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The management of burn injuries is considered an unmet clinical need and, to date,

no fully satisfactory solution exists to this problem. This mini-review aims to explore

the potential of bioactive glasses (BGs) for burn care due to the therapeutic effects of

their ionic dissolution products. BGs have been studied for more than 40 years and

boast a long successful history in the substitution of damaged tissues, especially bone.

Considering their exceptional versatility and attractive characteristics, these synthetic

materials have also recently been proposed in the treatment of soft tissue-related

disorders such as skin wounds. Specifically, improving fibroblast proliferation, inducing

angiogenesis, and eliciting antibacterial activity (with the additional advantage of avoiding

administration of antibiotics) are all considered as key added values carried by BGs

in the treatment of burn injuries. However, some issues deserve careful consideration

while proceeding with the research, including the selection of suitable BG compositions,

appropriate forms of application (e.g., BG fibers, ointments or composite patches), as

well as the procedures for reliable in vivo testing.

Keywords: bioactive glasses, burns, wound healing, ion release, angiogenesis, antibacterial activity

INTRODUCTION

Burn injury is a frequent cause of morbidity and mortality over the globe. Based on a report
published in 2016, about 486,000 patients in the US received medical care for burn injuries
from 2008 to 2016; however, 3,275 of those passed away because of the severity of the injuries
(Association, 2016). Based on the injury degree, a burn leads to several complications including
infection, hypothermia, scarring, as well as bone and joint problems (Sevitt, 1979). Among the
difficulties as mentioned above, bacterial infections are the leading cause of death (42–65%) after
extensive burn injuries (Sharma et al., 2006; Bloemsma et al., 2008; Keen et al., 2010; Krishnan
et al., 2013). It has been shown that Gram-positive and Gram-negative multidrug-resistant (MDR)
bacteria contribute to the burn infections in the first and late post-injury days, respectively
(Lachiewicz et al., 2017). Therefore, the treatment of burns is of great importance, and the slow
healing process and hypertrophic scarring are, in fact, unresolved challenges in burn research and
management (Wang et al., 2018).
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After any burn, various therapeutic agents (e.g., antibiotics
and silver-containing ointments) can be used in order to prevent
infection from developing as well as to kill the actual microbial
cells (see Table 1) (Dai et al., 2010). It has been noted that
there is no need for the administration of prophylactic oral
antibiotics in the case ofminor burns since theymay createmulti-
resistant bacteria (Branski et al., 2009; Barajas-Nava et al., 2013).
In this situation, antibacterial dressings can keep the bacterial
colonization of wounds to a minimum (Hyland et al., 2015).
Furthermore, it has been reported that the use of therapeutic
substances that induce angiogenesis can lead to accelerating the
repair and regeneration of burn wounds (Galeano et al., 2006;
Oryan et al., 2018).

According to the criteria mentioned above, a feasible
treatment approach that may fulfill all these requirements
together and be actually and safely applied in the clinical practice
still remain to be developed. In this regard, bioactive glasses
(BGs) have been recently identified as promising substances
for the management of soft tissue-related disorders. These
synthetic biomaterials have been using for the treatment of
acute and chronic wounds (Naseri et al., 2017; Kargozar et al.,
2019). Releasing various therapeutic ions from BG structure
into the biological environment is the main reason for their
positive effects on wound healing (see Figure 1) and, more
specifically, the great potential of BGs (as a topical therapy)
could be exploited to treat burn injuries as many topical

TABLE 1 | A short list of topical antimicrobial agents used for burn therapy.

Agent class Specific agent/Product Application References

Topical antibiotics Mafenide acetate Clinical 2nd/3rd-degree burns Haynes, 1971

Bacitracin Clinical 2nd/3rd-degree burns Johnson et al., 1945

Mupirocin Clinical 2nd/3rd-degree burns Palmieri and Greenhalgh, 2002

Neosporin Clinical 2nd/3rd-degree burns Sinha et al., 1997

Polymyxin B Clinical 2nd/3rd-degree burns Brown and Wood, 1972

Nitrofurazone Clinical 2nd/3 rd degree burns Munster, 1984

Nystatin Clinical 2nd/3rd degree burns, fungal infections Palmieri and Greenhalgh, 2002

Silver Silver nitrate Clinical 2nd/3rd-degree burns Moyer et al., 1965

Silver sulfadiazine Clinical 2nd/3 rd degree burns Fox, 1968

Silver foams (Contreet, Allevyn) Clinical 2nd/3 rd degree burns Jørgensen et al., 2005

Flammacerium Clinical 2nd/3rd-degree burns Monafo et al., 1976

Acticoat 7 Clinical 2nd/3 rd degree burns Fong and Wood, 2006

Aquacel-Ag Clinical 2nd/3rd degree burns Barnea et al., 2010

Silvercel Clinical 2nd/3rd-degree burns Meaume et al., 2005

Silver amniotic membrane Clinical 2nd/3 rd degree burns Sawhney, 1989

Chitosan Hydrogel Clinical 2nd-degree burns Ribeiro et al., 2009

Film 2nd degree burns in rabbits Sezer et al., 2008

Bandage Mouse burn infections (Psuedomonas, Proteus) Dai et al., 2009

Antimicrobial peptide Defensins In vitro Ganz, 2009

Demegel Pseudomonas infected rat burns Chalekson et al., 2002

Histone H1.2 Pseudomonas infected rat burns Jacobsen et al., 2005

Cecropin B Pseudomonas infected mouse wounds Ren et al., 2006

rBPI Clinical trial 2nd-degree burns Steinstraesser et al., 2008

Ceragenins In vitro Epand et al., 2008

Reproduced with some modifications from (Dai et al., 2010).

antimicrobial agents used for burns are cytotoxic to soft tissue
cells (e.g., keratinocytes and fibroblasts), thus resulting in
an unwanted delay in wound healing process (Lineaweaver
et al., 1985; Barsoumian et al., 2013). The positive effects of
BGs on the cells (e.g., keratinocytes) involved in better and
faster healing of the burn wounds have been well-understood
(Mârza et al., 2019), bringing new hopes in this important area
of science.

After providing a general picture of the suitability of BGs in
contact with soft tissues – with emphasis on “general” wound
healing applications (section Attractive Properties of BGs for Soft
Tissue Repair) —, this mini-review highlights the potential of
BGs in the context of burn treatment (section Evidence of BG
Suitability for Treating Burns). Since there is a paucity of studies
specifically dealing with BGs for the management of burns,
an effort was done in section Evidence of BG Suitability for
Treating Burns—whenever possible—to underline the specific
relevance of other reports coming from the broader field of
wound-healing applications.

ATTRACTIVE PROPERTIES OF BGS FOR
SOFT TISSUE REPAIR

After four decades from their invention, BGs have gained an
important status in the biomedical field (Baino et al., 2018,
2019). They are routinely used for treating various diseases form
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FIGURE 1 | The release of some metal ions from BGs into the surrounding environment has a positive effect on wound healing. Reproduced with some modifications

from Naseri et al. (2017).

bone injuries to cancer metastases (Johari et al., 2016; Kargozar
et al., 2016, 2017a, 2018d; Miola et al., 2019). The composition
of the first BG developed by Prof. Larry Hench (melt-derived
45S5 Bioglass R©) is based on a four-oxide system, 45SiO2-
24.5Na2O−24.5CaO−6P2O5 (wt %), which has a high amount
of Na2O and CaO as well as a relatively high CaO/P2O5 ratio that
makes the surface of the material very reactive in physiological
environment. This reactivity provides the BGs with the capability
of bonding to both hard and soft living tissues (Baino et al.,
2016). Although the primary types of BGs (silicate glasses) were
designed and used for hard tissue engineering, especially bone
healing, the use of them for soft tissue healing has also been
reported. As an illustration, Yu et al. clarified that pre-treatment
of fibroblasts by a silicate BG could be an effective approach for
the activation of skin tissue engineering constructs for improved
wound healing (Yu et al., 2015). The in vitro and in vivo
experiments showed that BGs stimulate fibroblasts to overexpress
some important growth factors and proteins (e.g., VEGF, bFGF,
EGF, collagen type I, and fibronectin) which leads to (Association,
2016) an improvement in their migration ability, (Sevitt, 1979)
an increment in the blood vessel formation, and (Krishnan et al.,
2013) the differentiation of fibroblasts into myofibroblasts in the
wound site. All the mentioned events, regulated via pretreatment
with BG, resulted in an acceleration of wound healing process.
Moreover, the efficacy of BGs for wound healing was shown
at the molecular level as reported by Li et al. (2016b). They
showed that 45S5 Bioglass R© ion extracts could prevent the death
of human umbilical vein endothelial cells (HUVECs) following
hypoxia, possibly through connexin hemichannel modulation.
The positive effects of BGs on gap junction communication
as well as the overexpression of connexin43 (Cx43) and other
molecules involved in wound healing, e.g., VEGF and FGF, were
also reported by the authors.

Recent advances have shown that new compositions of BGs
(e.g., borate and phosphate glasses) can be applied for soft

tissue healing (e.g., wound healing) as well (Naseri et al., 2017).
Compared to silicate glasses, borate- and phosphate-based BGs
exhibit some in vitro and in vivo behaviors (e.g., high dissolution
rate) which are in favor of soft tissue applications and quick
replacement with new tissue (Rahaman et al., 2011). In this
regard, Hu et al. evaluated the efficiency of copper-doped borate
BG/poly (lactic-co-glycolic acid) dressing loaded with vitamin
E (0-3.0 wt.%) for full-thickness wound healing (Hu et al.,
2018). The in vitro results clarified that the ions released from
the dressings encouraged the migration, tubule formation, and
VEGF secretion in HUVECs and fibroblasts. Moreover, the
data obtained from in vivo experiments revealed a substantial
improvement in the epithelialization of wound closure and a
significant increase in vessel sprouting and collagen remodeling.
The authors stated that the use of this composite biomaterial as a
wound dressing could actually be a promise for accelerating the
healing and reconstruction of full-thickness skin defects.

After being incorporated into the structure of BGs, some
specific ions may be subsequently released and elicit beneficial
biological effects such as improved cell proliferation (Xynos et al.,
2000), inhibition of bacterial growth (Zhang et al., 2010), and
stimulation of angiogenesis (Kargozar et al., 2017b) (see Table 2
and Figure 2).

For example, incorporation of silver ions (Ag+) into the
glass structure imparts antimicrobial properties over various
Gram-positive and Gram-negative bacterial strains (e.g., E. coli,
P. aeruginosa, and S. aureus), without eliciting any toxic effect
on human cells if silver is added under a threshold dosage
(Miola and Verné, 2016). The release kinetics of therapeutic
ions from BGs into the surrounding environment is determined
by some factors such as the ionic radius of doping element,
type of glass network, pH of the host environment, and
temperature (Kargozar et al., 2018a).

As one of the most attractive types of BGs, mesoporous
BGs (MBGs) are also considered as promising candidates for
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TABLE 2 | Therapeutic ions useful for soft tissue healing applications.

Therapeutic ions Application in wound healing References

Silver (Ag+) Inhibition of bacterial growth and thereby prevention of infection Lin et al., 2016a

Zinc (Zn2+) Improving epidermal keratinocyte proliferation and migration Deters et al., 2003; Lansdown et al., 2007

Showing antioxidant effects Rostan et al., 2002

Inhibition of bacterial growth and thereby prevention of infection Sirelkhatim et al., 2015

Copper (Cu2+) Regulation of the activity of proteins involved in wound healing such as VEGF

(enhancing angiogenesis) and maturation of collagen and elastin

Sen et al., 2002; Kornblatt et al., 2016

Inhibition of bacterial growth and thereby prevention of infection Abou Neel et al., 2005

Cerium (Ce3+) Improving the proliferation and migration of fibroblasts, keratinocytes, and VECs Chigurupati et al., 2013; Ramenzoni et al., 2017

Showing antioxidant and anti-inflammatory effects Davan et al., 2012; Kargozar et al., 2018c

Inhibition of bacterial growth and thereby prevention of infection Kaygusuz et al., 2017c

Gallium (Ga3+) Anti-inflammatory effects Whitacre et al., 1992; Orosz et al., 1996

Inhibition of bacterial growth and thereby prevention of infection Thompson et al., 2015

Calcium (Ca2+) Improving hemostasis Lansdown, 2002

Modulation of keratinocyte proliferation and differentiation Lansdown, 2002

Improving fibroblast proliferation Kawai et al., 2011

Improving type I collagen synthesis and the increasing ratio of collagen I/III Wang et al., 2015

Boron [(BO3)
3−] Acceleration of wound healing via activation of angiogenesis (overexpression of VEGF

and TGF-β)

Balasubramanian et al., 2017

Enhancing the proliferation, migration, and production of vital growth factors of

dermal cells

Demirci et al., 2016

repair and regeneration of wound injuries (Wang et al., 2016;
Kargozar and Mozafari, 2018). Experimental evidence showed
that these materials could be used as suitable carriers for
the controlled delivery of various therapeutic ions, drugs, and
chemicals accelerating the healing process. The usability of
MBGs have been previously well documented for antibacterial
strategies (Gargiulo et al., 2013; Wu et al., 2013; Kargozar et al.,
2018d) and angiogenesis-requiring applications (Dashnyam
et al., 2017; Zhou et al., 2017; Romero-Sánchez et al.,
2018). Also, Pourshahrestani et al. reported that gallium-
containing MBGs could improve hemostasis via stimulating
blood coagulation, platelet adhesion and thrombus generations
(Pourshahrestani et al., 2016).

In the context of soft tissue engineering, Wang et al.
developed a biocomposite made of copper-containing MBGs and
nanofibrillated cellulose (NFC) as a suitable dressing material
for chronic wound healing application (Wang et al., 2016). They
reported that this composite showed high bioactivity in simulated
body fluid (SBF) and could act as a matrix for the sustained
release of Cu2+ ions which inhibited the bacterial growth and
improved angiogenesis in order to promote wound healing.
Other MBG-containing polymer biocomposites like chitosan
(CS)/MBG porous films have also been developed as promising
wound dressing materials (Jia et al., 2011).

EVIDENCE OF BG SUITABILITY FOR
TREATING BURNS

Generally, burns are categorized into four groups based on their
depth and severity as 1st, 2nd, 3rd, and 4th degree. The extent
of the injury is limited to only the epidermis in the first-degree

burns, while it involves more layers of skin in the second-degree
burns including the superficial (papillary) dermis and also the
deep (reticular) dermis layer. The epidermis is lost, and damage
to the subcutaneous tissue occurs in the case of third-degree
burns; in addition to that, damage to the muscle, tendon, and
ligament tissue are observed in the fourth-degree burns (Dai
et al., 2010). It has been well documented that burns >10% of
total body surface area (%TBSA) in children or 15% in adults
are potentially life-threatening injuries as a result of the risk of
hypovolemic shock (Malic et al., 2007).

A few criteria are typically counted for any medication used
to treat or reduce the symptoms of burn injuries, i.e., attenuating
inflammation, reducing infection, removing excessive exudates,
and improving angiogenesis, thereby accelerating the healing
process (Rowan et al., 2015). The promise of BGs inmeeting these
requirements is illustrated in Table 3. As previously mentioned,
antimicrobial dressings are recommended for the management
of minor burns (Hyland et al., 2015). However, it has been
stated that there is no need for wound coverage if the skin
is intact and not blistered. In this condition, the use of a
simple moisturizer (e.g., silver sulfadiazine cream) has been
recommended (Australian NZB Association, 2002). On the
other hand, excessive or prolonged inflammation can result in
impaired wound healing (Sommer et al., 2013). It is possible to
prepare some compositions of BGs with the ability to reduce
inflammation (Varmette et al., 2009) and bacterial infection
(Coraça-Huber et al., 2014). As mentioned above, chronic
inflammation is one of the main complications in patients with
large burns which may impair wound healing (Ueno et al.,
2005). The efficacy of 45S5 Bioglass R© on human macrophages
and monocytes has been previously studied in vitro, showing
its potential in terms of attenuating inflammatory responses
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FIGURE 2 | The biological effects of BGs are related to the release of therapeutic ions from their structure into the surrounding environment. Reproduced with some

modifications from Kargozar et al. (2018a).

(Day and Boccaccini, 2005).Moreover, there is a hope to improve
the anti-inflammatory effects of BGs through doping with some
specific ions (e.g., Zn2+ and Li+).

From the antibacterial point of view, it has been shown
that BGs can decrease the risk of infections caused by both
Gram-positive and Gram-negative strains (Liu et al., 2016a,b;
Ottomeyer et al., 2016). This decrease can be achieved through
two mechanisms (usually combined) regulated by the dissolution
of BGs, including (i) the local increase of pH values in the
injured site (due to the delivery of alkaline cations such
as Ca2+ and Na+) and (ii) the release of antibacterial ions

(e.g., silver, copper, zinc, cerium, and gallium) (Ratha et al.,
2018; Bauer et al., 2019; Wajda et al., 2019). However, it
has been documented that the effect of pH depends on the
species of bacteria involved. For example, Wiegand et al.
showed that S. aureus exhibits an increased sensitivity against
silver nitrate with rising pH while P. aeruginosa exhibits
a decreased sensitivity (Wiegand et al., 2015). In order to
illustrate the potential suitability of BGs in the specific context
of burn injuries, Gholipourmalekabadi et al. compared the
antibacterial activity of silver- and fluoride-containing BGs
vs. commonly-used antibiotics on multidrug-resistant bacterial
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TABLE 3 | Potential capability of BGs to meet the criteria required for burn management.

Properties Notes References

Attenuation of inflammation Promising results in the general context of wound healing Day and Boccaccini, 2005; Varmette et al.,

2009

Prevention/treatment of infection Convincing results in the general context of soft tissue healing. One study has

been reported in the context of burn management, showing the efficacy of BGs

against multidrug-resistant bacterial strains typical of human infected burns.

Gholipourmalekabadi et al., 2016

Promotion of angiogenesis Convincing results in the general context of bone tissue and soft tissue healing. Lin et al., 2012, 2016b; Quinlan et al., 2015; Li

et al., 2016a; Kargozar et al., 2018b

Removal of exudates No evidence of that has been reported yet. This property is peculiar of MBGs

and is believed to be possible due to the highly-porous texture of MBGs.

Gholipourmalekabadi et al., 2016

Re-epithelization Promising results in the context of tissue engineering. Wang et al., 2017

FIGURE 3 | Direct observation of the burn wounds created in rats and treated with silk fibroin (SF)/chitosan (CHI), BG/SF, BG/CHI and BG/CHI/SF scaffolds after 3, 7,

14, 21, and 28 days. Reproduced with permission from Li et al. (2016a).

strains (K. pneumonia, S. aureus, E. coli, and P. aeruginosa)
isolated from patients with burns (Gholipourmalekabadi et al.,
2016). Their results revealed that, although fluoride-doped BGs
did not show any antibacterial activity against the tested bacteria,
BGs doped with 1 and 2% of silver significantly inhibited the
bacterial growth in vitro in all cases (inhibition zone up to 11
± 1mm). On the basis of this early experimental evidence, they
concluded that silver-doped BGs could play an important role in
the prevention of burn-associated infections, reduction of pain,
and removal of excessive exudates. The capability of removing
exudates is of great importance since they can fail the dressing to
stick to the injured tissues and subsequently disrupt the wound
healing process.

At present, other specific studies dealing with the efficacy of
BGs against the typical bacteria of infected burns are not available
in the literature; however, the potential suitability of BGs for the
management of burns can be supported by other results from
“general” wound healing applications.

The formulation of BGs for use in wound injuries (and
hence in burns) is of paramount importance. In this regard,
Lin et al. prepared BG ointments by mixing 58S sol-gel BG
micro-particles (SGBG-58S), 58S nano-BG (NBG-58S) and melt-
derived 45S5 BG (45S5) powder with Vaseline (V) at 18 wt.%
(Lin et al., 2012). They used this formulation for the treatment
of full-thickness skin wounds in both normal and diabetic rats,
whose injuries did not heal under conventional treatment. The
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FIGURE 4 | Schematic representation of possibilities of BGs for the treatment of burns. With some modifications from Homayoon (2015).

obtained data revealed that all the compositions could accelerate
the wound healing as a result of improving the proliferation
of fibroblasts and growth of granulation tissue as well as the
induction of angiogenesis. In addition to the susceptibility to
infections, destruction of the vascular supply to the burned
skin is one of the main barriers to the repair of injured tissue
(Guo et al., 2011). Hence, improving angiogenesis regulated by
BGs can be considered as a promising point regarding burn
healing. The release of specific metal ions (e.g., copper and
cobalt) fromBGs into the surrounding environment can promote
angiogenesis via hypoxia-mimicking pathways (Quinlan et al.,
2015; Lin et al., 2016b; Balasubramanian et al., 2017; Kargozar
et al., 2018b). Angiogenesis is vital to allow and/or accelerate
the healing of burn wounds. On this matter, Li et al. developed
BG/chitosan/silk fibroin composite scaffolds for the regeneration
of deep burn wounds (Li et al., 2016a). The authors used
these components with three specific and distinct aims: BG was
included for inducing angiogenesis, chitosan for promoting the
adsorption and enrichment of growth factors, and silk fibroin
for providing a three-dimensional (3D) porous structure and
mechanical support. Their results showed that adding BGs to the
composites was the key to promote the formation andmaturation
of new blood vessels, which can significantly accelerate the
wound healing process (see Figure 3).

Looking at the future and considering the peculiar properties
that a biomaterial in contact with burns should exhibit, MBGs

doped with therapeutic ions (see Table 2) could be regarded
as ideal candidates being capable to act as multifunctional
systems eliciting a local antibacterial effect and promoting
angiogenesis, which are both crucial features required for the
successful management of burns; furthermore, their highly-
porous structure could be useful in adsorbing burn exudates.

As a further promising point, the sustained release of
bioactive molecules that can be potentially effective in burn
healing [e.g., epidermal growth factor (EGF)] via MBGs has
been previously carried out; however, those studies were
addressed to another application, i.e., the acceleration of bone
regeneration (Wang et al., 2017).

IMPLICATIONS AND CONCLUSIONS

The impact of using BGs for the management of burns would be
highly significant from multiple viewpoints including scientific,
clinical, commercial, and socio-economical aspects. Specifically,
MBGs show great promise due to their exceptional processing
versatility and capability of acting as multifunctional platforms
for the local release of therapeutic ions and biomolecules(Wu
and Chang, 2014), which could perform a synergistic action
(e.g., anti-inflammatory, antibacterial and angiogenic effects)
addressed to promote the healing of burn injuries (see Figure 4).
From a clinical perspective, the use of therapeutic inorganic
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FIGURE 5 | Cotton-like fibrous scaffolds produced and implanted subcutaneously in rats including (A) 45S5 glass, (B) 13–93B3 glass, and (C) Cu-doped 13–93B3

glass; (D) higher magnification of the 13–93B3 glass microfibers with glass beads of variable size; (E) the mat of copper-containing 13–93B3 glass microfibers for

implantation in rats (E). Images reproduced from Lin et al. (2014) with permission.

agents (i.e., ionic dissolution products) released from BGs
or MBGs to treat burn-related infections could ideally allow
overcoming the problem of resistant bacterial strains, which has
been associated to the abuse of antibiotics in the last decades
and is one of the grand challenges of the 21st century (Ventola,
2015). In fact, bacteria cannot be resistant to the effects of
some inorganic cations, such as Ag+, that typically cause the
disruption of the membrane after linking to the membrane
proteins (Silvestry-Rodriguez et al., 2007).

From a commercial viewpoint, BG-based medical products
intended for the treatment of burn injuries would be unique and
highly novel. At present, no BG-based commercial medication
is available for this specific purpose. There is also a paucity of
BG-based commercial products for “general” wound healing.
Cotton-candy 13-93B3 borate BG (53B2O3-20CaO-12K2O-
6Na2O-5MgO-4P2O5 wt.%, trade-named as “Dermafuse”) has
been recently commercialized by Mo-Sci Corporation (USA)
to accelerate wound healing in veterinary medicine and has
also shown great promise for use in diabetic human patients
suffering from chronic wounds (Wray, 2011). This material has
a nanofibrous structure, so that blood platelets are trapped on the
BG fibers that offer mechanical support and stability for tissue
migration and the wound healing process. The fibers dissolve
over time and form hydroxyapatite microspheres, to which blood
vessels can attach. The antibacterial and proangiogenic properties

of 13-93B3 BG formulation could justify the evaluation of this
material for treating burn injuries, too. An evolution of this
material was recently investigated by Lin et al. who successfully
incorporates Cu2+ ions into 13-93B3 BGs microfibers and
prepared wound dressings with an enhanced capability to
stimulate angiogenesis, thereby significantly accelerating the
healing of full-thickness skin defects in a rodent model
(Lin et al., 2014) (Figure 5).

Appropriate in vitro and in vivo burn models should also
be developed to test the suitability of BGs for this specific
application; an overview of common testing methods is reported
elsewhere (Qu and Nourbakhsh, 2017). It is stated that the
method used to induce burns in experimental animals is, in fact,
one of the most critical factors of clinical and ethical relevance;
therefore, efforts should be made to reduce in vivo experiments
to a minimum. In this regard, direct contact with a heated metal
(usually created on the back of the animals) (Campelo et al.,
2011), electricity (usually performed on large animals) (Zelt et al.,
1988), and heated water (more widespread use) (Dahiya, 2009)
are the commonly-used approaches to generate burn surfaces
in experimental animal models (mouse, rat, pig, and monkey)
(Abdullahi et al., 2014).

The selection of the most suitable form of application of BGs
for burn care is another aspect deserving careful consideration.
Surgeons typically claim an off-of-the-shelf and easy-to-use
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product that can fit the burn extension and homogeneously
cover its surface. Three potential forms of application might
be considered, i.e., fibrous BG constructs (such as the above-
mentioned “Dermafuse”), BG-containing ointments that could
be easily spread topically and pliable composites (for example BG
micro- or nano-inclusions embedded in a soft polymeric sheet or
gel) (Kargozar et al., 2018e). The feasibility of all these potential
products has already been reported in the biomaterials literature
or industry, although in other contexts than burn care: thus,
no particular problems are expected to arise from a processing
viewpoint due to the great “technological” versatility of BGs.

Last but not least, given the absence of biomolecules
(drugs) incorporated in this new product for the treatment
of burn injuries, the regulatory procedure required

for clinical approval and use is expected not to be a
tremendously draining and resource-consuming path,
so that a large number of patients can benefit soon from
these achievements.
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