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Osteoarthritis (OA) is an inflammatory condition still lacking effective treatments.

Mesenchymal stem/stromal cells (MSCs) have been successfully employed in pre-clinical

models aiming to resurface the degenerated cartilage. In early-phase clinical trials,

intra-articular (IA) administration of MSCs leads to pain reduction and cartilage protection

or healing. However, the consistent lack of engraftment indicates that the observed

effect is delivered through a “hit-and-run” mechanism, by a temporal release of paracrine

molecules. MSCs express a variety of chemokines and cytokines that aid in repair

of degraded tissue, restoration of normal tissue metabolism and, most importantly,

counteracting inflammation. Secretion of therapeutic factors is increased upon licensing

by inflammatory signals or apoptosis, induced by the host immune system. Trophic

effectors are released as soluble molecules or carried by extracellular vesicles (ECVs).

This review provides an overview of the functions and mechanisms of MSC-secreted

molecules found to be upregulated in models of OA, whether using in vitro or in vivo

models.

Keywords: osteoarthristis, mesenchymal stem cells, immunomodulation, secretome, paracrine action,

chondroprotection

MESENCHYMAL STROMAL CELLS

Since described by Friedenstein (Friedenstein et al., 1966), mesenchymal stem/stromal cells (MSCs)
have been the focus of research efforts to exploit their therapeutic potential. Due to their immune-
evasive nature, MSCs release immunomodulatory factors which allow them to escape rejection
mechanisms for sufficient time to exert their therapeutic action (Ankrum et al., 2014). MSCs
also express a variety of cytokine and chemokine receptors, such as CXCR4, CXCR7, and CCR7,
enabling migration to sites of injury and inflammation (Sasaki et al., 2008; Liu et al., 2012).

As a paradigm for tissue regeneration, MSCs have been used for many orthopedic conditions,
including osteoarthritis (OA). The first successful treatment used a caprine model of OA involving
anterior cruciate ligament transection combined with total medial meniscectomy (Murphy et al.,
2003). Direct intra-articular (IA) delivery of autologous bone marrow (BM)-MSCs, 6 weeks after
injury, led to meniscal repair and chondro-protection. The green fluorescent protein (GFP)-
transduced cells were detectable in the synovial capsule, fat pad and newly-formed meniscus, but
not in articular cartilage. This work led to the hypothesis that MSCs act via alternate mechanisms
to cell replacement i.e., trophic mechanisms to promote tissue regeneration through modulation
of the host environment and/or stimulation of endogenous progenitors (Jeong et al., 2013). The
study was subsequently validated in other pre-clinical models of OA (Barry and Murphy, 2013).
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In general, this phenomenon transfers to other disease scenarios,
as reviewed comprehensively by Prockop et al. (Prockop, 2009).
More recently, phase I trials have provided evidence that MSCs
also have clinical utility in modulating OA (Jo et al., 2014; Pers
et al., 2016); a number of unpublished Phase 2 trials are ongoing
assessing adipose-derived MSCs in OA including ADIPOA2
(http://adipoa2.eu/).

MSCs disappear from the target tissue quickly after
administration, but are still able to deliver chondroprotective
and immunomodulatory effects (ter Huurne et al., 2012). Since
their therapeutic efficacy seems to be independent of their
engraftment, it is now considered to be mainly paracrine-
mediated. The increasingly accepted model is that MSCs are
found dormant in vivo as pericytes (Crisan et al., 2008). These
participate in the development of tissues, including synovium,
and are involved in tissue repair during adult life (Roelofs et al.,
2017). Once activated in response to signals associated with the
injured environment, such as pro-inflammatory cytokines, a
phenomenon generally referred to as “licensing,” they secrete
factors, including chemokines and cytokines, to establish a
regenerative environment. Depending on the environment of
the specific disease, anti-apoptotic and anti-fibrotic factors may
limit the extent of damage to improve tissue healing (Ryan et al.,
2017). Tissue-intrinsic progenitors are prompted to proliferate
and differentiate, while chemoattractants recruit endogenous
progenitors to the site of injury. Concurrently, activated MSCs
are capable of modulating the immune response locally by
selectively inhibiting the proliferation of immune cells (Aggarwal
and Pittenger, 2005) (Figure 1). This paper will review the
evidence for these therapeutic effects in models relevant to OA,
either in vivo or in vitro (summarized in Table 1). It will be
critical in the future to validate those findings using freshly
isolated stromal cells.

THE MSC SECRETOME

MSCs display a rich secretory profile which is enhanced by
exposure to inflammatory signals. A proteomics approach

FIGURE 1 | Proposed mechanism of action for tissue repair by

endogenous MSCs.

identified 118 proteins differentially expressed by human
adipose-derived stem cells (ASCs) upon tumor necrosis factor
(TNF)-α stimulation (Lee et al., 2010). These included many
cytokines and chemokines [interleukin (IL)-6, 8; chemokine
(C-X-C motif) ligand or CXCL2, 5, 6, and 10 and monocyte
chemoattractant protein 1 (MCP1)], proteases and protease
inhibitors [matrix metalloproteinases (MMP)-1 and 2, tissue
inhibitors of metalloproteinases (TIMP)-1 and 2], extracellular
matrix (ECM) molecules and factors involved in immune
regulation and cell signaling.

Apoptosis
Chondrocyte apoptosis has been associated with degenerative
OA for many years (Aigner et al., 2004; Del Carlo and Loeser,
2008). Although there are no reports of direct anti-apoptotic
effects of MSCs in the context of OA, indirect evidence
suggests that exosomes obtained from human MSCs, and by
inference comprised of secreted factors, inhibited IL-1β-induced
apoptosis of ex vivo-cultured OA chondrocytes (Liu et al., 2018a).
Additionally, MSC-derived exosomes promoted chondrocyte
proliferation in a rat model of OA, by blocking miR-206 with
lncRNA-KLF3-AS1 (Liu et al., 2018b). Despite soluble factors
were not shown in models of OA, MSCs responded to two
different apoptotic cell lines in vitro by increased expression and
secretion of the anti-apoptotic hormone stanniocalcin (STC)-1
(Block et al., 2009). Future work looking at joint-associated MSC
anti-apoptotic effects is likely to identify direct mediators of the
process.

Fibrosis
Maumus et al. co-cultured autologous ASCs with chondrocytes
derived from OA patients in a transwell system (Maumus et al.,
2013). The authors observed marked decreases in expression
levels of hypertrophic and fibrotic markers MMP-13, alkaline
phosphatase, Runx2, collagens type I, III, VI and vimentin,

TABLE 1 | The MSC secretome and OA/cartilage protection.

Activity Factor References

Anti-apoptosis STC-1, Rehman et al., 2004; Block

et al., 2009

Anti-fibrosis bFGF, AMD, HGF Li et al., 2009; Suga et al., 2009;

Maumus et al., 2013

Tissue metabolism TIMP-1, TIMP-2 Lozito and Tuan, 2011

Chondrogenesis TSP2 Jeong et al., 2013, 2015

Immunosuppression PGE2 Aggarwal and Pittenger, 2005;

Sotiropoulou et al., 2006;

Martinet et al., 2009

Immunosuppression TSG-6 Mindrescu et al., 2000; Bárdos

et al., 2001; Lee et al., 2009

Anti-apoptosis ECVs Liu et al., 2018a,b

Immunosuppression ECVs Mokarizadeh et al., 2012; Budoni

et al., 2013; Zhang et al., 2014

Chondrogenesis ECVs Zhu et al., 2017

Chondroprotective/

anti-inflammatory effects

ECVs Cosenza et al., 2017
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as well as a 40% increase in TGF-β1 secretion. By using a
neutralizing antibody, HGF was identified as the main mediator
of the anti-fibrotic effect. This data is of particular relevance
as HGF concentration in synovial fluid has a direct correlation
with the severity of OA (Dankbar et al., 2007). MSCs also
inhibit fibrosis in vivo through bFGF (Suga et al., 2009) and
adrenomedullin (Li et al., 2009). In addition, a number of
studies proposed that in vivo-administered MSCs secreted TSG-
6 and indirectly prevented fibrosis by suppressing the early
inflammatory response to various diseases other than OA,
including myocardial infarction (Lee et al., 2009), peritonitis
(Choi et al., 2011), inflammation of the cornea (Oh et al., 2010),
and cornea allograft rejection (Oh et al., 2012).

Tissue Metabolism
Amongst other activities, MMPs break down ECM and are
regulated by specific inhibitors called TIMPs. In OA, the balance
between anabolic and catabolic factors is disrupted in favor of the
latter (Lohmander et al., 1993). MMP-2,-9, and -13 were detected
at higher levels in human OA cartilage compared to healthy
tissue (Jackson et al., 2014). Furthermore, decreased MMP-13
correlated with improved osteochondral repair in rats treated
with doxycycline (Lee H. et al., 2013) and MSCs constitutively
secrete high levels of TIMP-2 and -1, which inhibit MMP-
2 and MMP-9, respectively. Under pathological stress (IL-1β,
TNF-α, hypoxia) TIMP-1 secretion is upregulated to counteract
increased catabolic activity (Lozito and Tuan, 2011). In addition,
MMP inhibition is not specific; TIMP-1 can inhibit most
MMPs (Visse and Nagase, 2003), making MSCs an even more
versatile tool for restoring the metabolic balance of degenerating
cartilage.

Chondrogenesis
Matricellular proteins, secreted matrix proteins with regulatory
roles, bind to ECM and act as receptors for cell-surface
molecules, growth factors and MMPs (Bornstein et al., 2000).
Thrombospondin (TSP2) for example is a known regulator
of cartilage and bone differentiation and is secreted by MSCs
to induce proliferation via autocrine mechanisms (Hankenson
and Bornstein, 2002). TSP2, secreted by human umbilical cord
blood-derived (UCB)-MSCs treated with synovial fluid from
OA patients, induced differentiation of chondroprogenitor cells.
It promoted cartilage regeneration in a rabbit full-thickness
osteochondral-defect model (Jeong et al., 2013). TSP2 was found
to have an autocrine action on human UCB-MSCs, BM-MSCs
and ASCs, promoting cartilage differentiation and preventing
hypertrophy (Jeong et al., 2015). Although data is limited, there
is evidence that TSP2 is one of the main paracrine players in
MSC-mediated cartilage regeneration.

Immunosuppression
The role of inflammation in the establishment and maintenance
of OA is now widely accepted (Ayral et al., 2005) with synovial
membrane inflammation a hallmark of OA pathology (Goldring,
1999; Pelletier et al., 2001). Histological studies show that OA
patients have variable degrees of synovitis, with higher levels
of pro-inflammatory cytokines and infiltration of immune cells,

predominantly macrophages (Benito et al., 2005). Biological
markers of inflammation positively correlate with knee pain
(Baker et al., 2010; Scanzello et al., 2011) and clinical progression
of the disease (Krasnokutsky et al., 2011; Roemer et al.,
2011). Licensed MSCs secrete an array of anti-inflammatory
cytokines which can help re-establish an equilibrium in the
inflamed synovium: MSC-conditioned medium (CM) decreased
production of inflammatory mediators in OA joint explants (van
Buul et al., 2012).

Di Nicola et al. first assessed the potential for allogeneic MSC
rejection in a mixed lymphocyte reaction (MLR). Instead of
evoking an immune response, the cells suppressed proliferation
of T-cells (Di Nicola et al., 2002; Krampera et al., 2003). The
relevance of MSC-secreted factors in immunomodulation was
shown by the capacity of their supernatant to divert immune
cells from injured organs (Parekkadan et al., 2007). Currently,
MSCs are under evaluation in numerous clinical trials for many
inflammatory conditions (Trounson and McDonald, 2015).

One of the main effectors of MSC-mediated immune-
suppression is prostaglandin-E2 (PGE2). PGE2 is constitutively
secreted by MSCs and its production is dramatically enhanced
via stimulation by interferon (IFN)-γ, TNF-α (English et al.,
2007), or IL-1β (Chen et al., 2010). PGE2 negatively affects
the proliferation of T- (Martinet et al., 2009) and natural killer
(NK) cells (Sotiropoulou et al., 2006), causes an increase in
the pool of regulatory T (Treg) cells, stimulates macrophages
to produce IL-10 and prevents monocytes from differentiating
into dendritic cells (DCs) (Aggarwal and Pittenger, 2005). In
OA, PGE2 mediates ASC therapeutic effects and is a regulatory
checkpoint in immune-modulation. Manfredini et al. provided
evidence that the PGE2/COX2 pathway is responsible for the
induction of IL-10 and inhibition of TNFα and IL-6 to induce
an M2 switch in human synovial macrophages (Manferdini et al.,
2017).

Indoleamine 2,3-dioxygenase (IDO) catalyzes the breakdown
of tryptophan, causing suppression of T-cells. It is employed by
DCs to modulate immune responses (Mellor and Munn, 2004),
but can be secreted by MSCs upon IFN-γ stimulation (Krampera
et al., 2006). In a human MLR, IFN-γ-induced expression
of IDO in MSCs was responsible for suppression of T-cell
proliferation (Meisel et al., 2004). It also drives M2 polarization
in macrophages and induces a tolerogenic phenotype in DCs and
Tregs (Ge et al., 2010; Sica and Mantovani, 2012). Its’ importance
in MSC-mediated immunosuppression has been validated using
specific inhibitors and knockout MSCs (Krampera et al., 2006;
English et al., 2007; Spaggiari et al., 2008).

TNF-inducible gene (TSG)-6 is known for its multiple and
diverse anti-inflammatory mechanisms (Wisniewski and Vilcek,
2004). Produced in response to inflammatory signals, it has a
pivotal role in MSC-mediated immunosuppression (Lee et al.,
2009). On the other hand, it was identified as one of the most
significantly up-regulated genes in human OA articular cartilage
(Chou et al., 2015) and proposed as a disease biomarker, as its
activity in synovial fluid predicted OA progression (Wisniewski
et al., 2014). TSG-6 has a complex role in cartilage pathology, as
it is involved in matrix assembly during synthesis of new tissue
(Chou et al., 2018).
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Other molecules have been shown to mediate MSC
immunosuppression, such as C-C motif ligand 2 (CCL2) (Rafei
et al., 2009), galectins (Sioud et al., 2011), IL-6 (Scheller et al.,
2011), and TGF-β (Di Nicola et al., 2002). None of these factors
has an exclusive role; their functions may be redundant and/or
synergistic. To fully express an anti-inflammatory phenotype,
MSCs need to be licensed. This can be achieved in response
to IFN-γ alone (Krampera et al., 2006) or in combination
with TNF-α, IL-1α, or IL-1β (Ren et al., 2008). Additionally,
IL-1β, granulocyte-colony stimulating factor (G-CSF), stromal
cell-derived factor 1 (SDF1) and stem cell factor (SCF) induced
differential expression of numerous cytokines in MSCs after
only 2 h of treatment (Czekanska et al., 2014). Licensed MSCs
have an improved regenerative capacity in pre-clinical models,
with better homing potential (Duijvestein et al., 2011) and
recruitment of host immune cells (Lee S. et al., 2013).

The Role of Apoptotic MSCs
Once administered, MSCs can undergo biological changes more
radical than differentiation or licensing. Toupet et al. observed
that most MSCs disappear 10 days post-IA injection in a murine
model of OA, with similar results obtained with syngeneic and
xenogenic human ASCs (Toupet et al., 2013, 2015). Despite death
and clearance of administered cells, significant therapeutic effects
are observed in response to IA injection of mouse ASCs (ter
Huurne et al., 2012; Schelbergen et al., 2014).

Apoptotic cells communicate with immune cells through two
different mechanisms: direct effects associated with apoptotic
cells themselves and indirect effects triggered in phagocytizing
cells (Figure 2). Direct effects include secretion of IL-10 and
TGF-β, generating an immunosuppressive microenvironment
(Chen et al., 2001; Korns et al., 2011). This milieu inhibits
lipopolysaccharide (LPS)-stimulated macrophages from
secreting IL-1β and TNF-α (McDonald et al., 1999). Indirect
effects are associated with elimination of apoptotic cells
by phagocytes, resulting in reduced responsiveness to LPS
(Perruche et al., 2009) and a switch to an anti-inflammatory
profile (Fadok et al., 1998). Immune cells that internalize
apoptotic cells also fail to induce CD4+ T helper cells, leaving the
effector lymphocytes in a “helpless” state (Griffith et al., 2007)
and induce clonal expansion of Foxp3+ Treg cells (Xia et al.,
2007; Perruche et al., 2008).

Using a murine model of graft-vs.-host disease (GvHD),
researchers demonstrated that infused MSC apoptosis is induced
by recipient T cells through cell-to-cell contact with release of
perforin- and granzyme B-containing granules (Galleu et al.,
2017). Phagocytes were also shown to have a key role producing
IDO upon engulfing apoptotic MSCs. When these components
were knocked down or inhibited, the therapeutic efficacy of
MSCs was lost. Most importantly, infusion of MSCs rendered
apoptotic ex vivo restored therapeutic effects. Interestingly,
patient responsiveness to MSCs correlated with their cytotoxic
capacity. These findings provide evidence that apoptosis is one of
the driving mechanism of MSC-mediated immunosuppression.

TGF-β-mediated tolerance induction is the most commonly
reported mechanism in pre-clinical studies of extracorporeal
photopheresis, the administration of leukocytes rendered

FIGURE 2 | Representation of the immunomodulatory effects of apoptotic

MSCs.

apoptotic ex vivo. A strong immunomodulatory effect was
observed in inflammatory arthritis (Michlewska et al., 2009;
Perruche et al., 2009) and photopheresis is an approved therapy
for cutaneous T cell lymphoma and GvHD (Weitz et al., 2015).
Apoptosis may also represent an important component of MSC
therapy in OA. Unpublished data in our laboratory shows as low
as 1.6%MSC engraftment 3 days after IA administration of GFP+

MSCs in murine OA knees. Fluorescent cells were not detected in
any adjacent tissue, including local lymph nodes. This reinforces
the hypothesis that implanted cells could undergo apoptosis and
modulate inflammation with subsequent protection from OA
development. Whereas, apoptosis post-infusion is a transient
event, Galleu et al. showed that the subsequent response might
represent a reprogramming of certain aspects the host immune
system (Galleu et al., 2017).

LOOKING FURTHER: EXTRA-CELLULAR
VESICLES

The paracrine action of MSCs is not limited to soluble
factors. MSCs, like many other cells, have been shown to
produce extracellular vesicles (ECVs) (Lai et al., 2010), small
structures enclosed in a phospholipid bilayer, carrying many
cytoplasmic components. ECVs are involved in intercellular
communication through horizontal transfer of mRNA and
protein and are grouped based on size, with different composition
and biogenesis. Exosomes range between 40 and 100 nm
in diameter. They are constitutively released from the late
endosomal compartment by fusion of multivesicular bodies with
the plasma membrane, but their production can increase upon
cytoskeleton activation. Exosomes are characterized by proteins
required for their formation and transport, such as tetraspanins,
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Alix and tumor susceptibility gene 101. Microvesicles are a
heterogeneous population of ECVs between 100 and 1,000 nm
generated via direct budding upon activation by a stress signal,
which alters the phospholipid balance of the membrane, forming
lipid rafts. Microvesicles are characterized by membrane markers
specific to the parent cell type. In pre-clinical models, ECVs
were observed to have anti-apoptotic (Bruno et al., 2012), anti-
fibrotic (Li et al., 2013), pro-angiogenic (Bian et al., 2014), and
anti-inflammatory effects (Lee et al., 2012). MSC-derived ECVs
induce generation of Tregs, inhibit proliferation of lymphocytes
(Mokarizadeh et al., 2012), macrophages (Zhang et al., 2014),
and B cells (Budoni et al., 2013). However, ECVs alone may
fail to deliver the same immunomodulatory effects of parental
cells, with cell-cell contact still required to modulate lymphocyte
proliferation and function (Conforti et al., 2014).

MSC-derived ECVs produced promising results in rat models
of osteoporosis (Qi et al., 2016) and osteochondral defect repair
(Zhang et al., 2016).More recently,MSC-ECVs were tested inOA
models. Exosomes derived from synovium MSCs and induced
pluripotent stem cells attenuated disease scores in a collagenase-
induced OA (CIOA) mouse model, by promoting chondrocyte
proliferation and migration (Zhu et al., 2017). Notably, exosomes
derived from synovial MSCs overexpressing miR-140-5p induced
proliferation of chondrocytes in vitro. When administered in a
rat model of OA disease progression and cartilage degeneration
were significantly delayed (Tao et al., 2017). Cosenza et al.
delivered MSC-ECVs in a CIOA model and reported reduced
joint damage (Cosenza et al., 2017). The use of MSC-ECVs as
a therapy for OA would bring many advantages compared to
cell-derived products, avoiding concerns of possible malignant
transformations. However, issuesmay arise with ECV production
as they may need to be specifically tailored for the indication
to be treated. Additionally, their manufacture is not as yet
standardized for clinical production, as is the case for cellular
products.

CONCLUSIONS

Reports summarized here suggest significant potential for the
use of MSCs or MSC-CM in OA. In vitro, co-culture of
OA chondrocytes with ASC-CM resulted in NF-κB-mediated
cytoprotective effects via enhanced production of collagen
II, inhibition of IL-6, TNF and various MMPs, as well as
upregulation of IL-10 (Platas et al., 2013). Similarly, using OA
cartilage explants, MSC-CM was shown to interfere with the
NF-κB pathway to mediate anti-inflammatory and anti-catabolic
effects (van Buul et al., 2012). MSCs have already proved to be
a valuable tool for many conditions, including acute GvHD (Le
Blanc et al., 2008) and multiple sclerosis (Karussis et al., 2008).

Phase I clinical trials have demonstrated the safety of direct
IA administration of MSCs in OA patients (Centeno et al., 2008;
Davatchi et al., 2011). In 2012, pain reduction was reported up to
6 months after injection of 20–24 million MSCs, with increased
cartilage thickness and reduction of edematous subchondral
patches in three out of six patients (Emadedin et al., 2012).
Jo et al. injected higher doses of ASCs (up to 10 × 108),
obtaining significantly improvedWOMAC score with a clinically
meaningful pain reduction and, most importantly, regenerated
hyaline articular cartilage in the most severely degenerated site in
the knee (Jo et al., 2014). In the ADIPOA trial, a single dose of
2 million ASCs significantly improved pain levels and function
(Pers et al., 2016).

In summary,MSCsmay act through a hit-and-runmechanism
rather than stably engrafting in the tissue. Autopsies of patients
that received MSC IV infusions for different conditions within
a year before death confirm that donor MSCs are not normally
retained in the host tissue. Detection of donor DNA did not
correlate with the degree of HLA mismatch or the clinical
response, suggesting that clearance is not immune-mediated (von
Bahr et al., 2012). However, the role of cell death in mediating the
therapeutic effects of MSCs needs further investigation and the
phenotype and activity of cells that survive even for a short time
at the site of implantation elucidated.
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