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Epithelial tissues are composed of layers of tightly connected cells shaped into complex

three-dimensional (3D) structures such as cysts, tubules, or invaginations. These

complex 3D structures are important for organ-specific functions and often create

biochemical gradients that guide cell positioning and compartmentalization within the

organ. One of the main functions of epithelia is to act as physical barriers that protect the

underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked

by oversimplified models based on cell lines grown as monolayers on flat surfaces. While

useful to answer certain questions, these models cannot fully capture the in vivo organ

physiology and often yield poor predictions. In order to progress further in basic and

translational research, disease modeling, drug discovery, and regenerative medicine, it

is essential to advance the development of new in vitro predictive models of epithelial

tissues that are capable of representing the in vivo-like structures and organ functionality

more accurately. Here, we review current strategies for obtaining biomimetic systems in

the form of advanced in vitro models that allow for more reliable and safer preclinical

tests. The current state of the art and potential applications of self-organized cell-based

systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities,

as well as microfabrication techniques including bioprinting and photolithography, are

discussed. These techniques could be combined to help provide highly predictive drug

tests for patient-specific conditions in the near future.

Keywords: epithelial barriers, 3D cell culture models, organoids, organ-on-a-chip, microengineered tissues,

biofabrication, drug screening, disease modeling

INTRODUCTION

Epithelial tissues are composed of cells laid out in sheets with strong intercellular bonds that form
physical barriers that line the cavities of major organs (lung, skin, intestine, etc.) and protect them
from external physical, chemical, and microbial insults. Epithelial cells are polarized, i.e., their
apical side, facing the lumen of the organ, differs in shape and composition from the basolateral
side. Epithelial cells rest on a basement membrane that acts as a growth support and as a selectively
permeable layer. Besides protection, the main functions of epithelial cells include secretion,
selective absorption, transcellular transport, and detection of sensation. Epithelia are actively and
rapidly renewing tissues due to the presence of fast dividing adult stem cells (Crosnier et al.,
2006; Vrana et al., 2013). In addition, they are a major site for carcinogenesis (Beyer et al., 2013).

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2018.00197
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2018.00197&domain=pdf&date_stamp=2018-12-18
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vfernandez@ibecbarcelona.eu
mailto:emartinez@ibecbarcelona.eu
https://doi.org/10.3389/fbioe.2018.00197
https://www.frontiersin.org/articles/10.3389/fbioe.2018.00197/full
http://loop.frontiersin.org/people/622040/overview
http://loop.frontiersin.org/people/636026/overview
http://loop.frontiersin.org/people/47306/overview


Torras et al. Biomimetic Epithelial Tissue Culture Models

Many epithelial tissues have three-dimensional (3D) spatial
features such as tissue widens, compact folds, invaginations,
evaginations, and wavy morphologies. Such complex structures
might generate biochemical factor gradients that drive the
compartmentalization of the different cell types and are key
determinants for organ-specific functions. Some examples are
acini in the mammary gland, alveoli in the lung, Vogt palisades
in the cornea, rete ridges in the skin, and crypt-villus structures
in the small intestine (Figure 1). The latter are triggered by
mechanical forces during morphogenesis and generate gradients
of biochemical signals that spatially segregate the various tissue-
forming cell types (Bollenbach and Heisenberg, 2015; Shyer et al.,
2015).

Functional in vitro models of epithelial layers are key
elements to basic research, disease modeling, drug discovery,
and tissue replacement (Stange and Clevers, 2013). There is
an increasing demand for in vitro models that are capable of
capturing the complex epithelial architecture of tissues in vivo.
Conventional preclinical models are typically two-dimensional
(2D) or rely on animal models. While 2D models can provide
useful information on early biological responses and are suitable
for high-throughput drug screening, they have poor predictive
capabilities. And while existing animal models can capture the
complex physiology and interactions of in vivo tissues, they
often fail to predict human responses due to species-specific
differences. In addition, their use is often restricted due to ethical
concerns. In an effort to overcome these limitations and as a
kind of paradigm shift, 3D human models have emerged that
are capable of capturing complex physiological responses in
vitro (Griffith and Swartz, 2006). These new models rely on
advances in cell biology, micro-engineering, biomaterials, and
biofabrication.

In this study, we review the main technological strategies
currently used to create 3D complex models of epithelial tissues:
self-organized cell cultures, lab-on-chip devices, engineered
microtissues, and various combinations of these. As the focus
is typically placed on mimicking the epithelial tissue barrier
properties in vitro, the studies reviewed here all focused on
the epithelial compartment and the underlying matrix. We
found that depending on the application, these engineered
approaches can be extended to provide the 3D models with
immunocompetent properties, microbiome, or vascularity.

SELF-ORGANIZED 3D CELL CULTURES

In contrast to 2D cell culture models where cells usually grow
as monolayers on flat substrates, cells in 3D culture systems self-
organize as 3D aggregates, either employing amatrix as a physical
support or in a scaffold-free manner. Commonly used matrices
include both biologically- and synthetically-derived hydrogels
such as Matrigel R©, polyethylene glycol, or poly(vinyl alcohol)
(Tibbitt and Anseth, 2009; Rimann and Graf-Hausner, 2012;
Fang and Eglen, 2017). Based on the type of cells and their cellular
organization, there are currently two types of 3D self-organized
cell culture models: spheroid and organoid models. Spheroids do
not need a supportive matrix to grow and are more irregularly

arranged cell aggregates with a rather poor organization of
relevant tissue. Organoids, on the other hand, originate from
stem cells, which give rise to different organ-specific cell types
and ensure the culture’s high self-renewal capabilities. Organoids
require a matrix to grow and possess a more ordered assembly
that typically recapitulates the 3D complex tissue structures. Both
3Dmodels have gained recent popularity as new in vitro tools for
drug testing, disease modeling, and tissue engineering (Fang and
Eglen, 2017).

Essentially, spheroids are clumps of poorly organized cells that
have become a popular model in oncology research. Due to their
solid spherical morphology, both oxygen and nutrients decrease
toward the center, decreasing cell viability from the outer cell
layers to their hypoxic and necrotic cores (Lin and Chang, 2008)
(Figure 1). This feature very closely recapitulates the biochemical
and cellular conditions found in most solid tumors. Tumor-
derived spheroids, or tumor-spheres, have been generated from
primary cancer cells (including cancer stem cells) derived from
various sources such as glioma, breast, colon, ovary, and prostate
tumors (Ishiguro et al., 2017). In addition to their 3D nature,
the methods for generating spheroids are simple, cost-effective,
highly reproducible, and adaptable, which has favored their use
as in vitro models in the drug discovery industry in a semi-high
throughput format (Youn et al., 2006; Tung et al., 2011; Vinci
et al., 2012). Despite these benefits, spheroids are only poor in
vitro models of healthy epithelial tissues, mainly due to their
lack of self-renewal and differentiation properties as well as their
inability to organize in tissue-like structures.

Organoids are highly organized 3D cell cultures that
originated from organ specific or pluripotent stem cells with
self-renewal and differentiation capabilities. When embedded
in a suitable matrix and cultured with specific biochemical
factors that mimic the in vivo stem cell niche, stem cells possess
an intrinsic ability to differentiate and self-organize into 3D
structures that resemble the in vivo organ. The culture conditions
needed to generate organoids derived from intestine, skin, lung,
liver, and pancreas, among others organs, employing a wealth of
different cells sources from different species, are known (Rossi
et al., 2018). Due to their in vivo resemblance in cell composition,
structure and function, organoids have become the gold standard
in vitro culture method in basic and translational epithelia
research, when modeling patient-specific diseases, or as a source
of autologous tissue transplantation (Yui et al., 2012; Dekkers
et al., 2013; Middendorp et al., 2014).

While organoid technology undoubtedly represents a
scientific breakthrough in epithelial tissue research, organoids
still do not fully recapitulate all characteristics of in vivo
epithelia. A major drawback is their 3D closed geometry, which
complicates access to specific organoid compartments. For
instance, the inaccessibility of the organoid-analog lumen in
intestinal organoids hampers the use of conventional assays and
instrumentation designed for high throughput screening studies
on nutrient transport, drug absorption and delivery, or microbe-
epithelium interactions (Wilson et al., 2015). In addition, the
use of conventional microscopy for experimental data collection
is complicated by the fact that organoids are cultured while
embedded in a 3D hydrogel matrix. New strategies have been
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FIGURE 1 | Schematic representation of epithelial tissues with their native 3D architecture, conventional 2D cell cultures, and novel 3D cell culture approaches.

proposed to overcome these difficulties, with organoids “opened
up” into flat epithelial monolayers that provide unhindered
access to the luminal and basolateral compartments (Moon
et al., 2014). In addition, this culture configuration has the
potential to control the spatio-temporal delivery of biochemical
factors through porous materials mimicking the basement
membrane. When combined with 3D structures mimicking the
epithelial architecture, this strategy could guide epithelial cell
organization in an in vivo-like manner, leading to advanced
organotypic 3D models (Wang et al., 2017). This will be
aided by the continuing progress being made in microfluidics,
biomaterials, and microfabrication techniques toward advanced
3D models.

LAB-ON-A-CHIP DEVICES MIMICKING
EPITHELIAL TISSUES

Conventional approaches for differentiated epithelial cell culture
are based on Transwell R© systems (Rodriguez-Boulan et al., 2005)
where cells form polarized monolayers on porous membranes
creating independent apical and basolateral compartments, thus
mimicking some basic properties of in vivo epithelial tissues
(Figure 1). However, the highly dynamic in vivo environments
are not represented by these static approaches (Mammoto et al.,
2013). The organ-on-a-chip technology facilitates physiologically
more relevant conditions and provides cells with physical and
chemical stimuli by perfusingmedia in a laminar flow (Gayer and
Basson, 2009; Cimetta et al., 2010; Thuenauer and Rodriguez-
boulan, 2015). To promote cell polarization, organ-on-a-chip
devices (also called microphysiological systems) usually include
a porous membrane to separate two microfluidic channels.
Different cells can be co-cultured on the opposite sides of
this membrane, which provides a tissue-tissue interface with
independent access to the cell culture chambers (Figure 1).

Monitoring of the dynamic cellular responses can be achieved
by incorporating biosensors and electrodes into the microfluidic
device (Henry et al., 2017; Skardal et al., 2017), while its
optical transparency enables direct visualization by conventional
microscopy.

Several lab-on-a-chip devices, capable of representing the
majority of epithelial barriers in the human body, have been
designed, and kept alive and functional for several weeks. These
devices can range from simple micrometer-sized chambers that
simulate a specific tissue function to sophisticated “human-on-a-
chip” or multi-organ microfluidic frameworks that recapitulate
even complex tissue-tissue interactions (Rogal et al., 2017).

One of the pioneering systems capable of fully reproducing

the complex physiological functionality was the lung-on-a-chip
device (Huh et al., 2010). This chip contained two apposed

microchannels separated by a thin and flexible porous membrane
where pulmonary epithelial cells and capillary endothelial cells

were co-cultured. Cells were mechanically stimulated by the

cyclic strain of breathing movements. This lung-on-a-chip
system has been used for modeling respiratory diseases such as
chronic obstructive pulmonary disease (Benam et al., 2016) or
lung cancer (Hassell et al., 2017). Using a similar design, intestinal
peristaltic movements could be mimicked with a gut-on-a-chip
platform (Kim et al., 2012, 2015; Kim and Ingber, 2013). In this
case, intestinal cells were exposed to fluid flow and peristaltic
motion that induced villi formation and cell differentiation.
This gut-on-a-chip device, along with other intestinal chips
such as HuMiX, has been used to recapitulate the interplay
between intestinal microbes and the epithelium (Kim et al.,
2015; Shah et al., 2016). Innovative perfusable vascularized skin-
on-a-chip models (Wufuer et al., 2016; Mori et al., 2017) or
immune-competent models (Ramadan and Ting, 2016) have
been proposed, both aiming to create more physiologically
relevant skin equivalents for drug screening and diseasemodeling
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(Abaci et al., 2015; Alberti et al., 2017; van den Broek et al., 2017;
Sriram et al., 2018).

A unique advantage of the organ-on-a-chip technology is its
inherent ability to integratemultiple organ functions into a closed
microfluidic system, which facilitates a better recapitulation in
vitro of the human metabolism and physiology. For example,
the first-pass metabolism of oral drugs can be reproduced on
a gut-liver chip (Choe et al., 2017; Lee et al., 2017). “Multi-
organ-on-a-chip” devices have been developed that consist of
several interconnected chambers, each representing different
organs of the body. These sophisticated models aim to improve
predictive capabilities with regard to the spatial distribution and
temporal evolution of compounds, addressing issues such as
targeting, safety, and toxicity in a single device (Abaci et al., 2015;
Maschmeyer et al., 2015; Skardal et al., 2017).

Although organ-on-chip devices represent a huge leap
toward the generation of improved in vitro epithelia models,
challenges such as the functional scaling or the interaction
with stromal components remain (Ronaldson-Bouchard and
Vunjak-Novakovic, 2018). In addition, the epithelial basement
membrane is usually mimicked by a porous membrane that
neither possesses the physicochemical nor mechanical properties
of the native tissue matrix. Current developments try to address
these limitations by exploiting advances in biomaterials and
microfabrication techniques. As recent examples, full-thickness
skin-on-a-chip devices used dermal matrices to represent the
3D complexity of the skin (Schimek et al., 2018; Sriram et al.,
2018) and gut-on-a-chip designs included a porous scaffold
that mimicked the 3D villus architecture of the small intestine
(Costello et al., 2017; Shim et al., 2017). On the other hand,
the combination of microfluidics with organoids from human
induced pluripotent stem cells (iPSCs) or patient biopsies would
likely have major implications for personalized medicine, as
already exemplified by intestinal chips (Kasendra et al., 2018;
Workman et al., 2018).

ENGINEERED EPITHELIAL TISSUES AND
MICROTISSUES

Organoid technology has revealed the key role played by the
matrix in guiding a cell’s intrinsic self-organizing ability when
forming functional tissues. However, epithelial cells are cultured
on flat porous membranes of hard polymers on both Transwell R©

and lab-on-a-chip devices. Advances in soft biomaterials and
microfabrication techniques provide new alternatives to achieve
a better representation of the complex basement membrane in
native epithelial tissues (Abbott, 2003; Lutolf et al., 2009; Murphy
and Atala, 2014).

3D bioprinting is a relatively recent and versatile
manufacturing technique that builds tissues and microtissues
layer by layer using bioinks from cell-laden materials (Derby,
2012; Vijayavenkataraman et al., 2018). Bioprinted tissue
constructs that faithfully recapitulate the architecture of native
tissues such as skin and cornea epithelia can be fabricated in
a highly reproducible manner (He et al., 2018; Sorkio et al.,
2018). This approach can also be used to generate complex

tubular structures such as renal proximal tubules and trachea
implants (Homan et al., 2016; Bae et al., 2018). Despite its
advantages, 3D bioprinting is a complex procedure that still
faces many challenges such as improving cell viability and
density, decreasing printing times, and increasing the printed
tissue dimensions (Chang et al., 2011; Murphy and Atala, 2014).
Recent advances led to the development of new bioinks, e.g.,
cell-derived and decellularized extracellular matrices (Fitzpatrick
and McDevitt, 2015; Gopinathan and Noh, 2018) or spheroids
used as individual printed units to promote in vitro assembly
(Mironov et al., 2009; Moroni et al., 2018). Bioprinting has
also evolved into a 4D technique that aims at the fabrication of
time-evolving tissues by employing programmable biomaterials
(Qi et al., 2013).

Lithography-based microfabrication techniques, including
replicamolding and photolithography, have become the standard
in microelectronics to manufacture structures at cellular
and subcellular scales (Whitesides, 2003). Nowadays, their
application has been extended to include soft materials and
to mimic 3D geometries in epithelial tissues. For instance,
replica molding has been used to generate 3D microstructures
that mimic the villus protrusions of the small intestine on
poly(lactic-co-glycol acid) and collagen (Sung et al., 2011; Yu
et al., 2012; Wang et al., 2017). Drug permeability assays have
demonstrated the benefits of including the 3D tissue architecture
for better predictions of the permeability found in vivo (Yu
et al., 2012). However, replica molding of hydrogels involves
a sequence of molding and demolding steps that renders this
process not very amenable for mass production (Nelson et al.,
2006; Sung et al., 2011; Pan et al., 2013; Cerchiari et al.,
2015). In contrast, light-based polymerization approaches such as
mask-based photolithography and stereolithography (SLA) can
produce 3D microstructures on soft polymers in a fast, robust,
and moldless manner (Tsang et al., 2007; Moroni et al., 2018).
When combined with cells, the use of photoinitiator molecules
and UV light might compromise cell viability, which has led
to the development of new photoinitiators that are sensitive
to visible light. 3D microengineered tissues generated by these
techniques have been introduced into microfluidic devices or
Transwell R© inserts to be used as in vitro testing platforms
(Yu et al., 2012; Costello et al., 2017; García Castaño, 2017).
Recent publications also emphasized the potential of interfacing
light-based microfabrication techniques with organoids to create
enhanced organomimetic tissues (Schneeberger et al., 2017).

SUMMARY AND FUTURE PERSPECTIVES

New cell culture platforms that incorporate the unique and
complex 3D architectures of epithelial tissues promise in vitro
models with unprecedented tissue functionality. This review
has highlighted recent advances in biology, biomaterials, and
microfabrication techniques that could prove pivotal for the
creation of these organotypic models. Advances in stem cell
biology have led to the generation of organoids that recapitulate
the in vivo 3D tissue-structure and functionality, which in itself
represents a giant step toward potential applications of in vitro
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assays in the medical field (Rossi et al., 2018). For example,
forskolin-induced swelling in intestinal organoids is now used
as an in vitro test for assessing drug response in cystic fibrosis
patients (Dekkers et al., 2013). In addition, current developments
to establish organoids from human iPSCs in combination with
novel technologies for gene editing could pave the way to
personalized medicine applications. iPSC-derived organoids are
used to model human organ development and disease, to test
therapeutic compounds, and in cell transplantation (Shi et al.,
2017). Furthermore, the 3D tissue-like cell organization provided
by organoids can also be exploited to improve the functionality
of organ-on-a-chip devices. By increasing the complexity of
the cellular models, organ-on-a-chip approaches offer controlled
and relatively simple microenvironments of sufficient biological
complexity to gain greater insight into the biological mechanisms
that drive disease (Bhatia and Ingber, 2014). They possess a
great potential to transform drug discovery (Miranda et al.,
2018) by providing human cell-based models that are capable
of predicting drug delivery through epithelial barriers. In fact,
pharmaceutical and biotechnological companies have already
begun to incorporate these systems into their preclinical
assays in an effort to improve their predictive capabilities
(Ahadian et al., 2018; Cirit and Stokes, 2018). However, a
better standardization and more user-friendly setups with high-
throughput capabilities are needed for a broader acceptance by
both industry and regulatory authorities. In this context, the
development of new biofabrication techniques together with
advances in biological and biomaterial research should soon
allow for the development of engineered tissues andmicrotissues.
The advantages of these structures as in vitromodels of epithelial
tissues are 2-fold: (1) they would allow the integration of
non-epithelial elements that are essential for tissue function
such as the immune, mesenchymal, and vascular systems
(Kirkpatrick and Fuchs, 2011; Vrana et al., 2013; Battiston et al.,
2014), and (2) microtissues can be easily interfaced with well
plate culture formats that promise high-throughput capabilities

which should promote their acceptance in the pharmaceutical

and medical industries. Finally, although the key technologies
reviewed here seem capable of jointly generating a set of new
tools that are capable of a more accurate representation of
epithelia physiological functions, the targeted applications should
maintain a manageable level of complexity to provide real
and meaningful impact in the biomedical and biotechnological
arena.
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