capacitance of the bare TiN and BDD/TiN electrodes.

Sample type TiN (mF/cm2) BDD/TiN (mF/cm2)

I 0.024 0.059

II 1.6 1.6

III 2.2 1.4

IV 1.9 1.5

V 2.0 1.5

VI 2.1 1.8

VII 1.6 1.2

Values are derived from the voltage transient measurements.

the columnar, highly porous structures was favored using N2

flow rates of 120 sccm and above. For the set of samples II–V,
higher N2 flow rates resulted in decreased film columnar width.
This effect has been associated to a reduced mobility of the
deposited atoms as a consequence of a weakening in the argon
bombardment (Arshi et al., 2012). Furthermore, increasing the
N2 flow poisons the Ti targets to the extent where the entire target
surface is covered in TiN. This effect decreases the deposition
rate as the sputter yield is lower for TiN than for Ti (Berg and
Nyberg, 2005), which also results in thinner films with smaller
columns. The deposition rate appeared to be maximal at a N2

flow rate of 180 sccm, where the N2 flow rate equals that of
Ar and it is assumed that deposition occurs at a stoichiometric
Ti/N ratio. TiN films with stoichiometric Ti/N composition are
usually preferred due to their optimal mechanical and electrical
properties (Kang and Kim, 1999; Martinez et al., 2014). Samples
III, VI, and VII were therefore deposited keeping the N2 flow
constant and varying the deposition time to obtain porous films
with similar crystalline composition but different thickness. A
longer deposition time increased the columnar width, which is
a result of the competitive growth where some columns grow at

the expense of others. Such a growth is typically observed for
coatings deposited at a relatively low temperature compared to
the melting temperature of the coating material (Ohring, 2002).
For the TiN films, increasing the N2 flow (in samples I–III) led
to higher thickness and higher porosity, which was reflected as
an increased ESA/GSA ratio. Further increase in N2 (sample IV)
still gave an increase in area due to increased porosity, although
the thickness was smaller. Going to higher N2 the growth rate was
slower, so that the lower thickness dominated over the increased
porosity and an overall decrease in the ESA/GSA was obtained.
For the samples grown at constant gas flow rate (III, VI, and VII),
film thickness, and ESA/GSA ratio were directly correlated.

Surface analysis of the BDD/TiN samples by SEM and AFM
revealed homogeneous and high quality BDD films. The overall
structure and topography of the films appeared similar to the
bare TiN samples, suggesting that CVD deposition did not
significantly affect the morphology of the TiN template. The
uniform coverage of diamond crystallites indicates a highly
cohesive diamond film. This is in agreement with previous
studies, which have shown that TiN possesses several favorable
properties for nucleation and growth of good quality CVD
diamond films, including low diffusivity of carbon, compatible
interatomic potential, and small lattice mismatch (Weiser et al.,
1992; Kumar et al., 1997; Polini et al., 2006). In addition,
since TiN exhibits a moderate interface reactivity, its surface
is stable under high-temperature diamond–CVD deposition
(Contreras et al., 2000). Moreover, given the similar thermal
expansion coefficient of both materials, the interlayer stresses
are minimal, which ensures the synthesis of highly adherent
diamond layers (Kumar et al., 1997). Although we did not
encounter any evidence of cracks or film delamination, future
studies should further investigate the nature the BDD/TiN
interlayer by appropriate techniques, as for instance transmission
electronic microscopy (TEM). Concerning the Raman analysis,
the shifts in diamond’s Raman peak can be related to a variation
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FIGURE 4 | Voltage transient measurements of electrodes type III, VI, and VII before (bare TiN) and after BDD deposition (BDD/TiN). (A) The voltage transients of the

BDD/TiN electrodes were larger than those of the bare TiN electrodes, evidencing a decrease in the pulsing capacitance (Cpulse). (B) Cpulse of the electrodes as a

function of the underlying TiN film thickness, showing that Cpulse-values were decreased after BDD deposition. Data from samples type III, VI, and VII are shown in

red, green, and blue, respectively. Dotted lines represent the linear regression of the Cpulse-values.

FIGURE 5 | Impedance magnitude spectra of electrodes type I, III, VI, and VII

before (bare TiN) and after BDD deposition (BDD/TiN). Data from electrodes

type I, III, VI, and VII are shown in gray, red, green, and blue, respectively.

of stress in layers, nonetheless its shift to lower wavenumbers is
associated with increasing B incorporation in the lattice (Prawer
and Nemanich, 2004). It is worth noting that the spectra in
Figure 2D are representative only, i.e., the ratio of sp3/sp2

changes with measurement position. This apparent variation in
sp3/sp2 is related to the fact that the BDD coating is very thin and
therefore the grain boundary content is high.

The superior ESA of the TiN coatings used as porous
templates is evident from the high ESA/GSA ratios and the
drastic reduction in the impedance magnitudes. Thicker films
had a consistently higher CSC, suggesting that pores extend into
the entire depth of the coating, which is in agreement with
previous studies (Norlin et al., 2005; Cunha et al., 2009). BDD
deposition onto the TiN coatings significantly increased the CSC
of the electrodes due to the wide potential window of diamond.

The linear correlation between the CSC of the TiN and the
BDD/TiN electrodes indicates that the diamond films did not
block the pores. On the other hand, the Cpulse showed a negative
correlation with film thickness, as the highest Cpulse-values were
obtained with thinner coatings and smaller column width. The
BDD films might therefore cause narrowing of the pores, with a
consequent increase in the pore resistance. This effect decreases
the pore depth that can be used under pulsing conditions
(Cogan, 2008). Thus, increasing the coating thickness beyond a
certain level would be less advantageous for electrical stimulation
purposes. While Cpulse is decreased for BDD/TiN as compared
to bare TiN electrodes, it is important to view this result in the
light of the wide safe potential window of BDD (Garrett et al.,
2011). The decrease in Cpulse after depositing BDD ranged from
67% to <1%, while the cathodic potential limit was more than
doubled (−0.6V for TiN vs. −1.3 for BDD/TiN). This means
that the amount of charge that can be injected without reaching
unsafe potentials is doubled by applying a BDD thin-film onto
a porous TiN coating. It is important to view these results in
the light of the intended application of the BDD/TiN electrodes,
which is in vivo chronic neurostimulation. It has been shown that
the stimulation performance of TiN electrodes deteriorates after
implantation (Meijs et al., 2015a, 2016b,c). This is not the case for
BDD electrodes, which display a remarkable resistance to protein
biofouling (Trouillon and O’Hare, 2010; Alcaide et al., 2016a;
Meijs et al., 2016a). Nevertheless, protein adsorption is influenced
by surface topography, which warrants further investigation of
the electrochemical performance of porous BDD/TiN electrodes
in protein-rich environments.

The relatively low Cpulse and high impedance shown by the
smooth BDD electrodes was evident and corresponds well to
what has been shown in previous studies (Garrett et al., 2011;
Meijs et al., 2013). Remarkably, the electrochemical performance
of BDD displayed a significant improvement thanks to the
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large ESA gained by using the porous TiN templates. As
previous studies have shown, other porous templates have been
instrumental in enhancing the electrochemical performance
of BDD (Bonnauron et al., 2008; Kiran et al., 2013; Hébert
et al., 2014a). A notable example is the growth of BDD on
vertically aligned nanotubes, which has shown to increase the
CSC of BDD up to 10 mC/cm2 (Piret et al., 2015). The
BDD/TiN electrodes in the current, however, displayed CSC-
values up to 253mC/cm2 for the type VII electrode. Furthermore,
while the use of carbon nanotube based materials for human
implants remains controversial due to evidence of cytotoxic
effects (Smart et al., 2006; Liu et al., 2013), both TiN and
BDD have demonstrated low risk of cytotoxicity and excellent
biocompatibility in diverse applications. TiN is well known for
improving the electrochemical and biocompatibility properties of
various materials (Subramanian et al., 2011) and represents one
of the coatings with a long history of clinical use for orthopedic
implants (Gotman et al., 2014; van Hove et al., 2015). Data
from implantation studies revealed that BDD electrodes are
associated with no signs of chronic inflammation and a very
thin fibrous capsule (Alcaide et al., 2016b). Taken together, these
results indicate that this novel type of combined coating may be
used to fabricate safe implants for clinical use. Furthermore, the
method can be easily scaled-up, making the production process
fast and cost-effective (Taylor et al., 2014, 2018). The production
process is reproducible and clean, as both coatings are deposited
under vacuum conditions. Overall, these factors make this novel
type of coating particularly attractive for the development of
commercially viable electrodes for neural interfacing.

To achieve an increased charge injection (Qinj), the
production parameters are of critical importance, as the extra
coating increases the pore resistance, which may deteriorate
Qinj. This study suggests that specific deposition parameters are
optimal for stimulation electrodes, as increased thickness and N2

flow only result to a certain extent in larger Cpulse and Qinj. The
data suggests that BDD deposited onto thinner coatings with
smaller columnar size results in better stimulation performance.
A thicker coating, however, results in a high CSC and low
impedance, which could be exploited for other purposes, such
as electrical and electrochemical sensing. This highlights the
versatility of the novel coating combination presented in this
work.

CONCLUSION

In this work, we have fabricated a range of BDD/porous TiN
electrodes with very high surface area, which exhibit a broad

safe potential window and CSC-values which are superior to
those reported in the literature for porous BDD electrodes.
Electrodes with more porous and thick coatings were associated
with higher CSC and lower impedance magnitudes, but the
relatively limitedCpulse wouldmake themmore suited for sensing
applications. On the other hand, relatively higher Cpulse were
obtained with thinner films with small column size, which would
result more favorable for stimulation applications. Although
BDD/TiN electrodes displayed a higher impedance magnitude
and a lower Cpulse as compared to the bare TiN electrodes, the
wider potential window likely allows for higher Qinj without
reaching unsafe potentials. These remarkable improvements,
together with the known mechanical stability, resistance to
biofouling and long-term in vivo stability of BDD films, makes
this coating combination an ideal candidate for development
of reliable devices for chronic neural interfacing. This novel
type of coating is particularly attractive for the development
of commercially viable electrodes due to the simplicity and the
scalability of the approach.
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