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High-resolution microscopy images of tissue specimens provide detailed information

about the morphology of normal and diseased tissue. Image analysis of tissue

morphology can help cancer researchers develop a better understanding of cancer

biology. Segmentation of nuclei and classification of tissue images are two common

tasks in tissue image analysis. Development of accurate and efficient algorithms for these

tasks is a challenging problem because of the complexity of tissue morphology and

tumor heterogeneity. In this paper we present two computer algorithms; one designed

for segmentation of nuclei and the other for classification of whole slide tissue images.

The segmentation algorithm implements a multiscale deep residual aggregation network

to accurately segment nuclear material and then separate clumped nuclei into individual

nuclei. The classification algorithm initially carries out patch-level classification via a deep

learning method, then patch-level statistical and morphological features are used as

input to a random forest regression model for whole slide image classification. The

segmentation and classification algorithms were evaluated in the MICCAI 2017 Digital

Pathology challenge. The segmentation algorithm achieved an accuracy score of 0.78.

The classification algorithm achieved an accuracy score of 0.81. These scores were the

highest in the challenge.

Keywords: digital pathology, tissue images, image analysis, segmentation, classification

INTRODUCTION

Cancer causes changes in tissue at the sub-cellular scale. Pathologists examine a tissue specimen
under a powerful microscope to look for abnormalities which indicate cancer. This manual
process has traditionally been the de facto standard for diagnosis and grading of cancer tumors.
While it continues to be widely applied in clinical settings, manual examination of tissue is a
subjective, qualitative analysis and is not scalable to translational and clinical research studies
involving hundreds or thousands of tissue specimens. A quantitative analysis of normal and tumor
tissue, on the other hand, can provide novel insights into observed and latent sub-cellular tissue
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characteristics and can lead to a better understanding of
mechanisms underlying cancer onset and progression
(Madabhushi, 2009; Chennubhotla et al., 2017;
Cooper et al., 2018).

Technology for whole slide tissue imaging has advanced
significantly over the past 20 years. We refer to digital images of
tissue specimens that are stained and fixated on a glass slide as
whole slide tissue images (WSIs). Highly detailed images of tissue,
ranging from 20,000 × 20,000 pixels to over 100,000 × 100,000
pixels in resolution, can be captured rapidly with the state-
of-the-art tissue image scanners. Improvements in storage and
computational technology also have made it possible to store and
analyze WSIs. These advances provide significant opportunities
for quantitative analysis of tissue morphology. Quantitative
analyses not only allow researchers to assemble a more detailed
description of tumor structure and heterogeneity but also enable
studies with large numbers of tissue samples. As the capacity
to rapidly generate large quantities of WSI data has become
feasible and is more widely deployed, there is an increasing need
for reliable and efficient (semi-)automated computer methods to
complement the traditional manual examination of tissue.

The two most common tasks in whole slide tissue image
analysis are the segmentation of microscopic structures, like
nuclei and cells, in tumor and non-tumor regions and the
classification of image regions and whole images. Computerized
detection and segmentation of nuclei is one of the core operations
in histopathology image analysis. This operation is crucial to
extracting, mining, and interpreting sub-cellular morphologic
information from digital slide images. Cancer nuclei differ from
other nuclei in many ways and influence tissue in a variety
of ways. Accurate quantitative characterizations of the shape,
size, and texture properties of nuclei are key components of
the study of the tumor systems biology and the complex
patterns of interaction between tumor cells and other cells. Image
classification, carried out with or without segmentation, assigns
a class label to an image region or an image. It is a key step in
computing a categorization via imaging features of patients into
groups for cohort selection and correlation analysis. Methods for
segmentation and classification have been proposed by several
research projects (Gurcan et al., 2009; Ghaznavi et al., 2013; Xie
et al., 2015; Xu et al., 2015; Manivannan et al., 2016; Peikari
and Martel, 2016; Sirinukunwattana et al., 2016; Wang et al.,
2016; Xing and Yang, 2016; Al-Milaji et al., 2017; Chen et al.,
2017; Zheng et al., 2017; Graham and Rajpoot, 2018; Senaras
and Gurcan, 2018). Xing and Yang (2016) provide a good review
of segmentation algorithms for histopathology images. A CNN
algorithm was developed by Zheng et al. (2017) to analyze
histopathology images for extraction and characterizations of
distribution of nuclei in images of tissue specimens. A method
based on ensembles of support vector machines for detection and
classification of cellular patterns in tissue images was proposed by
Manivannan et al. (2016). Al-Milaji et al. developed a CNN-based
approach to classify tissue regions into stromal and epithelial
in images of Hematoxylin and Eosin (H&E) stained tissues (Al-
Milaji et al., 2017). Xu et al. (2015) used a pre-trained CNNmodel
to extract features on patches. These features are aggregated
to classify whole slide tissue images. A method that learns

class-specific dictionaries for classification of histopathology
images was proposed by Vu et al. (2016). Kahya et al. (2017)
employed support vector machines for classification of breast
cancer histopathology images. Their method employs sparse
support vector machines and Wilcoxon rank sum test to assign
and assess weights of imaging features. Peikari et al. (2018)
devised an approach in which clustering is executed on input data
to detect the structure of the data space. This is followed by a
semi-supervised learning method to carry out classification using
clustering information. Peikari andMartel (2016) propose a color
transformation step that maps the Red-Green-Blue color space
by computing eigenvectors of the RGB space. The color mapped
image is then used in cell segmentation. Chen et al. (2017)
propose a deep learning network that implements a multi-task
learning framework through multi-level convolutional networks
for detection and segmentation of objects in tissue images.

Despite a large body of research work on image classification
and segmentation, the process of extracting, mining, and
interpreting information from digital slide images remains a
difficult task (Xie et al., 2016; Xing et al., 2016; Chennubhotla
et al., 2017; Senaras and Gurcan, 2018). There are a number
of challenges that segmentation and classification algorithms

have to address. First, the morphology of tumor and normal
tissue varies across tissue specimens—both across cancer types
as well as across tissue specimens within a cancer type. Even

a single tissue specimen will contain a variety of nuclei and
other structures. Algorithms have to take into account tissue

heterogeneity and learn and dynamically adapt to variations in

tissue morphology across tissue specimens. It is not uncommon
that an algorithm using fixed input parameters will do well

for an image but poorly for another one. Second, nuclei in
a tissue image touch or overlap each other. This is both a
result of biological processes and an artifact of image capture. A
tissue slide will have some depth, however small it is. Scanning
a tissue specimen through a digitizing light microscope may
inadvertently capture nuclei in different focal planes. Clumped
nuclei make the segmentation process difficult. Third, whole slide
tissue images are very high-resolution images and will not fit in
main and GPU memory on most machines. Thus, it may not be
feasible for a classification algorithm to work on an entire image
as a whole. Algorithms have to be designed to work on at multiple
resolutions or image tiles.

In this paper we present and experimentally evaluate two
novel algorithms, one devised for segmentation of nuclei and the
other developed for classification of whole slide tissue images:

• The segmentation algorithm proposes a multiscale deep
residual aggregation network for accurate segmentation of
nuclei and separation of clumped nuclei. Our method consists
of three main steps. It first detects nuclear blobs and
boundaries via a group of CNNs. It then applies a watershed
algorithm on the results from the first step to perform an
initial separation of clumped nuclei. The last step carries
out a refined segmentation of separate nuclei from the
second step. The proposed method employs a multi-scale
approach in order to improve the detection and segmentation
performance, because the sizes of nuclei vary across tissue
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specimens and within a tissue specimen. An evaluation of
the segmentation algorithm using a set of image tiles from
glioblastoma multiforme (GBM), lower grade glioma (LGG),
head and neck squamous cell carcinoma (HNSCC), and
non-small cell lung cancer (NSCLC) cases showed that the
algorithm was able to achieve a segmentation accuracy of 0.78.
The algorithm is not only able to accurately segment nuclear
material but also separate touching and overlapped nuclei into
individual objects.
• The classification algorithm proposes a two-part automated

method to address the challenge of classifying non-small cell
lung cancer (NSCLC) histology images. This method first
classifies all input patches from an unseen WSI as NSCLC
adeno (LUAD) or NSCLC squamous cell (LUSC) or non-
diagnostic (ND) and obtains the corresponding probability
maps for each class. Next, it extracts a collection of statistical
and morphological features from the LUAD and LUSC
probability maps as input into a random forest regression
model to classify each WSI. This method is the first 3-
class network that aims to classify each WSI into diagnostic
and non-diagnostic areas. The experimental results show an
accuracy of 0.81.

These two algorithms achieved the highest scores in the
Computational Precision Medicine digital pathology challenge
organized at the 20th International Conference onMedical Image
Computing and Computer Assisted Intervention 2017 (MICCAI
2017), Quebec City, Canada. This challenge was organized by
some of the co-authors of this manuscript (Keyvan Farahani,
Tahsin Kurc, Jayashree Kalpathy-Cramer, Joel Saltz with expert
pathologist support provided by Tianhao Zhao and Rajarsi Gupta
in preparation of challenge datasets) to provide a platform for
evaluation of classification and segmentation algorithms and is
part of a series of annual digital pathology challenges organized
since 2014. The 2017 challenge targeted tissue images obtained
from patients with non-small cell lung cancer (NSCLC), head
and neck squamous cell carcinoma (HNSCC), glioblastoma
multiforme (GBM), and lower grade glioma (LGG) tumors.
These cancer types are complex and deadly diseases accounting
for a large number of diagnostic patient deaths in spite of
application of various treatment strategies. In addition to
methodology contributions presented in this paper, we will
make the datasets used in the MICCAI 2017 Digital Pathology
challenge publicly available for other researchers to use.

The rest of the manuscript is organized as follows. In section
Materials And Methods we introduce the nucleus segmentation
algorithm and the classification algorithm. We present the
experimental evaluation of the algorithms in section Results.
We describe the MICCAI 2017 Digital Pathology challenge and
the challenge datasets in the same section. We conclude in
section Discussion.

MATERIALS AND METHODS

Segmentation of Nuclei by a Deep
Learning Method
We developed an approach of convolutional neural networks
(CNNs) to precisely segment nuclei. The method is composed

of three major steps: (1) nuclei blob and boundary detection
via CNNs, (2) separation of touching (or overlapping) nuclei
by combining the nuclei blob and boundary detection results
through a watershed algorithm, and (3) final segmentation of
individual nuclei. The entire workflow is shown in Figure 1.

Two CNNs are trained to perform the initial nuclei blob
and boundary detection. These CNNs consist of two consecutive
processing paths—contracting path and expanding path—and
are aimed at obtaining all the nuclei pixels and nuclei boundary
pixels within the tissue image, generating nuclei blob, and border
masks, respectively. Provided with the blob and border masks,
the initial nuclei segmentation is performed in two stages: (1)
removal of the identified nuclei boundaries and (2) separation
of the remaining clumped nuclei. In order to remove nuclei
boundaries, we simply subtract the border mask from the blob
mask after dilating the border mask with a kernel of size 3× 3. A
watershed algorithm is then applied to identify individual nuclei
cores. Subsequently, each of the removed boundary pixels are
assigned to its closest nuclei core, resulting in the segmentation
of individual nuclei. Meanwhile, the size of each nuclei blob is
examined to eliminate artifacts (>13 µm2).

Network Architecture
The proposed deep residual aggregation network (DRAN) is
illustrated in Figure 2. It follows the renowned paradigm of two
consecutive processing paths: contracting path (down-sampling
the input) and expanding path (up-sampling the output of
contracting path), such as in U-Net (Ronneberger et al., 2015),
SegNet (Badrinarayanan et al., 2017), FCN (Long et al., 2015),
and Hypercolumns (Hariharan et al., 2015), with several major
and minor modifications.

Contracting Path
The contracting path can be seen as a feature extraction step,
recognizing the approximate position of the targeted objects,
and encoding their local characteristics. For this purpose, we
utilize pre-activated ResNet50 (He et al., 2016a). Unlike the
original ResNet50 (He et al., 2016b) which uses the layout of
convolution—batch normalization—rectified linear unit (ReLU)
for residual units, the pre-activation architecture instead adopts
the layout of batch normalization—ReLU—convolution and
facilitates the direct propagation of the input via the shortcut
path. Several modifications are made to the pre-activated
ResNet50; the first 7 × 7 convolution is performed with a stride
1 and no-padding. The max pooling, following the first 7 × 7
convolution, has been removed.

Expanding Path
The expanding path comprises four processing (or decoding)
layers. The first layer receives the output of the last layer
of the contracting path and performs transpose convolution
and up-sampling. The second, third, and fourth layers receive
two inputs—one from the preceding layer and the other from
the contracting path. The two inputs are added together and
go through a decoder and resizing unit. Unlike U-Net or
DCAN (Chen et al., 2017), the resizing unit simply doubles
the size of the input with the nearest neighbor interpolation,
which is computationally inexpensive. Moreover, instead of
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FIGURE 1 | Overview of the nuclei segmentation procedure. DRANBL and DRANBD are the models for nuclei blob detection and boundary detection, respectively.

FIGURE 2 | Architecture of a deep residual aggregation network (DRAN) for

nuclei segmentation. Modified pre-activated ResNet50 is used for the

contracting path.

using concatenation as in Ronneberger et al. (2015), adopting
addition operators reduces memory usage without substantially
losing the learning capability of the network. The decoder is

TABLE 1 | Details of three decoders.

Decoder3 Decoder2 Decoder1









5x5, 1024,

3x3, 1024, C=256

1x1, 512,

















5x5, 512,

3x3, 512, C=128

1x1, 256,

















5x5, 256,

3x3, 256, C=64

1x1, 128,









C is the number of paths (or groups). [5 × 5, 1,024] denotes a kernel size of 5 × 5 and

1,024 channels.

a primary processing unit that plays a key role in interpreting
information from differing levels of abstraction and producing
finer segmentation maps in the expanding path. It performs
a series of convolution operations by employing multipath
architecture (Xie et al., 2017), where the input and output
channels are divided into a number of disjoint groups (or paths),
and each separately performs convolution. All the convolution
operations in the decoder use no padding and a stride 1. Due to
the convolution with no padding, the size of the segmentation
map becomes smaller than that of an input image. Three decoders
are utilized in our network. They share the same layout, but with
differing number of channels and paths. The details are provided
in Table 1.

Multiscale Aggregation
The sizes of nuclei substantially vary among tissue samples,
even within a single specimen. To better characterize nuclei
and improve segmentation performance, we adopt a multiscale
approach. The tissue specimen images are resized by a factor of
2 and 0.5. The resized images are separately fed into DRANs.
Hence, three DRANs are, in total, trained, and prepared: one at
the original scale (x1.0) and the other two are at x2 and x0.5
scales. The last softmax layer of each DRAN is removed, and
the output of decoder1 is aggregated through another decoder
(decoder4), generating the final segmentation map at the original
scale. We note that decoder4 uses padding convolution. The
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FIGURE 3 | Multiscale Deep Residual Network (MDRAN) architecture.

MDRAN composes of 3 DRANs at 3 scales (x0.5, x1.0, x2.0) and a decoder

(in dash rectangle), aggregating 3 scales together and generating a

segmentation map at x1.0 scale. In the decoder, the convolution block [128, 5

× 5, 256] denotes [128 input channels, 5 × 5 kernel, 256 output channels].

details of the multiscale architecture are illustrated in Figure 3.
This network is called as multiscale deep residual aggregation
network (MDRAN).

Classification of Whole Slide Images by a
Two-Part Automated Method
In recent years, there have been a number of published methods
for automated NSCLC classification. Yu et al. (2016) extracted
a range of quantitative image features from tissue regions and
used an array of classical machine techniques to classify each
WSI. Although hand crafted approaches perform well, there
is a growing trend toward deep learning approaches, where
networks are capable of learning a strong feature representation.
As a result of this strong feature representation, recent deep
networks (Simonyan and Zisserman, 2014; Szegedy et al., 2015;
He et al., 2016a; Huang et al., 2017) have achieved remarkable
accuracy in large-scale image recognition tasks (Deng et al.,
2009). Most WSI classification methods use a patch-based
approach due to the computational difficulty in processing
multi-gigapixel images. Coudray et al. (2018) classified NSCLC
WSIs using deep learning on a patch-by-patch basis, but also
predicted the ten most commonly mutated genes. For lung
cancer classification, the authors used an Inception v3 network
architecture to classify input patches into LUAD, LUSC, and
normal. They assumed that all patches within each WSI had

the same label and therefore did not differentiate between
diagnostic and non-diagnostic regions. This method may result
in a large number of false positives in non-diagnostic regions
and training may take a long time to converge. Hou et al. (2016)
trained a patch-level classifier to classify glioma and NSCLC
WSIs into different cancer types. This was done by aggregating
discriminative patch-level predictions from a deep network using
either a multi-class logistic regression model or support vector
machine. The selection of discriminative patches was done in a
weakly supervised manner, where an expectation- maximization
approach was used to iteratively select patches. These patches
were then fed into a conventional two-class CNN to classify input
patches as LUAD or LUSC. The authors of this method counter
the problem of differentiating diagnostic and non-diagnostic
regions by only considering discriminative patches. Although
successful, this technique would likely fail if presented with a
small unrepresentative dataset.

As a result of the above shortcomings, we present a method
for non-small cell lung cancer classification, that primarily
focuses on the diagnostic areas within the image for determining
the cancer type. In section Network Architecture, we describe
the deep learning framework for patch-based classification. In
section Extraction of Statistical and Morphological Features and
Random Forest Regression Model we describe the random forest
regression model for classifying a whole slide image as LUAD or
LUSC. A high-level overview of the classification framework can
be viewed in Figure 4.

Network Architecture
Inspired by the success of ResNet (He et al., 2016b) in image-
recognition tasks (Huang et al., 2017), we implemented a deep
neural network with residual blocks at its core to classify NSCLC
input patches. This network architecture is a variant of ResNet50,
as described by He et al. (2016b), but we use a 3 × 3 kernel
as opposed to a 7 × 7 kernel during the first convolution and
reduce the number of parameters throughout the network. Using
a 3 × 3 kernel is important in this domain because a smaller
receptive field is needed to locate small features that are common
in histology images. Reducing the number of parameters allows
the network to be more generalized and reduces the possibility
of over-fitting. In order to reduce the number of parameters, we
modified ResNet50 (He et al., 2016b) by reducing the number of
residual blocks throughout the network so that we had 32 layers
as opposed to 50. Due to the high variability between images, and
therefore between the training and validation set, consideration
for preventing over-fitting is crucial. Figure 5 gives an overview
of the network architecture.

Once training was complete, we selected the optimal epoch
corresponding to the greatest average validation accuracy and
processed patches from each test WSI. This resulted in three
probability maps; one for each class.

Extraction of Statistical and Morphological Features
For classifying each WSI as either lung adenocarcinoma or
lung squamous cell carcinoma, we extracted features from
both the LUAD and LUSC probability maps. We explored two
post processing techniques: max voting and a random forest
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FIGURE 4 | Overview of the NSCLC classification framework. (A) Workflow for training the neural network to classify input patches as either non-diagnostic (ND), lung

adenocarcinoma (LUAD), or lung squamous cell carcinoma (LUSC). (B) Workflow for processing the WSIs within the test set to obtain probability maps for each class.

(C) Workflow for the random forest regression model. Features are extracted from LUAD and LUSC probability maps and then fed as input into the random forest

model. SN stands for stain normalization by method of Reinhard et al. (2001).

FIGURE 5 | The deep convolutional neural network. (A) Network architecture, (B) residual unit. Within the residual block, ⊕ refers to the summation operator. (C) Key

highlighting each component within the workflow. Note, the number within each convolutional operator denotes the output depth. Above each residual block we

denote how many residual units are used.

regression model. Max voting simply assigns the class of the
WSI to be class with the largest number of positive patches
in its corresponding probability map. Therefore, max voting
only requires the positive patch count for both the LUAD and
LUSC probability maps in order to make a classification. For

the random forest regression model, we extracted 50 statistical
and morphological features from both the LUAD and LUSC
training probability maps and then selected the top 25 features
based on class separability. We gained the training probability
maps by processing each training WSI with a late epoch. This
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ensured that the network had over-fit to the training data and
gave a good segmentation of LUAD and LUSC diagnostic regions.
In other words, using this method allowed us to transition
from a non-exhaustive to an exhaustive labeled probability map.
Once the model was trained with these features, they were
then input as features into the random forest regression model.
Statistical features that were extracted included: mean, median,
and variance of the probability maps. We also calculated the ratio
between the LUAD and LUSC probability maps. Morphological
features that were extracted included the size of the top five
connected components at different thresholds.

Random Forest Regression Model
An ensemble method is a collection of classifiers that are
combined together to give improved results. An example of such
an ensemble method is a random forest, where multiple decision
trees are combined to yield a greater classification accuracy.
Decision trees continuously split the input data, according to a
certain parameter until a criterion is met. Specifically, a random
forest regression model fits a number of decision trees on various
sub- samples of the data and then calculates the mean output
of all decision trees. We optimized our random forest model by
selecting an ensemble of 10 bagged trees, randomly selecting one
third of variables for each decision split and setting the minimum
leaf size as 5. We finally selected a threshold value to convert the
output of the random forest regression model into a binary value,
indicating whether the WSI was LUAD or LUSC.

RESULTS

Digital Pathology Challenge and Datasets
We organized the MICCAI 2017 digital pathology challenge to
provide a venue for comparing algorithms using a common,
curated set of datasets and help in advancing algorithm
development in digital pathology. The 2017 challenge consisted
of two sub-challenges; segmentation of nuclei in tissue images
and the classification of whole slide tissue images (WSIs).
It used tissue images obtained from patients with non-small
cell lung cancer (NSCLC), head and neck squamous cell
carcinoma (HNSCC), glioblastoma multiforme (GBM), and
lower grade glioma (LGG) tumors. These cancer types are
complex and deadly diseases accounting for a large number
of diagnostic patient deaths in spite of application of various
treatment strategies.

Segmentation of Nuclei in Images
In this sub-challenge, challenge participants were asked to
apply automated algorithms to detect and segment all of the
nuclei in a set of tissue images. The tissue image dataset
consisted of image tiles extracted from whole slide tissue images.
Image tiles were used instead of whole slide tissue images
because of the significant time and resource cost of manually
and accurately segmented nuclei a WSI. In our experience, a
WSI may have hundreds of thousands to millions of nuclei.
It would be infeasible to generate a ground truth dataset
from even a single WSI, let alone from tens of WSIs. In
addition, processing aWSI for nucleus segmentationmay require
significant computing power. Using tiles instead of WSIs in

the challenge reduced computational and memory requirements,
as the primary objective of the challenge was to evaluate the
accuracy performance of an algorithm.

This sub-challenge used images from The Cancer Genome
Atlas (TCGA) repository (The Cancer Genome Atlas (TCGA),
2018). The image tiles for the training and test sets were selected
from a set of GBM, LGG, HNSCC, and NSCLC whole slide
tissue images by Pathologists and extracted using Aperio’s
ImageScope software. The training set and the test set each
consisted of 32 image tiles with 8 tiles from each cancer type.
We recruited a group of students to manually segment all
the nuclei in the image tiles. Each tile was segmented by
multiple students using a desktop software called iPhotoDraw
(http://iphotodraw.com). The student segmentations were
reviewed by Pathologists in review sessions with the students.
In the review sessions, the manual segmentations were
refined, and a consensus segmentation was generated for each
image tile. Then labeled masks were generated to represent
manual segmentations. A labeled mask represents each
segmented nucleus in an image tile with a different id. All
the pixels that are part of the same nucleus are assigned the
same id.

The score of a segmentation output was computed using
the DICE coefficient (DICE_1) (Dice, 1945) and a variant
of the DICE coefficient which we implemented and called
“Ensemble Dice” (DICE_2, see Algorithm 1). The DICE
coefficientmeasures overlap between ground truth and algorithm
segmentation output but does not take into splits and merges.
A “Split” is the case in which the human segments a region in a
single nucleus, but the algorithm segments the same region in
multiple nuclei. A “Merge” is the case in which the algorithm
segments a region in a single nucleus, but the human segments
the same region in multiple nuclei. With the DICE coefficient,
an algorithm that segments two touching (or overlapping) nuclei
as a single object will have the same DICE_1 value as an
algorithm that correctly segments the nuclei as two separate
objects. DICE_2 was implemented to capture mismatch in the
way ground truth and an algorithm segmentation of an image
region are split. The pseudo-code for DICE_2 is given below.

Here, Q and P are the sets of segmented objects (nuclei).
The two DICE coefficients were computed for each image tile
in the test dataset. The score for the image tile was calculated as
the average of the two dice coefficients. The score for the entire
test dataset was computed as the average of the scores of all the
image tiles.

The images and image patches for the challenges were selected
by the pathologists to have a representative set of cases (relatively
easy and harder cases in segmentation for example). Generation
of manually annotated, accurate datasets for training, and test
purposes is labor-intensive work and requires involvement of
pathologists, whose time is limited and expensive. Thus, such
datasets are relatively small. While there are some recent
approaches for generation of synthetic datasets (e.g., Hou et al.,
2017; Mahmood et al., 2018), manually annotated datasets
continue to represent gold standard data for training and testing,
and the paucity of large, manually annotated datasets remains
to be a reality. Hence, this represents another challenge that
automated algorithms have to address. One of the limitations of
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Algorithm 1 Computing Ensemble Dice Coefficient (DICE_2)

Input: An image contains a set of segmented nuclear Q where
each nuclei is indexed by q and a second image contains a sets
of segmented nuclear P where each nuclei is indexed by p.

Output: Ensemble Dice Score DICE_2
1: Initialize total intersection and markup pixels count:

IntersectionArea← 0;
TotalMarkupArea← 0;

2: foreach q in Q do:
3: foreach p in P do:
4: if q intersects p then:
5: IntersectionArea ← IntersectionArea +

AreaOfOverlap(q,p)
TotalMarkupArea← TotalMarkupArea + (Area(q) +

Area(p))
6: end if

7: end for

8: end for

9: DICE_2← 2 ∗ IntersectionArea/TotalMarkupArea

relatively small training and test datasets is they may not fully
capture batch-effects.

Classification of Whole Slide Tissue Images
This sub-challenge used images from NSCLC cases. All the
images were also obtained from whole slide tissue images in
TCGA repository. Each whole slide tissue image stored in the
TCGA repository has diagnostic information about the category
of cancer tumor (e.g., gbm, lgg, ovarian) as well as associated
clinical outcome data and genomics data. The images were
reviewed and selected by a pathologist. In the NSCLC cases, the
images were selected from NSCLC adeno (LUAD) and NSCLC
squamous cell (LUSC) cases. Each case in the dataset had one
image—so a classification of images would correspond to a
classification of cases. Challenge participants were asked to apply
their algorithms to classify each image as NSCLC adeno or
NSCLS squamous cell. The training dataset had a total of 32 cases;
16 LUAD and 16 LUSC cases. The test dataset had a total of 32
cases with 16 LUAD and 16 LUSC cases. The images were made
available in the original file format (i.e., Aperio svs format). The
original TCGA filename of each image was mapped to a generic
filename (i.e., image1.svs, image2.svs, etc.). The label image and
image metadata showing the TCGA case id were removed from
the image files. Ground truth was supplied for the training images
that gave the cancer type of each WSI, whereas this ground
truth was held back for the test images. The score of an analysis
algorithm was computed as the number of correctly classified
cases divided by the total number of cases.

Experimental Evaluation of Deep Learning
Method for Segmentation of Nuclei
From the original 32 training image tiles, with no additional
preprocessing steps, multiple patches (∼100 per image) of size
200 × 200 are extracted. Three training datasets are generated
(Table 2). By sliding a window with a step of 54 pixels and

TABLE 2 | Generation of three datasets from the original 32 image tiles.

Dataset Number of

patches

Extraction details

Nuclei Blob

(NBL)

4,732 • Window-slide cropping with a step of 54

pixels per image tile

• Random-cropping per image tiles, 30 times

Nuclei

Boundary

(NBD)

2,785 • Each patch centering a single nucleus

• Nuclei near image tile’s edges are ignored

Small Nuclei

(SN)

14,552 • Duplicate patches from NBL which contain

≤50% nuclei pixels in the center region of

54 × 54, 3 times

• Only for training nuclei blob detection

random cropping, 4,732 patches are generated, designated as
Nuclei Blob (NBL) dataset and used for nuclei blob detection.
Nuclei Boundary (NBD) dataset is generated by centering each
nucleus at the center of each patch, producing 2,785 patches that
are used for nuclei boundary detection. Small Nuclei (SN) dataset
is the duplicate dataset of NBL that only contains nuclei blob
patches possessing ≤ 50% nuclei pixels. SN dataset is only used
for training DRAN for nuclei blob detection.

During training, data augmentation is applied as follows: (1) a
random vertical and horizontal shift in a range of [−0.05, 0.05]
with respected to the patch’s width and height (2) a random
rotation in a range of [−45◦, 45◦] degree (3) a random vertical
and horizontal flipping with probability 0.5 (4) a random shear
with intensity in a range of [−0.4π, 0.4π] (5) a random resizing
with a ratio in a range of [0.6, 2.0]. This augmentation is to
address variations of nuclei in contrast, shapes, and etc. that are
often observed in pathology images. This is known to be helpful
in coping with the natural variations present in the images as well
as ensuring the robustness of the network (Ronneberger et al.,
2015). Following the augmentation, the center region of size 102
× 102 is extracted prior to being fed into the network (Figure 6).
Augmentation is performed 3 times per patch.

Using the generated training data above, DRAN is trained
via Adam optimizer with default parameter values (β1 = 0.9,
β2 = 0.999, ǫ = 1e-8). A mini batch size of 32 is maintained
throughout the whole training process. L2 regularization loss is
also applied with a factor of 1.0e-5 to improve the generalizability
of the proposed network. K.He initialization (He et al., 2015)
is utilized to initialize the weights for the convolutional layers
in the expanding path. Training is performed in two phases.
In the first phase (35 epochs), the pretrained weights of pre-
activated ResNet50 are loaded into the contracting path and is
kept frozen (no update on weights), i.e., only the expanding path
is trainable in this phase. The learning rate is initially set to 1.0e-
4, then changes to 5.0e-5, 1.0e-5, 7.5e-6, and 5.0e-6 at the 0th,
1st, 15th, 25th, and 35th epoch, respectively. In this phase, the
network is trained with NBL dataset for nuclei blob detection
and NBD dataset for nuclei boundary detection. In the second
phase (40 epochs), the contracting path is unfrozen, that is, the
whole network becomes trainable. For nuclei blob detection, both
NBL and SN datasets are used to further refine the network.
Only NBD dataset is utilized for nuclei boundary detection. In
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FIGURE 6 | Image patch generation. To avoid zero-padding in augmentation, a patch of size 200 × 200 is first provided. Subsequently, the center region of 102 ×

102 is cropped and fed into the network as input. For an input of size 102 × 102, the network provides a segmentation map of size 54 × 54.

addition, differing penalties for the loss function are imposed to
alleviate the heavy bias in NBD dataset; each border pixel has a
weight of 5.0 and miss-classifying a border pixel as background
gains a weight 6.0. Background pixels have 1.0 weight while
miss-classifying them is penalized with 4.0.

On the other hand, with the same training data as DRAN,
the training procedure of the multiscale model is detailed as
followed: each DRAN branch of the MDRAN is loaded with the
pretrained DRAN weights that are obtained from the procedure
described above and is kept frozen. The network then proceeds
to train decoder4 for 10 epochs with the learning rate of 1.0e-
4. Afterwards, the expanding path of DRANs is unfrozen and
finetuned for additional 35 epochs while the learning rate is set
to be 1.0e-4, 1.0e-5, and 1.0e-6 at the 1st epoch, 15th epoch, and
30th epoch, respectively.

Overall, utilizing NBL+SN dataset, MDRANBL was trained

for nuclei blob detection. DRANBD was trained on NBD
dataset for nuclei boundary detection. Combining the two

models (MDRANBL+DRANBD), nuclei segmentation was

performed. Table 3 shows the segmentation results on the
test set. Our method (MDRANBL+DRANBD) achieved 0.862
DICE_1, 0.703 DICE_2, and the average score of 0.783.
The effect of the multiscale aggregation (MDRANBL) was
examined. Using a single scale nuclei segmentation method
(DRANBL+DRANBD), we obtained 0.853 DICE_1, 0.701
DICE_2, and the average score of 0.777, worse than those of the
multiscale aggregation. In a head-to-head comparison of the
test set, the multiscale aggregation substantially improved the
segmentation performance, especially on three test images that
were scanned at 20x magnification (Figure 7). As for other test
images, scanned at 40x magnification, the multiscale aggregation,
in general, slightly outperformed the single scale method. This
suggests that the multiscale aggregation, in particular, aids
in improving the segmentation of (relatively) smaller nuclei.
Figure 8 shows the segmentation results by the multiscale
aggregation and single scale method; the single scale method

TABLE 3 | Segmentation of nuclei performance.

Method DICE_1 DICE_2 Average score

DRANBL+DRANBD 0.8532 0.7010 0.777

MDRANBL+DRANBD 0.8620 0.7033 0.783

missed several small nuclei that were, however, identified by the
multiscale aggregation.

Notably, a huge discrepancy between DICE_1 and DICE_2
was observed for several test images (Figure 7). Upon closer
inspection, we found that these are mainly due to staining
variation and instability as well as densely overlapping nuclei.
As shown in Figure 9, the identified nuclei boundaries are often
fragmented and imperfect, leading to inaccurate segmentation
of the overlapping nuclei. This indicates that advanced and
sophisticated touching nuclei separation method may hold a
great potential for improving the segmentation performance.

Classification of Whole Slide Images
We used a total of 64 Hematoxylin and Eosin (H&E) NSCLC
WSIs that were split into 32 training and 32 test images. We had
an even breakdown of NSCLC images in both the training and the
test set, giving a total of 32 LUAD slides and 32 LUSC slides. We
divided our dataset so that we had 24 WSIs for training and 8 for
validation, with 4 validation images taken from LUAD and LUSC
respectively. We extracted a 3-class dataset comprising of patches
of size 256 × 256 at 20× magnification, from non-exhaustive
labeled regions, confirmed by an expert pathologist (AK). This
3-class dataset consisted of LUAD, LUSC and non-diagnostic
areas (ND). LUAD diagnostic regions within the slide consisted
of: tumor; growth pattern structures and tumor stroma. LUSC
diagnostic regions consisted of: tumor; keratin pearls and tumor
stroma. Non-diagnostic regions included: fat; lymphocytes; blood
vessels; alveoli; red blood cells; normal stroma; cartilage, and
necrosis. We considered necrosis to be non-diagnostic because,
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FIGURE 7 | Head-to-head comparison between MDRANBL and DRANBL on the test set. Test images are ordered by the ascending order of MDRAN DICE_1. The

shaded area indicates that the images were scanned at 20x magnification.

FIGURE 8 | Examples of nuclei segmentation via the multiscale aggregation (MDRANBL+DRANBD) and single scale (DRANBL+DRANBD) approach. The images from

top to bottom are the 1st, 11th, 20th, and 25th image tile in the test set.
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FIGURE 9 | Examples of correct and incorrect nuclei segmentation. Our method (Bottom) is able to distinguish the boundary of the non-highly overlapping nuclei fairly

well but (Top) fails on the highly overlapping nuclei with disproportionate stains.

despite LUSC generally having more necrotic areas than LUAD,
it is not indicative of lung squamous cell carcinoma on a patch-
by-patch basis. In this case, it was particularly important to
incorporate non-diagnostic areas because there were no normal
cases within the dataset. Overall, our network is optimized on
65,788 training image patches.

There was a high level of stain variation between all images,
due to images being acquired from different centers. To counter
this stain variability, we applied Reinhard et al. (2001) stain
normalization to all images by mapping each image to the
statistics of a pre-defined target image. During training we
performed random crop, flip and rotation data augmentation
to make the network invariant to these transformations. After
performing a random crop to all input patches, we were left with
a patch size of 224× 224.

An increase in the amount of labeled data coupled with a
surge in computing power has allowed deep convolutional neural
networks to achieve state-of-the-art performance in computer
vision tasks. The hierarchical architecture of such networks
allows them to have a strong representational power, where the
complexity of learned features increases with the depth of the
network. The proposed network f is a composition of a sequence
of L functions of layers (f1, . . . , fL) that maps an input vector x
to an output vector y, i.e.,

y = f (x;w1, . . . , wL)

= fL (. ; wL) ◦ fL−1 (. ; wL−1) ◦ . . . ◦ f 2 (. ; w2) ◦ f1 (. ; w1)(1)

where wL is the weight and bias vector for the Lth layer fL.
In practice, fL most commonly performs one of the following
operations: (a) convolution with a set of filters; (b) spatial
pooling; and (c) non-linear activation.

Given a set of training data
{

(x(i), y(i))
}

, where i ranges from

1 to N. We can estimate the vectors w1 . . .wL by solving:

argimn
W1 ,...,WL

1

N

N
∑

i=1

l(f
(

x(i)
;w1, . . . , wL

)

, y(i) (2)

TABLE 4 | Patch-level accuracy.

Network Resolution LUAD LUSC ND Average

VGG 20x 0.634 0.663 0.826 0.708

InceptionV3 20x 0.623 0.733 0.924 0.760

ResNet50 20x 0.601 0.597 0.889 0.695

ResNet32 20x 0.702 0.849 0.742 0.764

LUAD refers to lung adenocarcinoma, LUSC refers to lung squamous cell carcinoma, ND

refers to non-diagnostic area of interest.

where l is the defined loss function. We perform numerical
optimization of (2) conventionally via the back- propagation
algorithm and stochastic gradient descent methods.

In addition to the above operations, residual networks
(ResNets) (He et al., 2016b) have recently been proposed that
enable networks to be trained deeper and as a result, benefit from
a greater accuracy. Current-state-of-the-art networks (Simonyan
and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016b; Huang
et al., 2017) indicate that network depth is of crucial importance,
yet within conventional CNNs, accuracy gets saturated and then
degrades rapidly as the depth becomes significantly large. The
intuition behind a residual network is that it is easier to optimize
the residual mapping than to optimize the original unreferenced
mapping. Residual blocks are the core components of ResNet
and consist of a feed-forward skip connection, that performs
identity mapping, without adding any extra parameters. These
connections propagate the gradient throughout the model, which
in turn enables the network to be trained deeper, often achieving
greater accuracy.

Table 4 summarizes the experiments we carried out for
classification of input patches into LUAD, LUSC, and ND. We
choose to train the specified networks, due to their state-of-
the-art performance in recent image recognition tasks (Deng
et al., 2009). During training, all networks quickly over-fit to the
training data. This was because of two reasons: (i) The networks
architectures that were used have been optimized for large-scale
computer vision tasks with millions of images and thousands of
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FIGURE 10 | Test WSIs with overlaid probability maps. Blue/purple indicates a region classified as diagnostic LUAD, green indicates a region classified as diagnostic

LUSC, yellow/orange refers to a region classified as non-diagnostic.

classes; (ii) We have a fairly limited training set size. Due to the
size of our dataset, (iii) it is difficult to avoid over-fitting, given
a sufficient number of model parameters. Therefore, we modify
the network architecture to counter the problem of over-fitting
by reducing the number of layers. We make a modification to the
original implementation of ResNet by reducing the number of
residual units, such that we only have a total of 32 layers within
the model. Modification of ResNet50 to give ResNet32 helped
alleviate the problem of over-fitting and gave the best patch-level
performance. Despite only achieving 0.4% greater accuracy than
InceptionV3, ResNet32 resulted in a significantly greater average
LUAD and LUSC patch-level accuracy. The average LUAD and
LUSC patch-level accuracy for InceptionV3 was 0.678, whereas
the average accuracy for ResNet32 was 0.776. As a consequence of
the superior patch-level performance, we chose to use ResNet32
for processing images in the test set. Figure 10 shows four test
WSIs with their overlaid probability maps. Green regions show
regions classified as LUSC, blue/purple regions show regions
classified as LUAD and yellow/orange regions show regions
classified as ND.

Table 5 shows the overall accuracy for NSCLC WSI
classification, as processed by the challenge organizers. We
observe that using the random forest regression model with
statistical and morphological features from the labeled WSI
increases the classification accuracy. Max voting is sufficient
when either LUAD or LUSC is a dominant class within the

TABLE 5 | Overall WSI classification accuracy.

Method Accuracy

ResNet32-MV 0.78

ResNet32-RF 0.81

ResNet32-MV refers to classifying input patches using ResNet32, then using majority

voting as a post processing classification technique. ResNet32-RF refers to classifying

input patches using ResNet32 and then using a random forest regression model as a

post processing technique for classification.

labeled WSI, but when there is no obvious dominant class, the
random forest regression model increases performance. This is
because the features used as input to the random forest model
are more informative than simply using a voting scheme and can
therefore better differentiate between each cancer type.

The proposed method achieves good accuracy with a score of
0.81. Given the limitation of the dataset, it is clear that classifying
NSCLC WSIs into diagnostic and non-diagnostic regions is
of crucial importance. This is particularly important for this
specific implementation because the training set did not contain
any normal cases. Without the consideration of non-diagnostic
areas, the algorithm would be forced to make a prediction for
non-informative image tiles. Furthermore, it is evident that the
analysis of the morphology of classified regions can empower the
classification of the whole-slide image and is superior to a max
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voting approach. The consideration of contextual information
can provide additional assistance in classification tasks within
computational pathology (Agarwalla et al., 2017; Bejnordi et al.,
2017). For example, growth patterns in LUAD cases and how the
tumor grows with the stroma is of significant importance when
classifying NSCLC cases. These patterns are often very hard to
visualize in a 224 × 224 patch at 20× resolution. In future work,
developing our proposed network to accurately include more
contextual information may improve patch-level accuracy and
therefore overall classification accuracy. To develop this work, we
also aim to use a larger dataset so that our patch-level classifier
is able to extract more representative features for subsequent
NSCLC classification.

DISCUSSION

Understanding the inter-relationship between morphology and
molecular mechanisms is a central component of research
targeting complex diseases, in particular cancer. There are,
for example, latent and observable changes in tissue structure
and function at the onset of cancer and over the course of
its progression. Traditionally whole slide tissues are manually
examined under a high-power light microscope to render
a diagnosis. This manual process is laborious, limiting the
number of tissue samples that can be used in a study.
Digital Pathology enables quantitative studies of these changes
and underlying disease mechanisms at the sub-cellular scales.
Integrating information gleaned from analysis of Pathology
imaging data into the landscape of the entire spectrum of clinical
information can help drive both disease specific and patient
specific information which can be used to drive high risk high
reward cancer trials to better results faster.

Deep learning methods have garnered a lot of interest in
the computer vision and image analysis communities in recent
years. They have shown superior performance to statistics-based
methods and other machine learning techniques in a variety of
image analysis tasks. There is a growing set of deep learning-
based analysis pipelines in the digital pathology domain. In
this paper we presented two novel pipelines for analysis of
tissue images. These methods target two core steps in tissue
image analysis; segmentation of nuclei/cells and classification
of images. The multiscale deep residual aggregation network
is designed to segment nuclei in images. The experimental
evaluation suggests that (1) the multiscale aggregation aids in
improving the segmentation of (relatively) smaller nuclei and (2)
advanced and sophisticated touching nuclei separation methods
may hold a great potential for improving the segmentation
performance in tissue specimens with discernable staining
variation and instability as well as densely overlapping nuclei.
The second method implements a deep neural network that
classifies image patches in whole slide tissue images of non-
small cell lung cancer tissue specimens as lung adenocarcinoma,
lung squamous cell carcinoma or non-diagnostic regions. The
experimental results show that use of a deep learning network
and a random forest regression model, which uses statistical and
morphological features extracted from images, can achieve good
classification accuracy.

While the methods presented in this work and others
have demonstrated promising results, there are several other
considerations and challenges in the development of such
methods and in the integration of information obtained from
automatic segmentation and grading methods in research
and clinical workflows. Human involvement is still a critical
component in effective application of deep learning and other
automated techniques in biomedical image analysis. Human
expert review of image analysis results is important not only
for quality assessment and interpretation of analysis results but
also for iterative or active improvement of segmentation and
classification models (and producing increasingly more accurate
and robust results) (Holzinger, 2016; Holzinger et al., 2018).
One of the challenges to human-in-the-loop in pathology image
analysis is the sheer volume of data. A whole slide tissue image
can contain more than one million nuclei and hundreds of
thousands of image patches. Even a moderate size research
project with thousands of images can generate a very large
volume of classification and segmentation data. It is not feasible
for human experts to sift through these data for quality control
and iterative model improvement. Some recent projects (e.g.,
Beluch et al., 2018) are looking at deep learning methods for
reducing interactive/iterative labeling costs. These methods aim
to estimate uncertainty in analysis results and intelligently select
subsets of data to reduce number of iterations while achieving
a certain level of analysis accuracy. Some projects (e.g., Wen
et al., 2017) are investigating the use ofmachine learningmethods
to assist in quality assessment of analysis results generated
from automated methods. We believe that integrated approaches
that combine deep/machine learning methods for analysis with
deep/machine learning methods for quality assessment and
data selection for iterative model refinement will provide an
effective platform in pathology image analysis. These methods
will facilitate application of a human expert’s knowledge to
improve analysis results while reducing manual load on the
human expert.

A more challenging task is the explainability of deep learning
models. In most cases deep learning methods are treated as
black-boxes. Even though some mathematical foundations of
deep learning have been developed, explaining how a deep
learning model arrived at a particular decision remains an open
problem. We expect that explainability will increasingly be a
central challenge to deeper integration of deep learning and
other automated methods in clinical settings. This relatively new
topic in machine/deep learning in biomedicine is rapidly gaining
popularity; there are an increasing number of recent works on
defining explainable AI and seeking approaches to realize it
(Došilović et al., 2018; Holzinger, 2018; Sadeghi et al., 2018).

Another important consideration in the development of
more accurate and robust automated methods is the systematic
evaluation of different strategies and contributions from different
research groups. We argue that advances in the accuracy,
robustness, and efficiency of digital pathology image analysis
methods and pipelines will be accelerated through engagement
of the community of method developers. To this end, image
analysis challenges, such as the “Computational Precision
Medicine Digital Pathology Challenge” held at the MICCAI 2017
conference, play a critical role.
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As we have presented in this paper through two novel
approaches, deep learning methods are improving in prediction
performance and getting better at dealing with relatively small
training datasets. However, there are no one-size-fits-all solutions
and efficient integration of human expert knowledge for model
refinement, quality control, and interpretation/explanation is
very important to more effective application of deep learning
methods in biomedical research.
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