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Atherosclerosis (AS) is a disorder of large and medium-sized arteries; it consists in the
formation of lipid-rich plaques in the intima and inner media, whose pathophysiology
is mostly driven by inflammation. Currently available interventions and therapies for
treating atherosclerosis are not always completely effective; side effects associated with
treatments, mainly caused by immunodepression for anti-inflammatory molecules, limit
the systemic administration of these and other drugs. Given the high degree of freedom
in the design of nanoconstructs, in the last decades researchers have put high effort
in the development of nanoparticles (NPs) formulations specifically designed for either
drug delivery, visualization of atherosclerotic plaques, or possibly the combination of
both these and other functionalities. Here we will present the state of the art of these
subjects, the knowledge of which is necessary to rationally address the use of NPs
for prevention, diagnosis, and/or treatment of AS. We will analyse the work that has
been done on: (a) understanding the role of the immune system and inflammation in
cardiovascular diseases, (b) the pathological and biochemical principles in atherosclerotic
plaque formation, (c) the latest advances in the use of NPs for the recognition and
treatment of cardiovascular diseases, (d) the cellular and animal models useful to study
the interactions of NPs with the immune system cells.

Keywords: atherosclerosis, inflammatory diseases, smart nanomaterials, drug delivery, nanomedicine, imaging
and theranostics, immune cells, cardiovascular diseases

ATHEROSCLEROSIS AND INFLAMMATION

Atherosclerotic disease, or simply atherosclerosis (AS), is initially characterized by the formation of
fatty streaks, with the accumulation of lipids [primarily cholesterol, but also triglycerides (Goldberg,
2018)] in the intima and inner media of arterial wall, especially in regions with abnormal flow
patterns (Chistiakov et al., 2017). Fatty streaks may then evolve into soft, lipid-rich plaques, and
eventually into thick cap-calcified lesions and/or unstable plaques characterized by inflammatory
infiltration and sustained oxidative processes. Stable fibrocalcific atheroma is characterized by
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calcium deposits, small lipid deposits, slight lumen reduction,
and, often, by poor functional relevance. Vulnerable atheroma,
which is more prone to rupture, is characterized by a
large lipid-rich necrotic core, thin fibrous cap (<65um),
neovascularization, spotty calcifications, inflammatory cells, and
positive remodeling (Moore and Tabas, 2011; Hansson et al.,
2015). The possibility of plaque regression has been reviewed
in Chistiakov et al. (2017) focusing on animal models, and in
Fisher (2016) also considering the dynamic changes in lipid and
immune cells distributions.

AS is currently considered an inflammatory disorder,
characterized by the infiltration into sub-endothelial space of
various immune cells (ICs), especially circulating monocytes
(MCs) that subsequently differentiate into macrophages (M®s)
and then into foam cells (FCs), going along with plaque
formation and evolution (Moore et al., 2013; Zhang et al., 2017).
Such simplified picture is complicated by the heterogeneity of
the cells within and close to lesions during evolution [MCs,
M®s, and FCs, but also neutrophils, dendritic cells (Butcher and
Galkina, 2012), T cells (Taleb, 2016), and possibly others]. In the
cited reviews particular attention is given to the markers of the
various IC phenotypes, although cells can present more than one
function and can express a continuum of markers of different
subtypes (Butcher and Galkina, 2012).

A key example regards M®s, the characterizing cells in
AS: their different subtypes can have antithetic roles. Initially
classified only as classically activated M1 (pro-inflammatory) or
alternatively activated M2 (anti-inflammatory), evidences have
brought to the definitions of additional subtypes (e.g., Mox,
M4, Mhem) and even “sub-subtypes” (e.g., M2a, M2b, M2c);
there could actually be a continuum of specializations, and
M®s could even convert into each other (Butcher and Galkina,
2012; Leitinger and Schulman, 2013). It must be noted that also
smooth muscle cells (SMCs) can assume some of the functions
usually assigned to M®s (efferocytosis, internalization of lipids or
cholesterols), and may transform in foam cells (Chistiakov et al.,
2017).

In any case, cells with phenotypes closer to Mox or M1
cells are the most active in internalizing lipids (particularly
cholesterol), especially if agglomerated within oxidized low
density lipoprotein (oxLDL). Upon this process, efferocytosis
efficiency of cells is reduced, they transform into foam cells,
and are easily subjected to imbalances in cholesterol influx/efflux
process and hypoxia. The final outcome is most often apoptosis
or necrosis, which resolve in local accumulation of the lipid
content, the major constituent of the inner (possibly necrotic)
core of the atherosclerotic plaque (Moore and Tabas, 2011). At
the same time, the cell’s residual components promote further
inflammation signals and generation of oxidative species, in
a persistent cycle of recruitment of intimal macrophages and
their polarization toward pro-inflammatory subsets (Libby et al.,
2014). Moreover, both monocytes and macrophages have been
shown to contribute to the increase of the gamma-glutamyl
transferase enzyme (yGT) in AS lesions, increasing the oxidative
character of these zones (Pucci et al., 2014; Belcastro et al., 2015).

This self-sustained state of inflammation (similar to what
happens in chronic wound environments) is characteristic of the

vulnerable plaque. The presence of activated macrophages leads
to the secretion of matrix-components degrading enzymes (such
as matrix metalloproteinases-MMPs), inhibits the production
of collagen by the SMCs, and finally contributes to vascular
wall reshaping. These mechanisms are useful in early lesions,
supporting resolution of disrupted endothelial layers and
avoiding accumulation of toxic species, as well as for the
reduction of atherosclerotic plaques; but, at the same time,
they induce fragility in late plaques, with the possible final
consequence of plaque rupture (Libby et al., 2014; Hansson et al.,
2015; Martinez and White, 2018). Inflammation also modulates
the clinical consequences of the thrombotic complications of AS,
while its inhibition could attenuate progression, mitigate the risk
of plaque rupture, and even promote regression of AS (Awan and
Genest, 2015; Back and Hansson, 2015; Bick et al,, 2015; Kamaly
et al., 2016).

ATHEROSCLEROSIS TREATMENTS

Current therapeutic approaches to AS aim at reducing promoting
factors, including hypertension, smoke, and dyslipidemias;
considered drugs (e.g., inhibitors of cholesterol hepatic synthesis
like statins) particularly affect production and transport of
cholesterol (or other lipids) to the arterial walls (Coomes et al.,
2011; Duivenvoorden et al., 2014; Tsujita et al., 2015). Different
approaches have been investigated, such as blocking absorption
of cholesterol in the intestine (e.g., by ezetamibe) or controlling
its reverse transport in ICs, e.g., by using an agonist for the liver
X receptor (LXR) like GW3965, or administering artificial forms
of high density lipoproteins (HDL; Duivenvoorden et al., 2014;
Tsujita et al., 2015; Pulakazhi Venu et al., 2017; Goldberg, 2018;
Mueller et al., 2018).

Controlling inflammation is another promising strategy;
in particular, the interleukin-1 pathway has been identified
as a possible therapeutic target. Canakinumab, a monoclonal
antibody targeting interleukin-1p, was tested in the CANTOS
(Canakinumab ANti-inflammatory Thrombosis Outcomes
Study) trial (Ridker et al, 2011, 2017). Moreover, the
chemotherapeutic drug methotrexate (MTX), largely used
as an immunomodulatory and anti-inflammatory (AI) drug, was
described to lower the risk for total cardiovascular diseases in
patients with chronic inflammation (Popkova et al., 2015; Gomes
et al., 2018), and has been observed to inhibit atherogenesis
and macrophage migration to the intima in animal models
(Bulgarelli et al., 2012). Although its mechanisms of action are
not fully clear, this molecule is capable of reducing the secretion
of pro-inflammatory cytokines and the expression of adhesion
molecules on both immune and endothelial cells (Coomes et al.,
2011).

While promising, systemic administration of AI drugs is
often limited by a narrow therapeutic index and by severe
adverse effects, including bone marrow suppression, neutropenia
and immunodepression. Blockade and stimulation of the
mechanisms involved in inflammation can hold positive, null,
or even detrimental results depending on the phase of the
atherogenic process (Aluganti Narasimhulu et al., 2016). Based
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on these premises, it is authors’ belief that a rational modulation
of the functions of ICs is promising for an efficient treatment and
hopefully comes with fewer adverse effects.

Ideally, it would be desirable to identify an effective strategy
for all of the AS phases; e.g., in (Libby et al., 2014) Resolvin
El is indicated as a mediator that reverses all the advanced
lesions associated processes, while contributing to the resolution
of the plaque also in earlier phases. Another promising
possibility is controlling release or activation of compounds
used to alleviate or cure AS symptoms/consequences. Possible
approaches include: the use of drugs modified with a glutamyl
in order to exploit the increased concentration of yGT in AS
lesions (Belcastro et al., 2015); developing methods exploiting
high cholesterol concentrations; tackling pathways leading the
transformation process from monocyte to pro-inflammatory
M®s and finally to foam cells (Rousselle et al., 2013).

Due to their ambivalent role of inducing inflammation and
regulating tissue regeneration, macrophages have been the first
candidates addressed in order to control AS. Vannella and Wynn
presented an interesting review describing macrophages behavior
in different tissues, the mediators of the various mechanisms
involved, and finally several possible ways to modulate them
(Vannella and Wynn, 2017). It would be ideal to force their
egress from AS lesions as transformation into foam cells is
occurring; to this end, a suggestive idea could be activating
or releasing a “macrophage migration-enhancement factor”
(Weisbart et al., 1974; Ueno et al., 1997; Nunami et al., 1998),
or interfering with cell surface adhesion molecule only in over-
abundancy of cholesterol or other AS markers, e.g. by stopping
the phosphorylation of CD44 (Qin, 2012).

TOWARD TARGETED THERANOSTICS NPs

As hinted above, spatial and temporal control of drug activity
can reduce collateral short and long term effects; moreover, it
can result in more convenient administration methods. These
premises strongly call for the development of efficient, targeted
delivery strategies for AI molecules, just like the ones based
on their encapsulation into NPs (Costa Lima and Reis, 2015).
Several kinds of NP have been considered for drug delivery;
characteristics and production protocols for some of these are
reviewed in Allen et al. (2016), Ulbrich et al. (2016), Cheraghi
et al. (2017), and Matoba et al. (2017). There are still limitations
and drawbacks for the clinical use of many NPs; these could
arise from a not-yet perfect control of the final fate of many
formulations, since they often accumulate also in the organs of
the reticuloendothelial system (RES), from polydispersion and/or
poor reproducibility in their preparation, or from the often
difficult scale-up and high cost for their production, especially
when multifunctional capabilities are added (Cheng et al., 2012;
Ulbrich et al., 2016). However, NP physicochemical properties
can be finely tailored during their synthesis and this allows
optimizing drug loading and NP target specificity (Allen et al.,
2016; Pentecost et al., 2016).

In the clinical setting of atherosclerotic disease, NPs loaded
with anti-inflammatory drugs can be a powerful tool to hit

inflammatory targets at the plaque level, preventing systemic side
effects (Jokerst and Gambhir, 2011; Di Mascolo et al., 2013).
Drug-loaded NPs targeting macrophages and other immune
cells could control their pro-inflammatory activities and thus
prevent, attenuate, and possibly reverse related disorders (i.e.,
increased atherosclerosis, but also altered adipocyte function
and insulin resistance). At the same time, NPs could also
be loaded with imaging agents allowing the detection of
vulnerable atherosclerotic plaques; similar theranostic strategies
already showed potential for detection and treatment of other
diseases (including cancer and neurodegenerative disorders),
exploiting a number of imaging modalities, among which optical
imaging (OI), magnetic resonance imaging (MRI), ultrasound
and photoacoustic (US-PA), computed tomography (CT), and
nuclear imaging based on single photon and positron emission
tomography (SPECT, PET; Xie et al, 2010; Kim et al., 2014;
Weissleder et al., 2014; Atukorale et al., 2017; Stigliano et al,,
2017; Zhang et al., 2017).

There is evidence that NPs can segregate into the plaque in
preclinical models of AS via a “passive” targeting mechanism
(Weissleder et al, 2014); while such a relative selectivity
has not been completely understood, some hypotheses have
been proposed. First, the abnormal hemodynamic forces where
plaques develop may favor NPs deposition (Hossain et al., 2015);
second, the endothelium appears discontinuous with openings
for sufficiently small objects (Kim et al., 2014); third, there can
be an active role of immune cells in vehiculating or accumulating
the nanoparticles in inflamed districts (Moore et al., 2017).

Other strategies focused on specific targeting, e.g., toward
inflammatory factors, dysfunctional endothelial cells, or specific
macrophage receptors involved in cholesterol transport.
Examples are drug carriers functionalization with selectin
ligands or antibodies directed to CAMs (sialyl-Lewis X, PSFL-1,
ICAM and VICAM ligands, anti-ICAM, anti-VCAM; Robbins
et al., 2010) or anti-oxLDL receptor (Li et al., 2010). Li et al. used
liposomes decorated with LOX-1 antibodies, Indium (!!'In)
or Gadolinium (Gd), and Dil fluorescence markers to image
atherosclerotic plaques in ApoE™/~ mice. Alternatively, it has
been proposed to target collagen IV, which is present on the
vascular basement and exposed when vascular permeability
increases (Chan et al,, 2011; Chen et al., 2013; Kamaly et al,,
2016; Meyers et al., 2017). Also common strategies to target
macrophages are based on functionalizing nanoparticles with
dextran sulfate coating or peptides mimicking low-density
lipoproteins (LDL) such as apolipoprotein Al (ApoA-1), whose
receptors (Class A Scavenger Receptor 1 MSR-1, and class B
Scavenge Receptor CD36) are expressed on macrophages cell
membrane (Canton et al., 2013). Further works focusing on
visualization of macrophages distribution using nanoparticles
are well reviewed in Weissleder et al. (2014).

Active targeting was achieved also using a “biomimetic”
approach: NPs can derive from, or have properties similar to,
aggregates like LDL or HDL, naturally accumulating in AS
plaques (Allijn et al., 2013; Duivenvoorden et al., 2014; Gomes
et al., 2018). More specific tissue or cell targeting can be found
testing nanoparticle libraries in-vitro or in-vivo (Kamaly et al,,
2016; Tang et al, 2016), but the mechanisms of the found
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specificity should be understood, also in order to ensure it
is preserved downhill of modifications of nanoconstructs or
in different biological environments. Libraries are often tested
preliminarily in cell cultures, but in-vivo tests are necessary at
least to evaluate the impact of the different biological media.

Indeed, upon entry in an organism, NPs are usually
coated by a protein corona (PC), changing their biological
identity. PC formation (or “opsonisation”) is often the first
step toward the sequestration of NPs by the RES. Various
approaches have been considered to avoid such phenomenon.
Recent strategies are based on controlling nanoconstruct
stiffness, since it was found that deformable particles are
less subject to uptake by macrophages in RES in off-target
tissues (Key et al., 2015; Palomba et al., 2018). Other methods
exploit different coatings and functionalization developed for
controlling the PC, e.g., by using polymers like PEG. This is
thought to be an antifouling agent, but it actually seems to
modulate the PC (Schottler et al., 2016); moreover, it has been
shown to be immunogenic, requiring the use of additional
functionalizing moieties (Mima et al., 2017). Other possible
coating molecules are based on peptides: examples comprise
zwitterionic ones, for limiting serum-protein adsorption (Ranalli
et al., 2017), or aptamer-likes, for enriching the PC with specific
molecules present in biological fluids, which act as targeting
moieties when properly oriented (Santi et al.,, 2017). All these
approaches easily grant nanoconstructs with extended circulation
half-life.

An advantage that will play important role consists in NPs
potential multimodality: not only they can contain more than
one drug and/or imaging agent, but it could also be possible
to implement a trigger for drug release/activation. This could
either be intrinsic (provided by the pathological environment) or
exogenous (ultrasound, light, oscillating magnetic fields).

Especially under this view, an interesting development can
arise from a synergy between nanotechnology and personalized
medicine (Mendes et al,, 2018). Early screening of the most
suited bioactives (Tang et al., 2016; Risum et al., 2017), real
time monitoring of local accumulations (Zavaleta et al., 2018),
observing early feedbacks to the treatment (Qiao et al., 2017),
and predicting patient responses (Sykes et al, 2016) are all
possible aspects of personalized medicine. We believe that the
rational application of nanotools in all these steps will embody
a fundamental role in the upcoming clinical and pre-clinical
research (Mura and Couvreur, 2012; Polyak and Ross, 2017;
Yordanova et al., 2017).

NPs FOR AS TREATMENT AND DIAGNOSIS

The use of NPs for treatment of AS and visualization of plaques
up to 2015 has been elegantly reviewed in Zhang et al. (2017); we
further selected more recent works not reported there (Table 1).
In this session, we describe some of these and other relevant
works.

Often, intrinsic properties of NPs lead to the exploitation
of drug delivery strategies together with photothermal- and
radiofrequency-mediated triggering effects; e.g., Johnston

proposed the possibility to use photothermal destruction of
macrophages using iron oxide NPs with thin gold and dextran
coating, excited by a laser pulse at 755 nm. In this manuscript the
particles were used for MRI and in vitro photothermolysis (Ma
etal.,, 2009). A similar approach has been tested in the NANOM-
FIM trial (Kharlamov et al., 2015); here, NPs composed by silica
shells containing gold and eventually magnetic nanoparticles
were delivered on AS plaques by a bioengineered on-artery
patch or using a magnetic navigation system; detonation of NPs
using a NIR laser caused a significant final reduction of the total
atheroma volume.

A different, interesting strategy consists on preventively
acting on the selective recruitment of monocytes from the
precursors of pro-inflammatory macrophages M1 (Nakashiro
et al, 2016; Matoba et al, 2017). The authors proposed
polymeric NPs loaded with Pioglitazone, an agonist of the
receptor PPARy shown to be able to influence macrophage
polarization. The formulation was tested in ApoE~/~ mice
fed a high fat diet (HFD) and infused with angiotensin II,
promoting inflammation driven by monocytes/macrophages.
2 days post injection the ratio between peripheral pro- and
non-inflammatory monocytes subsets decreased substantially,
and tissue macrophage polarity was regulated toward the non-
inflammatory phenotype M2, with consequent suppression
of EMMPRIN/MMP pathway and reduction of plaque
destabilization risk.

In a similar approach, Stigliano et al. (2017) confirmed the
potentiality of MTX in preventive-oriented treatments by loading
it into NPs. The authors demonstrated specific accumulation of
NPs into macrophages residing within lipid-rich plaques along
the arterial tree. In the aortic arch of ApoE™/~ mice on HFD
treated with MTX-NPs, 50% less coverage of plaques was found
in comparison to the control group. Importantly, this result was
obtained by injecting a dose four times lower than reported in
literature (Leite et al., 2015; Gomes et al., 2018).

MTX has also been investigated in synergy with different
bioactive compounds. The group of Serrano Jr. (Gomes et al,
2018) tested the combined effect of injecting Paclitaxel (PTX)-
loaded LDL-mimicking NPs and MTX-loaded NPs. In New
Zealand white rabbits on atherogenic diet treated with both
the NPs formulations, the regression of the lesion area and
the intimal width reduction corresponded to 17 and 63%,
respectively, compared to the group treated with PTX-NPs alone.
The authors speculate that this athero-regression is mostly due to
the macrophage reduction effect and not to an inhibition of SMCs
migration into the intima.

Other possible applications of nanomedicine in the treatment
of AS are based on gene regulation. Majmudar et al injected
siRNA-containing polymeric NPs to silence the expression
of C-C chemokine receptor type 2 (CCR-2), a key player
in recruiting inflamed monocytes to atherosclerotic plaques;
they observed reduced PET signals from 3Zr-labeled dextran
nanoparticles in aortic root when compared to mice treated with
an irrelevant siRNA (Majmudar et al., 2013). Another example is
the downregulation of the tissue inhibitor of metalloproteinase
3 by the use of miR-712, delivered by cationic lipid NPs
targeting VCAMI. The treatment was performed in ApoE™/~
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end-points similar to humans.

AS, atherosclerosis; IC, immune cell: MC, monocyte; M®, macrophage; NP, nanoparticle; ApoE, apolipoprotein E.

mice and was able to significantly attenuate the development of
atherosclerotic plaques (Kheirolomoom et al., 2015).

TOOLS AND IDEAS FOR ADDITIONAL
RESEARCH

As reviewed above, fundamental and pre-clinical researches on
Al-drugs-loaded NPs against AS are beginning to bloom, and
there are also clinical trials for the (separated) use of NPs
and Al drugs for regression or consolidation of AS plaques.
More fundamental and translational research on the mechanisms
underlying their action could inspire and motivate future more
efficient clinical trials using AI-drug loaded NPs against AS.

Important future steps for the development of new NP-based
theranostics strategies can arise from the study of interaction
mechanisms between NPs and immune cells, with particular
regard to what fate NPs and their components will face upon site
deposition and cellular uptake. Investigations on these directions
will remarkably improve the development of NPs rational designs
aimed at specific accumulation and cargo smart activation.

Indeed, where, how and in which proportion NPs are
internalized in the various subtypes of ICs is still not clear, also
due to the different internalization routes observed even in close
phenotypes (Lunov et al., 2011), nor it is clear how or if they are
exocytosed (Oh and Park, 2014). In particular, are NPs mostly
internalized by circulating monocytes that enter the lesions, or
by resident macrophages in lesions, where NPs enter because of
the enhanced permeability of inflamed endothelium?

Immortalized cell lines can be used for preliminary
experiments. The most used are murine macrophage-like
RAW 264.7 and ]774, and human monocyte-like THP-1 and
U937 (Luster et al., 1995; Qin, 2012; Andreu et al., 2017) reviews
in particular the use of THP-1, unchanged or differentiated
toward a M® phenotype (especially M1), but also cites other
human monocyte/macrophage models. Following these models,
even though there are evident parallelisms, care must be taken
for intrinsic differences: between cells originating from different
organisms (Ingersoll et al., 2010; Matoba et al., 2017; Zhang et al.,
2017); between immortalized cell lines and primary cells (Andreu
et al., 2017); even between possible different differentiations
ICs may undergo during regular cultures. Primary cells should
be used in final tests, but in this case the last type of unwanted
differentiations are even more critical [e.g., monocytes are
extremely sensible and may be activated just by sole adhering on
surfaces (Belcastro et al., 2015)]. For these reasons, a thoughtful
characterization of their phenotypes (by visual inspection or,
better, by markers analysis) should be carried out before every
experiment.

Together with the internalization pathway, also the bio-
distribution of NPs deserves attention; a nice review for both
these issues, which considers MC and M®s, can be found
in Pentecost et al. (2016), with interesting discussions about
dependencies on NP geometry and surface chemistry, targeting,
control on M® phenotype, and imaging. In addition, medium
and long-term fates of nano-construct components (in particular
its bioactive cargo) should be addressed; these details can indeed
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impact the efficacy of the researched treatment, but also the
long-term effects on the patients’ health.

Finally, various animal models have been developed for the
different phases of AS, as reviewed in Emini Veseli et al
(2017) and Lee et al. (2017). A recently developed model of
controllable and reversible hypercholesterolemia is based on
transient knockdown of the hepatic LDL receptor (LDLR) by
antisense oligonucleotides in wild type C57BL/6 mice, followed
by its rapid restoration (Basu et al., 2018).

CONCLUSION

Cardiovascular events, such as acute myocardial infarction and
stroke, are often associated with erosion/rupture of arterial
atherosclerotic plaques and superimposed thrombosis. These
can cause arterial-vessel occlusion, downstream ischemia and
necrosis, with subsequent heart failure and the whole clinical
spectrum of vascular encephalopathies. Being AS an important
source of morbidity and mortality, intense research efforts
toward precision and personalized medicine in this field are
motivated.

There are several reviews for selected aspects of the highly
complicated issue of AS and its theranostics with NPs (Table 2).
Here, we shortly presented the broad background necessary to
understand the use of NPs for smart delivery and activation
of anti-inflammatory drugs. We tried to focus on how basic
science, together with the translational and clinical aspects, can
address different portions of this, aiming at providing a better
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