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Ultrasonography is the most widely used imaging technique in cardiovascular medicine.

In this technique, a piezoelectric crystal produces, sends, and receives high frequency

ultrasound waves to the body to create an image of internal organs. It enables practical

real time visualization in a non-invasive manner, making the modality especially useful

to image dynamic cardiac structures. In the last few decades, echocardiography has

been applied to in vivo cardiac disease models, mainly to rodents. While clinical

echocardiography platforms can be used for relatively large animals such as pigs

and rats, specialized systems are needed for smaller species. Theoretically, as the

size of the imaged sample decreases, the frequency of the ultrasound transducer

needed to image the sample increases. There are multiple modes of echocardiography

imaging. In Doppler mode, erythrocytes blood flow velocities are measured from the

frequency shift of the sent ultrasound waves compared to received echoes. Recorded

data are then used to calculate cardiac function parameters such as cardiac output,

as well as the hemodynamic shear stress levels in the heart and blood vessels. The

multi-mode (i.e., b-mode, m-mode, Pulsed Doppler, Tissue Doppler, etc.) small animal

ultrasound systems in the market can be used for most in vivo cardiac disease models

including mice, embryonic chick and zebrafish. These systems are also associated with

significant costs. Alternatively, there aremore economical single-mode echocardiography

platforms. However, these are originally built for mice studies and they need to be

tested and evaluated for smaller experimental models. We recently adapted a mice

Doppler echocardiography system to measure cardiac flow velocities for adult zebrafish

and embryonic chicken. We successfully assessed cardiac function and hemodynamic

shear stress for normal as well as for diseased embryonic chicken and zebrafish. In this

paper, we will present our detailed protocols for Doppler flow measurements and further

cardiac function analysis on these models using the setup. The protocols will involve
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detailed steps for animal stabilization, probe orientation for specific measurements,

data acquisition, and data analysis. We believe this information will help cardiac

researchers to establish similar echocardiography platforms in their labs in a practical

and economical manner.

Keywords: Doppler echocardiography, blood flow velocity, chick embryo, zebrafish, cardiac function,

mechanobiology

INTRODUCTION

Cardiovascular diseases (CVDs) are disorders of the heart
and blood vessels. They are the leading cause of mortality,
constituting 31% of all fatalities globally (Kendir et al., 2018).
CVDs can occur prenatally, known as congenital heart defects
(CHDs), or develop at later stages of life. CHDs account for
around 25% of all human congenital abnormalities (Roger et al.,
2011) and it affects 1–2% of infants globally. Although prenatal
cardiac malformations are linked to genetics, the etiology is
highly complex and involves multiple factors (Lindsey et al.,
2014). Recently, it has been shown that genetics accounts
for <20% of heart defects. Other environmental factors,
such as hyperglycemia during maternal diabetes, or disturbed
hemodynamics are thought to play a crucial role in CHD
development (Midgett et al., 2017). Hemodynamics are the
mechanical forces applied by blood flow, such as pressure or
shear stress. Primarily, blood is pumped during development
and remodeling, which suggests that hemodynamics governs
cardiac development (Hove et al., 2003; Forouhar et al., 2006;
Culver and Dickinson, 2010; Yalcin et al., 2011). The constant
interactions between blood flow dynamics and cardiac tissue
motion signals the endothelial cells lining the chambers and
the valves. Deviations from normal hemodynamic conditions
lead to cardiac malformations as the heart is very sensitive to
biomechanical cues at the early embryonic stages (Goenezen
et al., 2012). Clinical observations and animal experiments
have shown that when hemodynamics are disturbed, fetal
cardiac defects develop, consequently leading to CHDs at birth
(Goenezen et al., 2012). Disturbed hemodynamics also contribute
to formation of CVDs that develop later in life. For instance,
it was shown that heart valve/blood vessel calcification localize
to flow regions (i.e., oscillatory flow regions) that deviate from
normal hemodynamics (Balachandran et al., 2011; Mahler et al.,
2014; Fernández Esmerats et al., 2016; Amindari et al., 2017).

Animal models are very useful to investigate how disturbed
hemodynamics contribute to CVDs (Zaragoza et al., 2011). Their
use in relevant research facilitated to unravel various aspects of
the diseases including etiology, pathophysiology, progression,
and underlying biological pathways. Consequently, this
knowledge led to the advancement of new diagnostic techniques
and the discovery of new potential therapeutic approaches
(Chorro et al., 2009). Vertebrate species, particularly, are
favored models because of their highly conserved developmental
processes. Their lifespan is relatively short, by 3 months they
are considered as adults and in captivity they reach to 2 years
of age, which allows investigators to monitor the disease at an
accelerated pace. The genetically modified models that can be

developed allows the rapid establishment of proof-of-principle
(Camacho et al., 2016). For instance, rodent knockouts models
have been extensively used for assessing the effects of genes on
normal cardiac development and CVDs (Phoon et al., 2004;
Bruneau, 2008). Furthermore, rodent models are used to assess
the mother’s nutrition effects on cardiovascular conditions
and placental development on embryonic growth as well as
cardiac formation (James et al., 1998; Yu et al., 2008). However,
rodent embryos are not considered ideal models to study
hemodynamic effects on cardiac development; they lack the
ability to develop ex utero beyond early stages and accessing the
embryo in utero during development is challenging (Piliszek
et al., 2011). Additionally, certain genetic knockdowns are lethal
either during embryogenesis or at the early stage of adulthood
limiting the ability of the investigator to understand its molecular
mechanism, which in turn limits the window for developing
therapeutics. It is for all of these reasons that zebrafish and
embryonic avian models have been more widely used to monitor
hemodynamic conditions throughout development. In the case
of adult zebrafish, these investigations extend to include some
genes that cause severe phenotypes or are lethal in mammals
(Hove et al., 2003; Jenkins et al., 2010; Lindsey et al., 2014; Yalcin
et al., 2017; Yalcin, 2018). Although these models are being used
extensively by researchers, the available cardiac imaging systems
that allow the study of cardiac function in small animals are
complex and highly expensive.

Doppler echocardiography is a popular tool for assessing
cardiac function. The technique enables the measurement of
blood velocities through blood vessels, heart valves, and cardiac
chambers, which is then used to diagnose CVDs (Spencer et al.,
2013). Doppler echocardiography is also very useful to apply
to in vivo CVD models to investigate disturbed hemodynamics.
Most current small imaging echocardiography platforms are
designed for mouse studies and can be applied to other animal
models. For example, previously, we have adapted B-mode-
guided Doppler ultrasound visual sonic in vivo 770 platform
(Vevo 770, Visualsonics, Inc., Toronto, Candad) for embryonic
chick studies and documented evolving atrio-ventricular canal
and outflow tract (Yalcin et al., 2011; Bharadwaj et al., 2012).
Such high cost systems involve multiple modalities including
Doppler, m-mode, b-mode, and tissue strain. Alternatively, there
are also lower cost single mode Doppler echocardiography
platforms, used mainly for mice imaging. Adaptation of these
mice Doppler systems for use in other animal models requires
testing and evaluation of these platforms. Here, we explain how
we have adapted a mice Doppler echocardiography system to
embryonic chick and adult zebrafish studies. We believe this
information will help cardiac researchers to establish similar
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echocardiography platforms in their labs in a practical and
economical manner.

The studies were carried out in accordance with the
recommendations of “Use of Zebrafish” and “Use of Avian
Embryos” policies, Qatar University—Institutional Animal Care
and Use Committee (QU-IACUC). The protocol was approved
by the QU-IACUC.

THEORY OF BLOOD VELOCITY
MEASUREMENTS VIA DOPPLER
ECHOCARDIOGRAPHY

Typically, echocardiography imaging systems have three modes:
b-mode, m-mode, and Doppler. B-mode (brightness-mode)
and M-mode (motion-mode) are used for the assessment of
morphology and movement of the tissue, whereas Doppler mode
is used for the evaluation of cardiac function (Gregg and Butcher,
2012). More specifically, Doppler mode is used to measure blood
flow velocity and determine flow direction. The technique is
based on detecting the change in the frequency of sound waves
that occur as they are reflected off a moving object, known
as Doppler shift. Doppler echocardiography in vivo measures
blood flow by detecting the frequency shift due to movement of
erythrocytes (Gregg and Butcher, 2012; Kowalski et al., 2014). In
this technique, a piezoelectric crystal produces and sends short
impulse high frequency ultrasound waves to the body. Blood
flow velocities are then calculated from the sound waves as
scattered echoes received by the same crystal. It enables practical
real time flow measurement in a non-invasive manner, making
the modality especially useful to image dynamic cardiac flows.
The frequency required reflects the size of the sample, as the
size of the sample to be imaged decreases, the frequency of the
ultrasound transducer increases. The clinical platforms available
have transducers with maximum frequency of about 15 MHz,
while advanced imaging systems can go up to 90 MHz making
these systems more expensive.

Doppler mode utilizes real time spectral display, also known
as waveforms. These spectral waveforms are indication of the
dynamic nature of the blood flow through the heart and
they reflect the elasticity of heart chambers and blood vessels.
Therefore, obtaining these waveforms are very useful to monitor
the cardiac function. The spectra is generated based on the
Doppler shift according to Equation (1), where fd is the Doppler
shift, ft is the transmitted beam, V is the velocity of the blood, θ
is the angle between the transducer and the blood flow direction
and c is the speed of sound in tissue (Figure 1).

Doppler Frequency
(

fd
)

=
2 . ft . V . cos θ

c
(1)

Here, the factor two is for the round trip of the traveling sound
waves, from the transducer, hitting the sample and reflecting
back to the transducer. The direction of blood flow and the
Doppler wave angle between the ultrasound beam and vessel
are important factors in determining the velocity (Figure 2).
The bigger the angle the more interference with the recorded

FIGURE 1 | Blood flow velocity (V) measurement using an ultrasound

transducer. Doppler signal transmits a frequency (Ft) and receives the

backscattered signals from the moving erythrocytes within the vessel at a

frequency (Fd) known as Doppler shift. The angle (θ ) is the angle between the

transmitted signal and blood flow.

spectra. To obtain the largest Doppler shift using ultrasound,
the transducer must be placed at an angle of zero degrees to
the vessel of interest, however due to practical considerations,
clinically the angle is placed at around 60 degrees. For animal
experimentation, because of the small sizes of the animals, it
is easier to align the probe with flow so that the angle is
zero (please see relevant sections below and Figure 2). The
direction of the blood flow, away or toward, the transducer is
another important factor that interferes with the way the signal is
digitized (Figure 2). Once the spectrogram is obtained, the blood
flow velocities can be extracted from the waveforms and the heart
rate is calculated by the frequency analysis of velocity waveform
(Kowalski et al., 2014).

Doppler imaging modality is practical, and inexpensive in
comparison with other modalities like Magnetic resonance
imaging (MRI), Computed tomography (CT) and Optical
coherence tomography (OCT). In addition, Doppler platforms
are portable, facilitating image acquisition. Echocardiography is
completely non-invasive and it has not been associated with
any adverse effects (Spencer et al., 2013). Furthermore, Doppler
blood velocity parameters are particularly important in direct
translational studies. Cardiac parameters that are gathered with
other techniques include, the heart weight, left ventricular
volume, stroke volume, cardiac output, and aortic diameter are
all proportional to body weight. This means that as the body size
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FIGURE 2 | Graphical demonstration of the relationship between Doppler’s

shifted frequency with respect to the insonation angle of Doppler’s ultrasound

beam. Pointing the Doppler ultrasound beam toward the direction of vessel’s

blood flow results in observing a positive Doppler shifted signal. As the

Doppler ultrasound beam points away from the blood flow direction, a

negative Doppler shift signal is noted. The smaller the angle between the blood

vessel flow and Doppler ultrasound beam, the larger the Doppler shift signal.

As the Doppler ultrasound beam approaches a 90◦ angle, very small signals

are produced. Therefore, for any given blood flow, the larger the angle, the

smaller the Doppler shift.

changes these parameters vary. As such, translating some of these
measurements to other larger species or even humans would be
difficult and direct translation would be challenging. On the other
hand, aortic velocity and pulse wave velocity that can be obtained
via Doppler are independent of body size. Aortic velocity and
pulse wave velocity of a mouse, rat or a human, without the
timing scale, are very similar. Their values across species do not
vary that much allowing for a direct translation (Dawson, 1991).

Doppler echocardiography has been widely used in relatively
larger mammalian animal models for in vivo cardiac function
assessment (Watson et al., 2004; Locatelli et al., 2011). However,
studying a small organism with a length size that ranges from
20 to 40mm is challenging, nonetheless, it is now possible
through the use of advanced high-frequency ultrasonography
(up to 70 MHz, 30µm axial resolution). The use of high
frequency echocardiography in assessing cardiac function in
small animals has recently begun to be explored. However,
standardized approaches for image acquisition and data analysis
are critically lacking. To date, reported studies displayed
substantial differences in the methodologies including the choice
and concentration of anesthetic agent, scanning environment
and scanning views and analyzing techniques. Furthermore,
there was limited data on reproducibility and quality control
(Ho et al., 2002; Sun et al., 2008; Parente et al., 2013; González-
Rosa et al., 2014; Lee et al., 2014; Hein et al., 2015; Huang et al.,
2015; Kang et al., 2015; Wilson et al., 2015; Ernens et al., 2016).
There are several systems available that could be utilized for
Doppler echocardiography analysis for small animal imaging. In
this study, we aimed to adapt a commonly used mice Doppler
platform for embryonic chick and adult zebrafish models, which
are two common models of cardiac research. Below are the

details of our image acquisition and image analysis practice using
the system.

Mice Doppler System
There are multiple Doppler systems used primarily on
anesthetized mice and rats for noninvasive evaluation of
the cardiovascular physiology (Hinton et al., 2016). They
allow investigators to follow changes that occur due to
disease progression, remodeling, aging, and the effects of
pharmacological or surgical interventions. These systems
consists of four components: two hardware component boxes,
the Pulsed Doppler Transceiver (PDT) and Doppler Signal
Digitizer (DSD), as well as a Handheld transducer and Doppler
Workstation (DW). Here, as an example, we will present Indus
Doppler System (Indus Instruments, USA.). System components
and data acquisition for other similar systems do not differ.
The transceiver has two channels and the digitizer takes the
signal and transfers it to the computer. The PDT channels gives
the option to set the direction of the flow, the range, the filters
and the type of the transducer probe used. The range is the
distance from the tip of the transducer probe to the location
where velocity is measured and filter is selected to minimize
noise in the measurement. There are three different probes
available for measurements: 5, 10, and 20 megahertz (MHz).
We have added a probe holder for micromanipulations (WPI
3301 micromanipulator), to facilitate the probe’s orientation, and
stabilization. The system component is displayed in Figure 3. As
mentioned above, the angle is quite important when calculating
the velocity. Ideally, it is preferred to fade to zero so that it has no
effect on the velocity calculation. This means the Doppler probe
has to be aligned with the blood flow as much as possible either
with the blood moving toward or away from the probe. The
probe on the Indus system is quite small, 1.0mm diameter, which
facilitates aligning it with the flow without creating an angle
(Figure 3). The software setup and the data analysis are similar
however, Doppler velocity measurements, data acquisition using
this system will differ according to the species studied. The
reason is that the structure and location of the heart and blood
vessels differ across the species. The details of the measurements
for the chick embryo and zebrafish will be discussed later on in
this paper.

Doppler Signal Processing Workstation software is used to
process the signal from the DSD. One important parameter that
needs to be set prior to acquisition is the crystal frequency; this
will depend on the probe being used (Figure 4, setups, system).
Another important parameter that needs to be adjusted, although
not important during acquisition but crucial during analysis,
is the angle between the probe and the blood flow direction
(Figure 4, Setups, Doppler, angle). Fast Fourier transform (FFT)
parameters in Doppler setting tab controls the way the signal
is presented (Figure 4, Setups, Doppler, FFT window). For
best image signal, specifically for applications presented here,
Blackman view along with central alignment and 1,024 samples
can be selected. No high pass filter is needed but a low pass
filter of 120,000Hz is appropriate. These settings can be found
from the setup menu under system and Doppler tabs. Finally, the
length of the recorded signal has to be identified. This can be done
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FIGURE 3 | Mice Doppler system. The system is composed of a Doppler work station, signal digitizer, transceiver, a remote range control, and a handheld transducer.

The interface shows a spectrogram of a signal containing a frequency of 20 kHz.

FIGURE 4 | Doppler signal processing workstation user’s interphase.

from the setup menu under options. Once these parameters are
set, acquisition can be started to obtain a spectrogram.

The spectrogram obtained can then be analyzed using an
analysis software. Usually, software provided with the system
for data acquisition is also used for data analysis. For the Indus
software, from the analysis menu, analysis control window is
opened to process the waveforms (Figure 4). The software can
automatically detect the envelopes, tracing the edges of the
Doppler spectrogram (Figure 5, yellow line), which will then be

exported as a data file to be further processed. Here we will
present how to make measurements for blood flow through the
heart valves. Some important parameters are heart beat in beat
per minute (bpm), peak velocity (cm/s), average velocity (cm/s),
and ejection time (ms). Heart beat is calculated by identifying
number of peaks in a known time duration. Software enables
identifying peak forward velocity (shown as PFV in Figure 5),
start of forward velocity (shown as FVS in Figure 5), and end
of forward velocity (shown as FVE in Figure 5) for each beat
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in the spectrogram. Ejection time is the time from FVS to FVE
and represents the time duration where the valve is open. Peak
velocity is calculated by averaging all peak velocities in the
spectrogram. Average velocity is the average of velocity averages
for each beat. For Indus software, these can be calculated directly
by the software. The envelope can be exported as a data file to
Microsoft Excel or other similar program to plot velocity profiles.

In the following sections, adaptation of the Indus mouse
Doppler platform for chick embryo and zebrafish studies are
explained in detail. We will first give a brief review on the use
of these animal models in cardiac research and then will describe
our approach in using the Indus Doppler system to assess cardiac
function by demonstrating representative data.

ADAPTATION OF THE MICE DOPPLER
SYSTEM FOR EMBRYONIC CHICK FLOW
MEASUREMENTS

Chick embryos are often used as a biological model of cardiac
development. The model offers several advantages, for example
the embryo develops in a planar orientation on top of the
egg yolk, enabling a variety of imaging and local microsurgical
options to alter blood flow. Furthermore, the cardiogenic period
of the chick is longer than other species enabling more detailed
spatiotemporal analysis. Another major advantage is that chick
can adapt to microsurgical treatments well and are of limited
ethical concern. Finally, the chick embryonic heart develops
similarly to the human embryonic heart, with four chamber four
valve configuration (Midgett and Rugonyi, 2014). Owing to those
features, embryonic chick is an ideal model to study development
of CHDs under abnormal hemodynamics.

In a developing embryo, heart is the first organ that starts
to function. It facilitates embryonic growth as it converts
nutrients to surrounding tissues. The heart starts as a linear
valve-less tube. As the embryo grows, it transforms to a multi-
chambered structure that comprises of four chambers and four
fibrous valves in higher species (Srivastava and Olson, 2000;
Beis et al., 2005; Butcher et al., 2007; England et al., 2016).
Despite some differences with human heart, for example during
septation and aortic arch remodeling, avian heart resembles
the human anatomy (Supplementary Figure 1) more closely
than other non-mammalian models (Andersen et al., 2014).
It was originally thought that the sole function of a beating
heart during the embryonic development is pumping blood for
convective transport of blood throughout the body. However, it
was later shown that, diffusion is a sufficient means of transport
for oxygen, nutrients, metabolic wastes, and hormones in the
early embryo (Burggren, 2004). On the other hand, mechanical
perturbation of blood flow causes abnormal cardiogenesis,
suggesting hemodynamic forces generated by contraction of
cardiomyocytes in fact act to drive cardiogenesis (Granados-
Riveron and Brook, 2012; Samsa et al., 2013; Lindsey et al.,
2014). During normal development, flowing blood exerts several
forces on surrounding tissue. These forces include the blood
pressure force on the walls, the associated circumferential stress
that occurs as the walls stretch in response to pressure, and the

frictional force exerted by flow along the walls, wall shear stress
(Gjorevski and Nelson, 2010). These mechanical signals induce
gene expression and differentiation on a cellular level, translating
molecular level events into tissue-level formations that guide
embryo development (Wang et al., 2009; Mammoto and Ingber,
2010; Yalcin et al., 2011; Bharadwaj et al., 2012; Buskohl et al.,
2012). Therefore, disturbed hemodynamics is a major epigenetic
source for congenital heart defects.

Disturbing the hemodynamics by altering blood flow in chick
embryo can easily be established through surgical intervention.
The micro-surgery approaches are to constrict blood flow at
certain locations in the heart to recreate a hemodynamically
driven clinical CHDs. A good example of inducing CHD in chick
embryo is left atrial ligation (LAL). LAL is a surgical approach
for studying the development of hypoplastic left heart syndrome
(HLHS). In LAL, a suture is placed around the left atrium and tied
in a knot to constrict the left atrioventricular (AV) orifice and to
decrease the effective volume of the left atrium (Yalcin et al., 2010;
Midgett and Rugonyi, 2014). LAL has been performed at day 3–4,
during the looping stages and before septation (Tobita and Keller,
2000; Tobita et al., 2002; Lucitti et al., 2005; Hu et al., 2009). The
partial ligation of the left atrium reduces its size, narrows the
inflow area of the left ventricle (LV), and redirects blood flow
from the left to the right side of the heart. The redistributed
hemodynamic load results in the hypoplasia (underdevelopment)
in the left side and hyperplasia (overdevelopment) in right side
cardiac structures (Tobita and Keller, 2000). Since the left side
hypoplasia is a characteristic of HLHS, phenotype generated via
LAL is accepted as an animal model of human HLHS (Midgett
and Rugonyi, 2014). Other surgical interfaces in chick embryo
include vitelline vein ligation (VVL) which is a process in which
one of the vitelline veins that drain blood to the embryonic
heart is ligated or clipped and conotruncal banding (CTB) where
the outflow tract (OFT) is narrowed with a suture (Lucitti
et al., 2005; Pang et al., 2017) . Similar to LAL, also these
microsurgeries are usually performed on embryonic day 3–4,
since heart at this stage is very sensitive to blood flow alterations
(Hove et al., 2003). All of these microsurgeries produce specific
phenotypes resembling different human CHDs. These disease
models help to investigate the disturbed hemodynamics during
disease progression for understanding the etiology as well as for
generating new therapeutic approaches.

These surgical procedures require direct access to the embryo.
This can be managed by culturing the chick embryos either
outside their shells (ex-ovo) or within their shells (in-ovo). Ex-ovo
culture requires yolk and the embryo to a culture platform such
as a petri dish, or a hammock like structure (Yalcin et al., 2010).
In-ovo culturing method requires opening of a small window on
the shell. For both techniques, egg shell should be cut at a stage
where the vitelline vessels are not attached to the walls. Also,
sufficient time should be given to the embryo to develop inside
the shell. In our practice, we found out that, day 3 is the optimal
time to crack the egg for ex-ovo culture, or open the egg window
for in-ovo culture. For both cultures, external environmental
interferences have to be minimized. In here, we use the in-ovo
culture system to measure blood flow velocities using the mice
Doppler platform.
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FIGURE 5 | Doppler spectrograph waveform analyzed using Doppler workstation software. (A) A wave from an atrioventricular valve and (B) outflow track valve.

In-ovo Chick Embryo Culture
Fertilized eggs should be incubated directly after laying in a
37.5◦C incubator with 60% humidity; however, if there is a
requirement to delay the experiments, eggs can be reserved up to
5–7 days in a 13◦C cooler before the embryos start development.
On day 0, eggs are placed blunt end to the top in an incubator,
with continuous rocking for 72 h (3 days). On day 3, the eggs
are taken out of the incubator in batches of 10 so that their
temperature does not drop drastically. They are then kept laying
horizontally for few minutes to allow the embryo to relocate
to the top of the egg. On the blunt end, a hole is gently made
with a surgical scissor. While the egg is stable, a 19-gauge needle
attached to a 5ml syringe is inserted vertically inside the egg,
with caution not to poke the yolk, to remove about 5ml of the
albumin (egg white). This is done to lower the yolk with embryo
for preventing rupture of the yolk with scissor penetration during
cutting. The hole is then covered by clear adhesive tape. White
paper tape is placed to the top of the egg to facilitate opening
a widow without harming the embryo. The widow is made by
creating a hole then enlarging it by cutting in a spiral form.
Finally, created window is covered by a transparent tape and eggs
are placed in a portable incubator under the same conditions.
These steps are illustrated in Figures 6A–I.

Embryo Environmental Stabilization
Since the procedure of measuring blood hemodynamics is
performed outside the incubator, the fluctuating temperature
will almost certainly interfere with the recorded data and create
variabilities across the study groups. As such, embryos must be
maintained at the same temperature that they were incubated
at to minimize environmental interferences. We have developed
an easy and affordable setup that maintains the embryos at a
temperature of 37◦C during analysis. The setup requires a dry
block heater, lab Armor beads, aluminum foil, water resistant

tape, and water. The aluminum foil is placed in the dry block then
filled with the Armor beads. The beads are then covered with
foil and a groove that resembles the shape of the egg is made.
These beads are good heat conductors, however to assure good
conduction through the egg, the groove is covered with the water
resist tape and a small amount of water is added to the groove.
This way, heated water would conduct the heat through contact
with the egg. For this particular setup (Figure 6J), we found that
setting the heat block to 40◦C results in a water temperature of
37◦C. Once the water temperature reaches 37◦C, the eggs can
be placed on top of the shallow water and the experiment can
be started.

Chick Embryo Blood Flow Velocity
Measurement Using the Mice
Doppler System
To access the embryo, the chorionic and allantoic membranes
need to be removed using a dissecting stereo microscope and
a pair of sharp forceps to expose the heart. For Doppler
measurements, eggs are placed on the preheated dry block setup.
Few drops of prewarmed Tyrode’s solution is applied on the
embryo near the heart to couple sound waves. The embryo’s
orientation is crucial and it should be set exactly as described
below to reduce the angle between the probe and the detected
flow to zero degrees, so that sound waves and blood flow are fully
aligned. Furthermore, the channel being used in the PDT should
be set to “AWAY” as the flow direction is moving away from the
probe, which will result in getting positive velocity values since
blood is moving away from the probe.

Here we explain Doppler blood flow measurements for
embryonic day 5 as an example. This is a pre-septation stage
where the heart is composed of one main ventricle, one atria, one
AV valve, and one OFT valve. AV and OFT valve measurements
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FIGURE 6 | Details of in-ovo culture and temperature stabilization during Doppler measurements. (A) The egg is kept horizontal for few minutes. (B) A hole is made

using dissection scissors and with the aid of a needle and a syringe about 5ml of the albumin is removed. (C) A clear tape is used to cover the hole. (D) Paper tape is

placed on the top horizontal side to stabilize the egg. (E) Using dissection scissors, a small hole. (F) The hole is enlarged to locate the embryo. (G) Once the embryo is

located, the hole is enlarged to allow access to the embryo. (H) Using a clear tape, the window is covered. (I) Eggs are then returned to the incubator. (J) Temperature

stabilization for chick embryo using dry block heater covered by aluminum foil containing armor beads. The setup is sealed with water resistant tape. Water is added

on top of the tape and to reach a water temperature of 37◦C the heat block should be placed at 40◦C.

are presented here. For other stages, minor adjustments to below
protocol may be needed. A 20 MHz probe is suitable for this
application. The chick embryo naturally lays on its left side,
exposing the right side on top. To get good signal from the OFT,
we found that, the natural orientation of the embryo is good. The
probe is oriented toward the OFT valve from the apex, from the
embryo‘s tail side. At that configuration, the probe is oriented at
angle of around 30 degrees with the horizontal surface as shown
in Figure 7A. To get the signal from the AV valve, we found that,
Doppler transducer needs to approach the embryo from its left
side on top. Therefore, the embryo is gently flipped with a blunt
forceps and the probe is placed between the atria and the ventricle
just near the head where the eye is located as shown in Figure 7B.
For AV valve, the probe is again oriented at about 30 degrees
to the horizontal surface. Doppler velocity signal acquisition was
explained above and hence is not repeated here. It is appropriate

to save a signal for about 5 s which will save about 10–15 peaks,
sufficient for further analysis.

Prior to proceeding with analyzing diseased models, blood
flow velocities of control embryos were measured and compared
with published data obtained using different and more advanced
platforms. Figures 8B,D illustrates velocity profiles that were
extracted previously using Vevo 770 echocardiography platform
for normal day 5 embryos (Yalcin et al., 2011). The data obtained
from the mice Doppler system (Figures 8A,C) on the same day
compares well. Spectrograms that represents blood flow velocities
at the AV (Figure 8A Mice Doppler system and Figure 8B

previous data) and OFT valves (Figure 8C Mice Doppler system
and Figure 8D previous data) shows that the waveforms as well as
the velocity peaks extracted from both platformersmeasurements
are similar. The difference between advanced platforms and the
mouse Doppler system is the appearance of a shadow in the
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FIGURE 7 | Chick embryo orientation for Doppler echocardiography analysis. (A) For outflow track blood flow measurement, the embryo is kept laying on its left side

and the transducer probe is oriented as shown in the figure. (B) For blood flow measurement at the atrioventricular valve, embryo should be gently flipped using a

blunt forceps and the transducer probe should be oriented as shown in the figure.

spectrogram for the Indus system. The shadow is a mirror image
of the recorded waveform with a lower brightness. However, the
software recognizes this and only detects the actual signal. The
velocity envelope can also be further corrected by the user with
that information. Figures 9B,C, illustrates extracted waveforms
over one cardiac cycle for blood flow velocities at the AV and
the OFT canals. The reproducibility of the blood flow velocity
waveforms and good comparison with the data obtained by
advanced platforms validates the Indus platform as a good tool
for blood flow velocities measurement in the chick embryo.

Effect of Left Atrial Ligation (LAL)
Microsurgical Procedure on the
Heart’s Hemodynamics
To further evaluate the system for embryonic chick cardiac
disease models, we studied velocity profiles after LAL. As
mentioned earlier, LAL is a microsurgery where a nylon knot
suture is tied around the left atrium of the heart. LAL was
performed on the 4th day of incubation, during cardiac looping
but ahead of septation. Figure 9A, summarizes the microsurgical
steps. Briefly, the chorionic and allantoic membranes are
removed over the embryo grown in our in-ovo culture. Naturally,
the embryo sits on its left side; therefore, the embryo is lifted from
the back and vertically rotated in order to access the left heart.

Pericardium over the left atria (LA) is then cut and removed
with fine forceps. Knots of approximately 0.5mm diameters are
prepared from 10-0 nylon surgical suture. These knots are aligned
over the LA then tightened so that the volume of the LA is
reduced to about 75%. This interference is expected to constrict
the blood flow through the left side of the AV canal. The embryo
is rotated back, to its original position following the procedure so
that the right side is on top. Details of this procedure can be seen
in our video protocol (Yalcin et al., 2010).

The changes in the hemodynamics at the AV and OFT canals
was assessed 24 h following LAL. Figures 9A, 10B shows the
velocity profiles at the AV and OFT canals, respectively, over
cardiac cycle for control as well as for LAL hearts. The velocity
profile at the AV canal of the control groups showed distinct
peaks representing passive (first peak) and active (second peak)
contractions. On the other hand, the velocity profile at the AV
canal of the LAL group had a wider spread with higher passive
contraction peak and lower active contraction peak. For the
OFT canal, the velocity profile of the control groups showed
an initial regurgitating flow whereas the LAL group OFT canal
velocity profile did not show this behavior. Both AV and OFT
velocities match very well with our previous measurements with
Vevo 770 system. More specifically, In AV channel, we see a
dramatic decrease in peak velocity, suggesting decrease in WSS
levels. However, average velocity does not differ in AV, suggesting
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FIGURE 8 | Chick embryo blood flow velocity waveforms obtained by mice Doppler system (A,C) and Visualsonics in vivo 770 platform (B,D). The waveforms were

measured at the atrioventricular (A,B) and outflow track canals (C,D). The data obtained by both platforms compares well. The spectrograms from the mice Doppler

system (A,C) shows a mirroring shadow of the recorded signal. The analysis software, however, recognizes this and detects only the correct signal, traced in a yellow

line.

preservation of cardiac output. In OFT no significant change
is observed rather than disappearance of initial regurgitation
for LAL embryos. Tabulated data can be found in Table 1.
These changes were expected after LAL surgery (Yalcin et al.,
2011), which again validates the mice Doppler system blood
flow measurements.

ADAPTATION OF MICE DOPPLER SYSTEM
FOR ADULT ZEBRAFISH FLOW
MEASUREMENTS

During the past two decades, zebrafish, Danio rerio, a small
tropical freshwater fish, has become a popular vertebrate model
for research. This was mainly due to the number of large-scale
mutagenesis screens that have been conducted successfully with
this animal model (Kari et al., 2007). Its high similarity to human
gene sequence and function (87% similarity) may indicate why
zebrafish can be used to model human diseases (Lieschke and
Currie, 2007; Howe et al., 2013). It is estimated that 70% of
the human genes have ortholog genes in the zebrafish genome
(Barbazuk et al., 2000; Bournele and Beis, 2016). Compared
to other mammalian models, zebrafish offer several advantages
such as rapid development and reproduction, convenient genetic
manipulation techniques, and low cost maintenance. These
criteria rendered this small fish as an ideal organism to study

the genetic basis of disease. A single female can produce ∼200
eggs weekly allowing for large scale analysis (Parng et al., 2002;
Poon and Brand, 2013). Furthermore, the zebrafish embryos are
fertilized externally allowing for quick collection and genetic
manipulation (Miura and Yelon, 2011).

Even though zebrafish does not spontaneously develop
cardiovascular disorders analogous to humans (McLeish et al.,
2010), a number of conditions can be readily modeled for
cardiac research. Several cardiovascular specific transgenic
strains have been generated. Zebrafish have a cardiovascular
system with a tubular two-chambered heart with gills instead
of lungs. The heart develops early during embryogenesis, and
the heart starts to beat at 24 hpf (hours post fertilization).
Supplementary Figure 2 demonstrates the stages of zebrafish
heart development and compares an adult zebrafish heart to
a human heart. The anatomical differences between zebrafish
and humans are considerable, but the ease of studying zebrafish
and rapid rate of cardiac development makes them a valuable
model for heart disease. The zebrafish cardiomyocyte action
potential seems almost identical to their humans’ counterparts
(Verkerk and Remme, 2012). Cardiac related diseases that are
currently studied in zebrafish include congenital heart diseases,
heart failure, cardiomyopathy, cardiac arrhythmia, myocardial
infarction, and valvular heart disease (Chi et al., 2008; Bakkers,
2011; Dhillon et al., 2013; Asnani and Peterson, 2014; Liu
et al., 2016). Since zebrafish heart develops rapidly, cardiac
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FIGURE 9 | Effect of left atrial ligation (LAL) on blood flow velocity. (A) Steps of LAL procedure; the embryo sits on its left side, it is flipped to have access to the left

atria (LA). A pre-prepared knot using 10-0 nylon surgical suture is positioned over the left atrium then tightened so that the volume of the LA is reduced to about 75%.

Extracted data of blood flow velocities at the (B) atrioventricular (AV) and (C) outflow track (OFT) canals over cycle fraction along with an example waveform peak for

LAL and control embryos. The velocity profile at the AV canal of the LAL group had a wider spread with higher passive contraction peak (first peak) and lower active

contraction peak (second peak). The velocity profile at the OFT canal of the control groups showed an initial regurgitating flow whereas the LAL group OFT canal

velocity profile did not show this behavior.

drug screening in the zebrafish can be performed early, but is
likely best done after 96 hpf. Studying how cardiac function
is affected by genetic manipulation, drug or toxin exposure, or
cardiac intervention in zebrafish may help to both understand
the mechanism of action and reveal new therapeutic targets.
Time-lapse microscopy is sufficient to study cardiac function in
zebrafish embryos and larvae, since zebrafish have transparent
skin at early stages, enabling the direct visualization of the heart
and blood vessels. For cardiovascular assessment for zebrafish
embryo/larvae, detailed protocols can be found in our previous
work (Yalcin et al., 2017; Eisa-Beygi et al., 2018; Zakaria et al.,

2018). As the zebrafish age and lose skin transparency the
Doppler technique must be used for heart function assessment.
We have also adapted a Doppler system used for mice as a tool to
measure the heart valve blood flow velocities in adult zebrafish.
Below is a description of our method.

Stabilization of Adult Zebrafish
Adult fish need to be immobilized to allow cardiac
measurements. This can be done by anesthetization prior
to the procedure. Tricaine methanesulfonate (Tricaine) is a good
agent that is commonly used to sedate the fish (Carter et al.,
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FIGURE 10 | Setup and orientation of zebrafish for Doppler echocardiography analysis. (A) The fish is stabilized on a wet sponge on its dorsal side toward the sponge

making sure it is fully immersed in water. The 20 MHz transducer probe is positioned (B) perpendicular to the ventral side of the fish to obtain the atrioventricular valve

(AV) flow or (C) at an angle to obtain the outflow rack (OFT) flow. (D) Myocardial infarction induction using cryoinjury. The fish in (A) was obtained from www.

shutterstock.com.

2011). For Doppler analysis, the fish is transferred to a tank
containing a final concentration of 90 mg/L Tricaine, prepared
in water obtained from the fish system, for several minutes until

the fish loses equilibrium and spinal reflexes. As mentioned
previously, orientation is crucial when it comes to Doppler
analysis, this presents a challenge when attempting to observe
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TABLE 1 | Day 5 chick embryo heart rate and blood flow velocities that were obtained with Indus Doppler system.

Parameters Control LAL P-value

Heart Rate (bmp) 166.45 ± 5.11 120.83 ± 1.69 <0.0001

Blood flow velocity AV OFT

Control LAL P-value Control LAL P-value

Peak velocity (cm/s) 30.08 ± 0.72 15 ± 0.74 <0.0001 23.62 ± 1.40 23.38 ± 0.77 >0.9999

Ejection time (ms) 98.6 ± 4.63 261.8 ± 6.62 <0.0001 181.5 ± 3.25 208.29 ± 6.88 <0.0001

Mean velocity (cm/s) 4.48 ± 0.10 4.42 ± 0.13 >0.9999 5.99 ± 0.58 6.29 ± 0.25 >0.9999

Data is presented as mean ± SD. Analysis was by unpaired student t test. A p < 0.05 was considered as statistically significant. A total of 5 embryos were analyzed per group.

free-floating fish. A simple method to keep the fish in the correct
orientation and in a wet environment is using a water soaked
sponge. A small hole that resembles the shape of the fish is made
in the middle of a sponge. The sponge is put in a tray then
soaked with water from the fish system. The sponge has to be
saturated with water so that the created hole is filled with water.
The fish is then moved to the hole and Doppler analysis can be
initiated. It is important that the fish is maintained at 25–29◦C
during the analysis as abnormal temperatures will interfere with
cardiac measurement.

Adult Blood Flow Velocity Measurement
Using the Mice Doppler System
The procedure has to be performed relatively quickly before
the anesthesia wears of. Once the fish starts to flick its tail, the
experiment has to be stopped and the fish has to be transferred
to a tank of fresh system water to recover. Anesthetizing fish in
90 mg/L tricaine allows for a 5-min window for Doppler analysis.
The breathing of the fish needs to be closely monitored during
the measurement. This can be done through examining the gills.
If any changes in the base line of the movement of the gills is
observed, the experiment has to be stopped and the fish needs to
be put back the fresh system water to recover.

The fish has to be oriented with its dorsal surface toward
the sponge and its ventral surface facing upwards (Figure 10A).
This orientation has been previously described when measuring
cardiac function using more advanced platforms (Hein et al.,
2015; Wang et al., 2017). It is unnatural to the fish and it
might induce stress, consequently affecting the heart rhythm and
cardiac output. This is a limitation about the animal model since
all imaging modalities, including the one described here, require
stabilizing the fish in such way to have access to the heart.

To measure the blood flow velocities at the AV valve, the
probe should be perpendicular on the fish, toward the cranial
end, and just below the gills (Figure 10B). To measure the blood
flow velocities at the OFT valve, the angle of the probe has to
be adjusted to 45 degree with the fish’s horizontal axes. The
probe’s head has to be oriented toward the cranial end and the
base toward the caudal end (Figure 10C). These orientations
will assure ultrasound signals and blood flow direction are fully
aligned (Instruments, 2017). The water around the fish creates
an aqueous contact zone between the ultrasound probe and the

animal, whereby up to 1 cm standoff can be maintained via liquid
surface tension. Once the procedure is completed, the fish has to
be immediately placed in a tank full of system water for recovery.

Blood flow velocities were measured at the AV and OFT
valves for normal wild type (AB) zebrafish at 1 year of
age. A 20 MHz Doppler probe transducer was used for this
purpose. Previous Doppler echocardiography examinations on
adult zebrafish showed distinct E and A waves in AV velocity
profile, representing filling of the ventricle at early diastolic inflow
(E) and late diastolic inflow (A) (Lee et al., 2014; Hein et al.,
2015; Instruments, 2017; Packard et al., 2017). Negative OFT
velocities are also detected while measuring AV velocity, as seen
in Figure 11A. OFT velocity profile obtained from a previous
study is shown in Figure 11C. These two velocity profiles were
used as a reference for the mice Doppler measurements to
confirm correct readings. For the AV profile using Indus Doppler
system (Figure 11B), distinct E and A waves were also seen in the
image, where E wave was smaller thanAwave. Similar to previous
studies, the OFT velocity signal was also present in the AV
recording. The OFT velocity profile using Indus Doppler system
(Figure 11D), identical to previous measurements, included a
wider region of positive velocities. The heartbeat and other
blood flow velocities are summarized in Table 2. From AV valve
velocity profile, measuring E and A waves velocities are used
to calculate E/A ratio. This ratio is used to assess diastolic
function. Unlike human, zebrafish E/A ratio is smaller than
one (Packard et al., 2017). In zebrafish cardiomyopathy and
myocardial infarction models, this ratio was shown to increase
(Lee et al., 2014; Hein et al., 2015; Packard et al., 2017) which
suggests ventricular diastolic dysfunction. Figures 11E,F (blue
line), illustrates extracted waveforms of the blood flow velocities
at the AV and OFT canals over the cycle fraction.

Effect of Myocardial Infarction on the
Zebrafish Heart’s Hemodynamics
To further evaluate the system for zebrafish cardiac disease
models, we studied velocity profiles after cardiac injury.
Myocardial infarction was induced using cryoinjury method as
described by Chablais and Jazwinska (2012). Briefly, a stainless
steel rode (cryoprobe) with a diameter of 0.8mm was cooled
down by immersing the tip in liquid nitrogen for 3min. Zebrafish
was anesthetized using 90 mg/L tricaine. The fish was then
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FIGURE 11 | Adult zebrafish blood flow velocity waveforms. (A,C) Waveforms obtained from literature (Instruments, 2017). (B,D) Waveforms obtained by the Indus

mice Doppler system. (A,B) The waveforms were measured at the atrioventricular. (C,D) The waveforms were measured at the outflow track canals. Both set of data

compare well, showing the same peaks with the same velocity profile. (E,F) Extracted data of blood flow velocities. Data was obtained from control and myocardial

infarcted adult zebrafish at the (A) atrioventricular (AV) and (B) outflow track (OFT) canals over cycle fraction along with example waveform peaks.

TABLE 2 | Adult zebrafish heart rate and blood flow velocities that were obtained with Indus Doppler system.

Parameters Control (Pre cryo) Post cryo P-value

Heart Rate (bmp) 121.95 ± 3.70 117.08 ± 50.24 0.8427

Blood flow velocity AV OFT

Pre cryo Post cryo P-value Pre cryo Post cryo P-value

Peak velocity (cm/s) 26.31 ± 3.89 14.71 ± 2.36 0.0155 16.52 ± 3.89 14.91 ± 2.79 0.3701

Ejection time (ms) 149.91 ± 27.58 314.9 ± 134.6 0.1162 265.7 ± 48.99 144.33 ± 8.22 0.0376

Mean velocity (cm/s) 2.79 ± 0.60 1.88 ± 0.41 0.1849 3.85 ± 0.64 2.63 ± 0.48 0.0144

Data is presented as mean ± SD. Analysis was by paired student t test. A p < 0.05 was considered as statistically significant. A total of 3 adult fish were analyzed per group.

Cryo, Cryoinjury.

stabilized as described above. Under a stereomicroscope and
using a dissecting scissors and a sharp forceps, an incision was
made just below the gills to expose the heart. The cryoprobe was
obtained and access liquid nitrogen was removed by shaking the
probe for 10 s. The incision was spread laterally using forceps
and the heart’s vertical was touched gently with the cryoprobe
(Figure 10D). After 24 s, 2ml of system water was added on to
the surgical site to release the cryoprobe. The fish was immediate
transferred to fresh system water to recover.

The changes in the hemodynamics at the AV and OFT canals
was assessed 24 h following myocardial infarction. Figures 11E,F
(red line) shows the velocity profiles at the AV and OFT
canals, respectively, over cardiac cycle for control as well as
for infarcted hearts. The velocity profile at the AV canal of
the control groups showed distinct A peak and a smaller E
peak. Myocardial infarction caused the A peak velocity to
decrease and the E peak velocity to increase. These findings
are comparable to that previously described (Lee et al., 2014;
Hein et al., 2015; Packard et al., 2017). Tabulated data can be

found in Table 2. These changes were expected after myocardial
infarction, which validates the mice Doppler system for zebrafish
blood flow measurements.

CONCLUSIONS

Doppler echocardiography is an important and powerful
tool for the assessment of cardiovascular physiology
and function; it plays a vital role in the comprehensive
evaluation of cardiovascular system particularly in the fetal
stage of life. There are several echocardiography devices
that measure cardiovascular function for small animals,
however, they are usually designed for rodents, including
rats and mice, and due to their complexity, they come with
a high cost. Here we have adapted a single mode mice
Doppler echocardiography system to measure cardiac flow
velocities for adult zebrafish and embryonic chickens, and
successfully assessed cardiac function for normal and diseased
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embryonic chicken and zebrafish. We believe that our presented
approach will help cardiac researchers to establish similar
echocardiography platforms in their labs in a practical and
economical manner.
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