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Progress in modern biology is being driven, in part, by the large amounts of freely

available data in public resources such as the International Nucleotide Sequence

Database Collaboration (INSDC), the world’s primary database of biological sequence

(and related) information. INSDC and similar databases have dramatically increased the

pace of fundamental biological discovery and enabled a host of innovative therapeutic,

diagnostic, and forensic applications. However, as high-value, openly shared resources

with a high degree of assumed trust, these repositories share compelling similarities to

the early days of the Internet. Consequently, as public biological databases continue

to increase in size and importance, we expect that they will face the same threats

as undefended cyberspace. There is a unique opportunity, before a significant breach

and loss of trust occurs, to ensure they evolve with quality and security as a design

philosophy rather than costly “retrofitted” mitigations. This Perspective surveys some

potential quality assurance and security weaknesses in existing open genomic and

proteomic repositories, describes methods to mitigate the likelihood of both intentional

and unintentional errors, and offers recommendations for riskmitigation based on lessons

learned from cybersecurity.
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INTRODUCTION

Although an openly shared interaction platform confers great value to the biological research
community, it may also introduce quality and security risks. Without a system for trusted
correction and revision, these shared resources may facilitate widespread dissemination and
use of low-quality content, for instance, taxonomically misclassified or erroneous sequences.
Furthermore, as these public databases increase in size and importance, they may fall victim to
the same security issues and abuses that plague cyberspace to this day. If we act now by developing
the databases with quality and security as a design philosophy, we can protect these databases at a
much lower cost and with fewer challenges than we currently face with the Internet.

In this Perspective, the authors aim to outline some potential quality assurance and security
weaknesses in existing public biological repositories. In section Background: ProblemsWith Public
Biological Databases we provide a discussion of errors present in public biological databases and
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discuss possible security vulnerabilities inherent in their
access, publication, and distribution models and systems. Both
unintentional and intentional errors are discussed, the latter of
which has not been given significant consideration in literature
(Moussouni and Berti-Équille, 2013). In section Approaches for
Improving Biological Databases, we attempt to introduce greater
trust in the data and analyses by providing recommendations to
mitigate or account for these errors and vulnerabilities and point
to approaches used by other Internet databases. Finally, in section
Preliminary Conclusions, we summarize our recommendations.

This Perspective focuses on databases which contain public
and freely available data. We recognize that other biological
databases exist which contain private, sensitive, or otherwise
valuable data (e.g., human genomes). While unauthorized
disclosure is not a formal concern in public, non-human
databases, safeguarding against intentional or unintentional
erroneous content is. Some approaches have been proposed to
protect unauthorized disclosure (Kim and Lauter, 2015; Mandal
et al., 2018; Ozercan et al., 2018) and, while we don’t survey these
approaches in this perspective, we note that the public database
community may benefit from these ideas as well.

BACKGROUND: PROBLEMS WITH PUBLIC

BIOLOGICAL DATABASES

Data Integrity
An important goal for bioinformatics is the continuous
improvement of biological databases. Given the rapid nature of
this improvement and the rate of data production though, the
content of these repositories is not without error. For example,
the problem of contaminated sequences has been recognized
for nearly two decades, with evidence stating that bacteria and
human error are the twomost common sources of contamination
(Merchant et al., 2014; Strong et al., 2014). Ancient DNA is
also particularly affected by human contamination (Pilli et al.,
2013). These contaminants are frequently introduced during
experiments (Merchant et al., 2014; Ballenghien et al., 2017)
from natural associations and insufficient purification (Simion
et al., 2017). In the past few years, additional reports have
highlighted cases of DNA contamination in published genome
data (Witt et al., 2009; Longo et al., 2011), suggesting that DNA
contaminationmay bemore widespread than previously thought.
We recognize that errors and omissions can occur in open
databases both at the sequence and at the metadata levels, but
for this Perspective we mainly focus on sequence and taxonomic
data concerns for the purposes of illustrating some of the many
data integrity challenges possible.

In addition to contaminations, two high profile examples
of sequence errors include the reassembly of a misassembled
Francisella tularensis genome (Puiu and Salzberg, 2008) and the
identification of single nucleotide errors in a reference Tobacco
mosaic virus (TMV) genome (Cooper, 2014). Without a way
to flag or remove the erroneous entries, future researchers are
left to continually rediscover them. The errors in the reference
TMV sequence are particularly disturbing. The taxonomic
assignment corresponds to a pathogenic strain, but due to

two erroneous single nucleotide polymorphisms (SNPs), virions
synthesized from the published reference sequence are atypically
not infectious. Overlooked contaminations in reference genomes
can thereby lead to wrong or confusing results and may have
major detrimental effects on biological conclusions (Philippe
et al., 2011; Laurin-Lemay et al., 2012). While resequencing
could be used to identify and correct sequence errors, it is
only possible when the original source material is available.
For the given example of single nucleotide errors in the
TMV genome, the biological sample (sequenced in 1982) no
longer exists. In addition to missing samples, samples of high
consequence human and agricultural pathogens may not be
available for resequencing.

Database integrity considerations for proteomics are generally
similar to those for genomics because databases of protein
sequences are derived from genome sequencing, via genome
annotation and in silico translation. A sequence database error is
unlikely to result in spurious detection of a protein that is present
in the sample (false positive), but it could easily lead to a failure to
detect a protein that is present (false negative). This is particularly
concerning for discovery of accurate peptide signatures for use in
targeted assays, a rapidly growing area of research.

In this section we discussed the issue of errors in genomic
and proteomic databases and their impacts for research and
application. Sources of these errors may include, among others,
entry errors derived from data transfer, original errors derived
from source data, and metadata errors (typically provenance-
related) derived from the analysis pipeline. Original errors can
arise from sequencing and sample preparation instrumentation
chemistry, hardware, and software. Metadata errors can arise
from bioinformatics software and faulty human interpretation.
Each of these errors may be considered noise or the result of some
other unintentional cause, but the key problem to note is that
each element of the analytical process introduces some level of
artifact when creating the analytical product, i.e., what is defined
as a peak or a spot, what is the gene scaffold, what is the closed
genome, etc. Any difference in process would therefore by its
nature have some impact on the final genome. Our goal here is
to start drawing connections between these process elements and
genome anomalies.

Vulnerabilities and Intentional Tampering
In contrast to the data integrity issues discussed in the prior
section, errors may also be intentionally introduced into a
biological database. For example, consider the hypothetical
scenario discussed in Peccoud et al. (2018) whereby a graduate
student reads an article and subsequently requests the plasmids
described, but receives a faulty sample. It may be that
the published sequences were fabricated, or that the source
laboratory unwittingly sent faulty plasmids. One could also
imagine a scenario where an intentionally mislabeled or harmful
sequence is submitted to an open database that could later
be unknowingly synthesized in a research setting or, more
seriously, in a production capacity. Furthermore, depending on
how sequences could be submitted to the database, the adversary
may be able to keep the pathogenic sequence from being detected
by certain anomaly detection heuristics.
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Individuals may also exploit the vulnerabilities inherent in the
database as a cyber-system, leading to errors introduced after
publication of data despite manipulation and deletion controls.
As with any database, biological databases can be compromised,
enabling data integrity issues related to insertion, manipulation,
exfiltration, and deletion of data, as well as providing a
platform for privilege escalation, unauthorized surveillance, or
distribution of malware. Ultimately, the effects of the operating
environment and the tools used to deliver databases will inform
the most appropriate threat model.

APPROACHES FOR IMPROVING

BIOLOGICAL DATABASES

In 2000, a workshop titled Bioinformatics: Converting Data
to Knowledge (National Research Council, 2000) tackled the
question of biological database integrity as one of its focus
areas. At that time, suggested solutions included building
organism-type (e.g., eukaryote) specific grammar-based tools,
enabling database self-validation through specialized ontologies,
advocating for quality control in laboratories to minimize
likelihood of errors, and authorizing only trained curators
and annotators to enter data. They also recommend that data
provenance be maintained so that the data history and evolution
can be understood over time. These approaches fall more-or-less
into two categories: ensuring integrity before or during data entry
and analyzing data already in a database. Nearly 20 years later, we
still emphasize the importance of quality control in laboratories
and standardized data entry procedures, but it is clear that
errors continue to make their way into databases for a variety of
reasons. In this section, we highlight several categories of existing
methods to detect data integrity issues in biological databases and
outline the strengths and weaknesses of each. We also provide
recommendations for improving biological database security.

Automated Approaches for

Detecting Anomalies
Some biological databases take the manual curation approach,
such as the SwissProt subset of the UniProt (Universal Protein
Resource Database). This effort requires significant resources to
maintain, consisting of three principal investigators, a large staff
and external advisory board (Pundir et al., 2017). Given the
complexity and exponential growth of biological data, automatic
methods are needed.

Some tools have been developed to assess the technical quality
of genome assemblies [e.g., QUAST (Gurevich et al., 2013)], their
completeness in terms of gene content [e.g., BUSCO (Simao
et al., 2015), ProDeGe (Tennessen et al., 2016)] and even their
contamination level [e.g., acdc (Lux et al., 2016), CheckM (Parks
et al., 2015)]. Currently there are several analysis pipelines based
on various searches to detect potentially contaminated sequences
in the published and assembled genome, such as Taxoblast
(Dittami and Corre, 2017), homology searches (Kryukov and
Imanishi, 2016), GenomePeek (McNair and Edwards, 2015), and
amulti-step cleaning process followed by a consensus of rankings
(Cornet et al., 2018; Lu and Salzberg, 2018). All these tools
require human review or use of additional tools to distinguish

true positive from true negative and are therefore not feasible
at scale.

Another database quality issue is the automated
identification of taxonomically anomalous, questionable, or
erroneous GenBank taxonomic assignments. Automated error
identification of taxonomic assignments now draws on methods
such as anomaly detection, classification, and prediction
techniques. These methods have proved impactful in areas
like computer vision (Krizhevsky et al., 2012) and natural
language processing (Sutskever et al., 2014). They have also
been adopted by bioinformatics and computational biology
(Larranaga et al., 2006). Much of the work in applying machine
learning to biological data is for classification and prediction of
metadata, e.g., gene or taxonomy prediction in genomics, and
structure and function prediction in proteomics. Verification of
sequence metadata contained in a database is then performed by
comparing with the predicted metadata from the sequence.

Sequence-based methods to detect taxonomically
misclassified bacterial genome sequences tend to be based
either on distance measures between pairs of sequences or on
consistency with a reference 16S rRNA phylogeny. Common
distance metrics include the average nucleotide identity (ANI),
digital DNA-DNA hybridization (dDDH), multi-locus sequence
analysis (MLSA), k-mer overlap (summarized in Federhen et al.,
2016), and information theoretic distances (Li et al., 2004).
Given a genome distance, taxonomic misclassifications have
been discovered by identifying outlier genomes that exceed a
manually determined distance threshold to trusted reference
genomes (Goris et al., 2007; Colston et al., 2014; Figueras et al.,
2014; Kim et al., 2014; Beaz-Hidalgo et al., 2015; Federhen et al.,
2016; Tanizawa et al., 2016). The need for reference genomes is
problematic, since approximately 20% of the bacterial genome
sequences in GenBank currently (as of August, 2017) do not
have a reference (or “type”) genome available (NCBI)1. The lack
of bacterial genomes with a “type” designation is not due to the
cost of sequencing, but rather the need to satisfy a specific set of
formal requirements (Federhen, 2015), which include submitting
culturable isolates to more than one culture collection. This
poses a significant challenge for unculturable bacteria.

Distinct from these pairwise distance-based methods, a recent
method for identifying taxonomically mislabeled sequences
(Kozlov et al., 2016) uses consistency between a given set
of taxonomic labels and a phylogenetic tree computed from
a multiple sequence alignment of 16S rRNA sequences. This
approach uses a single model of evolution to identify sequences
whose taxonomic placement is most likely incorrect. However,
there are multiple, competing methods for assigning bacterial
taxonomy and, in particular, multiple sequence alignment
of 16S rRNA can fail to resolve closely related species
(Richter and Rossello-Mora, 2009; Kampfer and Glaeser, 2012;
Larsen et al., 2014).

Machine learning has been applied to understand the
sequences themselves. For example, the tools DeepBind
(Alipanahi et al., 2015) and DeepSEA (Zhou and Troyanskaya,
2015) take sequences as input and learn how variations in

1NCBI Bacterial ANI Report [Online]. Available: ftp://ftp.ncbi.nlm.nih.gov/
genomes/ASSEMBLY_REPORTS/ANI_report_bacteria.txt (Accessed).
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the sequences can predict function. The successes of these
tools coupled with recent research on sequence anomaly
detection using long short-term memory (LSTM) recurrent
neural networks (RNNs) in cyber security (Brown et al., 2018)
could enable a new technique for biological sequence anomaly
detection. Finally, if available, machine learning could potentially
be applied to data concerning the sequence sources or data
submitters themselves to evaluate quality and trustworthiness.
However, that discussion is beyond the scope of this Perspective.

Protections Against Intentional Errors
If a trusted method does not exist to ensure the continued
quality and revision of content in biological databases, those
who use the data should be aware of this risk and account for
it in their analysis appropriately. In what follows, we outline
previous efforts to develop analytics to detect and mitigate the
impact of deliberately introduced database errors, both known
and unknown.

Any machine learning analytic is necessarily a product of the
data it observes. In an open data environment, an adversary
can directly control any subsequent analysis by changing the
data to change an algorithm’s underlying model (Goodfellow
et al., 2014). The focus of a “counter adversarial” approach to
data analytics is to harden machine learning methods against
the effects of inputs that are designed to mislead supervised
(Dalvi et al., 2004; Kantarcioglu et al., 2011; Biggio et al., 2013a)
and unsupervised (Dutrisac and Skillicorn, 2008; Biggio et al.,
2013b) algorithms. It has been shown that there exist label
tampering attacks which significantly decrease the accuracy of
a classifier, while being nearly undetectable by standard cross
validation tests (Kegelmeyer et al., 2015). In other words, the
defender does not know the performance of the classifier has been
corrupted. To protect against label tampering, an “ensembles of
outlier measures” (EOM) method has been proposed to identify
label tampering. The approach relies on a set of attributes
that capture the “outlierness” of a sample to predict whether
a sample has been tampered with. Tampered samples can
then be remediated by changing the sample class label. In the
context of a biological database, these labels may be metadata
attributes associated with an entry. In the unsupervised machine
learning scenario, an adversary may try to subvert a clustering
algorithm by, for example, heuristically inserting data points to
arbitrarily poison (i.e., merge) (Biggio et al., 2013b) clusters. In
the context of a genomics database, poisoning of clusters would
significantly reduce the ability to detect anomalous genomic
sequences. Kegelmeyer et al. demonstrate that their remediation
methodology based on an EOM applies equally well in the
unsupervised context (Kegelmeyer et al., 2015).

As vulnerable cyber systems, best cyber practices can also be
leveraged to protect biological databases. However, in the context
of intentional manipulation of biological databases, special
consideration must be given to the ability of these databases
to enable production of dangerous biological material. The
International Gene Synthesis Consortium (IGSC), for instance,
provides two principal protections against the manufacture of
malicious geneticmaterial—known as theHarmonized Screening
Protocol (International Gene Synthesis Consortium, 2017). The

first, is a customer screening. The second is a screening of
DNA sequences against a Regulated Pathogen Database (RPD).
This database is built from data on the US Select Agent List,
the Australian Group List, and other national lists of regulated
pathogens. Members of the IGSC agree to translate each synthetic
gene into amino acid sequence and test for homology. These are
then accepted, reviewed or rejected. The RPD is updated annually
and provided to members.

The Harmonized Screening Protocol requires at least two
difficult processes—(1) sharing the database and (2) updating
the database. Sharing the database requires the maintenance
of authentication. Providers and users are part of a shared
environment where they need to trust that everyone has an
authentic and up-to-date version of the database. Updating
the database requires maintenance to avoid “alert fatigue”
from false positives and the dangerous potential case of false
negatives resulting in malicious manufacture. Maintaining the
security of this requires an environment of authentication and
active database inspection and curation. For the former, there
may be opportunities to incorporate advanced encryption and
authentication algorithms being considered in the cyber domain
such as blockchain. However, significant computational resource
costs must be contended with.

PRELIMINARY CONCLUSIONS

This survey of concerns with biological databases and methods
for ensuring database integrity is certainly not exhaustive
but represents broad capabilities within data science and
cybersecurity today that have shown promise either within
computational biology already, or in tackling similar problems
in other domains. A goal of the authors is to illuminate these
concerns for a wide audience in the context of the historical
lessons learned in cyberspace. In the early days of the Internet,
the emphasis was on functionality and enabling the actions of
largely well-intentioned communities of users. This functionality
pervaded every element of our critical infrastructure. However,
the same fabric that supports this infrastructure also represents a
significant risk. Mitigating this risk after the wide penetration of
open functionality is much more difficult than it might have been
if the Internet had been created with integrity and security in
mind. As biological data becomes a bedrock critical infrastructure
for the entire bioeconomy and follows the same exponential
trends of size, pervasiveness, and importance as the Internet,
we have a unique opportunity to ensure that this capability
mitigates current and future risks from a worldwide set of
actors. This paper calls out several existing research areas that
can be leveraged to protect against accidental and intentional
modifications and misuse of public biological databases.
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