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Especially in biomanufacturing, methods to design optimal experiments are a valuable

technique to fully exploit the potential of the emerging technical possibilities that

are driving experimental miniaturization and parallelization. The general objective is

to reduce the experimental effort while maximizing the information content of an

experiment, speeding up knowledge gain in R&D. The approach of model-based design

of experiments (known as MBDoE) utilizes the information of an underlying mathematical

model describing the system of interest. A common method to predict the accuracy

of the parameter estimates uses the Fisher information matrix to approximate the

90% confidence intervals of the estimates. However, for highly non-linear models, this

method might lead to wrong conclusions. In such cases, Monte Carlo sampling gives a

more accurate insight into the parameter’s estimate probability distribution and should

be exploited to assess the reliability of the approximations made through the Fisher

information matrix. We first introduce the model-based optimal experimental design

for parameter estimation including parameter identification and validation by means of

a simple non-linear Michaelis-Menten kinetic and show why Monte Carlo simulations

give a more accurate depiction of the parameter uncertainty. Secondly, we propose a

very robust and simple method to find optimal experimental designs using Monte Carlo

simulations. Although computational expensive, the method is easy to implement and

parallelize. This article focuses on practical examples of bioprocess engineering but is

generally applicable in other fields.

Keywords: Monte Carlo, design of experiments, variance analysis, modeling, dynamic processes

INTRODUCTION

Only a few of the molecules developed in biotechnology are entering industrial production
(Neubauer et al., 2013). In this regard, two big problems are being faced: (1) the long time to market
due to the technical limitation of performing the high amount of necessary screenings, and (2)
the high costs to perform those experiments. Hence, novel tools to shorten product development
times are required in biomanufacturing. With this in mind, many biotech laboratories have been
equipped with high throughput (HT) robotic facilities which perform a high number of very
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sophisticated experiments in parallel (Nickel et al., 2017;
Hemmerich et al., 2018). Additionally, the implementation
of computer aided tools for (semi-) automated experimental
design is a complementing approach to exploit the full potential
of modern technology, regarding not only hardware but also
software (Glauche et al., 2017; Sawatzki et al., 2018). Nevertheless,
especially in terms of a more consistent developmental path from
small to industrial scale, dynamical experiments are required to
investigate bioprocess performance, making dynamical models
that describe the systems a non-negligible prerequisite.

The use of mathematical models to understand, describe,
and predict natural phenomena is well-established in science
(Tarantola, 2005). In engineering, large dynamical non-
linear systems are designed and optimized, using advanced
optimization algorithms and accurate mathematical models that
describe the process (e.g., a large refinery, a complex electrical
network, large metabolic networks). By this means, we can
find the combination of inputs that for example maximizes
profit while complying with social, environmental, and safety
restrictions (Stephanopoulos and Reklaitis, 2011). Nevertheless,
the solution obtained by the computer can only be as accurate
as the mathematical model describing the real system (Velten,
2009). Experimental data is needed to ensure model accuracy.
Models which are not sufficient in describing a certain process
might be improved by e.g., using a more complex/simpler
model structure. Experiments should be designed to generate
informative data, enabling to assess the prediction power of the
model with the highest possible certainty.

If the aim is to generate data to fit dynamical models,
it is essential to apply model-based design of experiments
(MBDoE; Körkel et al., 2004; Franceschini and Macchietto, 2008;
Pronzato and Pázman, 2013). When dealing with non-linear
processes, classical Design of Experiments (DoE) leads to a
lower information content and thus to a higher variance of
the parameters compared to MBDoE (van Daele et al., 2017).
Originally, methods for Design of Experiments (DoE) have been
developed in statistics (Box et al., 1978). Here, the goal is to
design an experiment in such a way that an unknown system
(black box) is understood as good as possible. An important
assumption made in the regression models used for DoE is that
the search space is small enough to allow a quadratic regression
to describe the interaction between inputs (factors) and outputs
(responses) of the system properly. A crucial characteristic of
the regression models used in DoE is that they are linear with
respect to their parameters, but this is not the case in more
complex systems. A typical example of systems that are non-
linearly dependent on the parameters are non-linear dynamical
processes (e.g., most bioprocesses). In such cases, MBDoE (also
known as Optimal Experimental Design) deals with the challenge
of finding the experimental setup that minimizes the uncertainty
on the parameter estimates of models that show a non-linear
dependency on the parameters (Franceschini and Macchietto,
2008). This problem is not new and there has been an extensive
work on it (Walter and Pronzato, 1990). The main goals of
MBDoE are designing experiments such that: (i) the parameters
of the model can be estimated with the highest accuracy, and/or
(ii) the probability of selecting the best model structure is

maximized (Kennard and Stone, 1969). This article focuses on the
first one, as it is the more important and wider used application.

The use of MBDoE in combination with High Throughput
facilities has been proven to drastically increase the efficiency
of experimental campaigns (Cruz Bournazou et al., 2017; Barz
et al., 2018). Yet, there remain some issues related to highly non-
linear systems in combination with low information content of
the experimental data. The main obstacle lies in the fact that the
confidence intervals of the parameter estimates are approximated
using the FIM, neglecting the effect of non-linearities in the
model. Although this has been widely addressed in literature
(Balsa-Canto et al., 2001; Raue et al., 2009; Kreutz et al., 2012),
Monte Carlo Sampling is still the most accurate method for
quantification of parameter uncertainty (Moles et al., 2003; Sin
et al., 2009; López et al., 2015) after parameter estimation.
In this work, we present the advantages and drawbacks of
designing experimental inputs using linear approximations of
the confidence region vs. more accurate Monte Carlo methods.
We will also focus on the problems that arise when non-linear
systems are approximated, and the confidence intervals are not
well-represented by the ellipsoid confidence interval as predicted
by the FIM. Finally, we propose a simple but robust method to
improve the experimental design; especially useful in the initial
steps when the parameter estimates are far from their true value
and the experimental data is scarce. Thismay lead to an extremely
large variance or covariance of the parameters, resulting in an
ill-posed parameter estimation, mathematically represented by a
close to singular FIM which is therefore not useful for MBDoE
calculations. The main advantage of this alternative criterion for
information content is, however, that it can be used with very
limited understanding of MBDoE. We first present a model of
a Michaelis-Menten reaction as an illustrative example, followed
by a real case study of a biocatalytical reaction.

MICHAELIS-MENTEN KINETICS AS AN
EXAMPLE IN THE CONTEXT OF
MODEL-BASED DESIGN OF
EXPERIMENTS

MBDoE for Parameter Estimation
In this section we present a short introduction to the basics
of MBDoE. The reader is referred to Körkel et al. (2004);
Franceschini and Macchietto (2008); Goujot et al. (2012) for
a deeper insight into MBDoE. To this aim, we will follow a
short introduction with an illustrative example that considers a
reaction governed by the well-known Michaelis-Menten kinetics
(Heineken et al., 1967).

Problem Formulation
The generalized formulation of the problem is:

ẋ (t) =
dx

dt
= f (x (t) , u (t) , θ) , with x0 = x(t = 0)

ŷ (ti)= g (x (ti))+ηi (1)

where ẋ (t) denotes the vector of the time-derivates of the state
variables in respect to the time t ∈ [t0, tend]⊂ R, u (t) ∈ R

Nu
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the time-varying inputs, θ ∈ R
Np the parameters of the model

and ηi is assumed to be a random error, following a Gaussian
independent and identical distribution (iid) with zero mean.

In general, MBDoE aims to find optimal experimental
conditions, leading to the highest information content. The
information content of an experimental run is affected by
inputs (e.g., feed, pH), sampling (e.g., frequency, time points,
number) and measurement error. We will focus on optimal
sampling time computations throughout this work for the sake
of clarity. Especially in dynamic processes an important factor
to consider are the actual sample times, i.e., the time points
when measurements are taken (Skanda and Lebiedz, 2010).
Since the sensitivity of the outputs with respect to changes
in the parameters changes over time, samples at specific time
points contain a higher amount of information than others
(Yue et al., 2006) and finding them is not always trivial. In
complex biological experiments, experiments are expensive and
time consuming and improving the data quality through optimal
sampling points is essential.

Numerical Optimization of the System of
Ordinary Differential Equations
In an effort to demonstrate the performance with the most
popular license free tools, the results presented were obtained
applying scripts written in Python 2.7 (MBDoE-python). The
gradients for the sensitivities (i.e., derivatives of model equations
f (x (t) , u (t) , θ) w.r.t. x and θ) were calculated using sympy,
the library for symbolic mathematics, the numerical solution
of the system of ODEs (Vassiliadis et al., 1999) was performed
using the sundials CVODE solver and the optimal experimental
design was implemented using the optimize minimize solver
(using the sequential least squares programming algorithm) of
the package scipy.

Parameter Estimation
The fitting function of the estimation problem is formulated
based on the differences between the model predictions y(θ̂)
and the measured data ŷ for a specific set of parameters θ̂ .
Starting with an initial guess of the parameters, assessment of
the new parameters is performed by calculating the squared sum
of residuals and dividing it by the number of measurements
as well as the individual variances σ 2, i.e., the variance of the
replicates at a specific measurement point (Bard, 1974), the so
called maximum likelihood criterion:

J=
1

σ 2
∗

∑N
k=1

[

y
(

θ̂

)

−ŷ
]2

nmes
(2)

Approximating the Confidence Interval
Using the Fisher Information Matrix
The confidence intervals of the parameters can be visualized
graphically for a certain confidence level (usually 90% or 95%).
For a mathematical model with two parameters, the result is
a confidence ellipsoid (Figures 1C,D). Commonly, first-order
sensitivity analysis is applied to the problem and the resulting
linearized confidence regions are examined to determine

the accuracy of the parameter estimation problem. The
computational burden is drastically reduced by approximating
the confidence regions using the FIM. However, especially in the
case of highly non-linear models, the linearized regions may not
adequately represent the actually confidence intervals (Kostina
and Nattermann, 2015). There are a number of methods that
tackle this issue using methods like bootstrapping or sigma point.
For a deeper insight, the reader is referred to Schenkendorf
et al. (2009, 2018); Kreutz et al. (2012); van Daele et al.
(2017). Nevertheless, these tools are quite complex and difficult
to implement so that using the FIM remains the most used
approach. The FIM is calculated using the sensitivities and the
inverse of the covariance matrix of the measurement noise Σ

(Guisasola et al., 2006):

FIM
(

θ̂ ,ϕ
)

=
∑nexp

k=1

[

dS

dt
∗6−1

θ̂ ,k
∗
dS

dt

T
]

(3)

The FIM is an indicator of the amount of information contained
in the experimental data, as the inverse of the FIM is the Cramér-
Rao lower bound of the unbiased estimation of the parameter
variance-covariance matrix (Oliver Lindner and Hitzmann,
2006):

COV ≥ FIM−1 (4)

Generally speaking, high values of the FIM lead to low
approximate standard errors and thus low uncertainties of the
estimated parameter values. It is therefore desirable to optimize
some characteristic of the FIM in order to obtain most accurate
estimations, which is done in the process of MBDoE.

In complex models with many parameters, difficulties in the
parameter estimation and model validation arise, e.g., due to
over-parameterization, insufficient quantity and quality of the
experimental data as well as correlations between the model
parameters. It may not be possible to determine all parameters
with enough precision and accuracy (e.g., the variance exceeds
some predefined threshold), which is known as parameter non-
identifiability and an issue that has been widely addressed in
literature (Holmberg, 1982; Vanrolleghem, 1995; Raue et al.,
2009; Muñoz-Tamayo et al., 2018). Identifiability analysis can
be performed to study the structural and local properties of
the model (Audoly et al., 2001; Kreutz et al., 2012; Kravaris
et al., 2013; López et al., 2013) and can further be improved
if the experiments are properly designed. Some parameters can
only be estimated if there are enough measurements or if the
experimental design is not correlated.

Model-Based Experimental Design for
Parameter Estimation
Model-based experimental design for parameter estimation aims
at reducing the confidence regions by modifying the experiment
design vector ϕ. The experiment design vector holds all the values
describing the prospective experiment, i.e., the external stimuli
u(t), such as the experimental duration, sampling times ti and
initial values x0. Since ameasurement set is selected here, the only
variables in the design vector are the different sampling times ti.
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FIGURE 1 | Influence of different measurement time points. (A) Simulated state variables. The state variables substrate (S) (green line) and product (P) (orange line) as

well as the best (hexagon) and standard (circles) measurement points are shown over time. (B) Sensitivities of the state variables to the respective parameters. (C)

Confidence ellipse for the unoptimized (“standard”) measurements. (D) Confidence ellipse for optimized (“best”) measurements. Interactive versions of these plots can

be found at: https://www.tu-berlin.de/?204660.

To yield a new experiment design vector ϕ∗ for an
optimally designed experiment, the FIM � must be maximized
(Yu et al., 2015):

ϕ∗ = argmax
ϕ∈8

�(FIM (θ ,ϕ)) (5)

To perform optimization, i.e., maximization of the FIM, the
FIM needs to be transferred to a scalar target criterion. The
most common target criteria in the context of MBDoE are
the D-optimal, E-optimal and A-optimal criteria (Silvey, 1980;
Franceschini and Macchietto, 2008). Table 1 briefly summarizes
their characteristics.

Each of the different design criteria has its advantages and
disadvantages. The commonly used D-criterion can be easily
graphically interpreted as it equals the area of the joint confidence
region and is theoretically invariant to rescaling. However, the D-
criterion comes with the disadvantage of giving great importance
to the most sensitive parameter and may show an increase

in the parameter correlation, even though the total confidence
region shrinks (Zullo, 1991). By minimizing the size of the major
axis of the joint confidence region, optimization using the E-
criterion shows a positive effect on the parameter correlation, but
it might be impossible to find an optimal solution, since the E-
criterion is not a continuous function (i.e., it might be impossible
to use gradient-based search methods; Körkel et al., 2004).
The A-criterion has the advantage of being easily calculated by
only adding up the parameter variances. However, in case of
high cross-correlation between the parameters, this criterion is
disadvantageous, due to neglection of the off-diagonal elements
of the variance-covariance matrix.

Further possibilities regarding the optimization process are
robust criteria for design of experiments which are less sensitive
to the initial values used for parameter estimation, e.g., the
maximin design for optimizing the worst possible performance
of any value θ in the parameter space (Körkel et al., 2004; Chen
et al., 2017; van Daele et al., 2017; Telen et al., 2018).
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TABLE 1 | Characteristics of the standard optimal experimental design criteria.

Criterion Aim regarding the FIM Aim regarding the joint

confidence region

Advantage Disadvantage Calculation

D-optimality Maximizing the determinant Minimizing the volume Easy graphic interpretation Gives great importance to

parameter to which the model

is most sensitive

det(FIM)

E-optimality Maximizing the smallest

eigenvalue

Minimizing the size of its

major axis

Positive effect on parameter

correlation

No continuous function eigenvaluemin

(FIM)

A-optimality Minimize the trace of the

inverse

Minimizing the dimensions of the

enclosing box

Low computational effort Less accurate in case of high

cross-correlation between

parameters

tr
(

FIM−1
)

Some of the most recent examples for model-based design
of experiments in biotechnology are summarized in the
Supplementary Material, introducing standard and special
criteria as well as showing their application in daily research.

Designing an Optimal Experiment for a
Michaelis-Menten Reaction
The benefits of performing MBDoE are demonstrated using
a well-known reaction in biochemistry, the Michaelis-Menten
kinetics. This kinetics (Heineken et al., 1967) describes the
enzyme-catalyzed conversion of a substrate (S) to a product (P)
via an enzyme substrate complex (ES). The reaction rates k1 and
k−1 represent the rate of enzyme substrate complex formation
and dissociation, whereas k2 is the rate of product formation.

E+ S

k1
⇋

k−1

ES
k2
→ P + E (6)

The system of ordinary differential equations (ODEs) describes

the dynamic changes in the substrate dS
dt

and product

concentration dP
dt

as a function of the unknown parameters
rmax (maximum specific reaction rate) and Ks (half saturation
constant) as well as S, the substrate concentration:

dS

dt
= −rmax∗

S

S+ KS
,with KS =

k−1 + k2

k1
(7)

dP

dt
=−

dS

dt

The measured values S and P are subject to iid zero-mean
Gaussian-distributed measurement errors. In this case, there
are two parameters to fit which are strongly correlated unless
observations are made showing the change on the reaction
rate with respect to substrate consumption. By simply choosing
proper time points for the samples the information gained
from a single experiment with two measurements can be
drastically increased. To better illustrate the large differences in
the confidence intervals which are due to the different sampling
points, the experimental data is only measured 2 times, as
depicted in Figure 1A.

While the sensitivities of the respective parameters are
depicted in Figure 1B. Figure 1C shows the confidence intervals

TABLE 2 | Concentrations for measurement times topt and tbad...

t [h] S [g L−1] P [g L−1]

topt

0.463 51.145 48.955

1.070 3.940 96.160

tbad

0.750 24.192 75.908

1.500 0.033 100.067

in the standard scenario, relying on the data which is obtained by
measuring at the measurement points tbad (see Table 2), which
represent good initial guesses when measuring two times over
a period of 2 h. As can be seen by evaluating the confidence
intervals, the maximal reaction rate rmax is determined with a
higher precision than the half saturation constant KS. Although,
because of the large confidence region it is nearly impossible to
conclude the true parameter values. In Figure 1D the confidence
region is shown after the optimization of the measurement
set according to the A-optimal criterion (topt). The variation,
especially for KS but also for rmax, is reduced drastically, enabling
a good estimation of the true parameter values. This highlights
the importance of optimal sampling points to obtain data for
parameter estimation.

MONTE CARLO BASED PARAMETER
CONFIDENCE

As mentioned before, the FIM is used to approximate the
covariance of the parameters that are determined from fitting
the experimental data to a model. This can be used in general to
determine the degree of confidence for the estimated parameters.
To calculate an optimality criterion (which can be used to
identify optimal experimental settings), the FIM is commonly
used in MBDoE. However, the FIM neglects the non-linearities
of the model and it is only valid in the proximity of the
optimal parameters.

Performing Monte Carlo simulations is a valuable alternative
to compute the real non-linear confidence intervals of the
parameters (Buckland, 1984; Alper and Gelb, 1990; Sin et al.,
2009). In contrast to the FIM, which is directly linked to the
covariance of the parameters, Monte Carlo simulations are
based on repeatedly carrying out parameter estimations for the
experimental data, which is perturbed by a random error. The
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error in this example is derived from a Gaussian distribution
with µ = 0 and σ

2 = 0.16, based on expert knowledge.
The Monte Carlo simulations then yield new values for the
respective parameters which can be plotted pairwise to obtain
a graphical view of the parameter distribution. Considering
the noise in the data and given a sufficient large number of
simulations (in our case 5,000 runs deliver very accurate results,
although 500 are usually enough in the context of MBDoE), the
Monte Carlo will result in a better representation (i.e., actually
showing non-linearities) of the real distribution of the parameter
combinations, particularly for highly non-linear models. This
will be shown in a later section.

In the following section it will be demonstrated that
for the Michaelis-Menten example the FIM provides a very
good approximation. In a second example—a more realistic
challenge—it will be demonstrated how this approach fails and
why alternatives, such as the Monte Carlo approach are required
in order to validate the results.

Accuracy of the Approximated Solution
The sampled parameter distribution is shown in Figure 2. On the
left-hand side, the distributions for the two parameters obtained
with the Monte Carlo-Simulations (performing parameter
estimation of data with added noise) as well as the corresponding

FIGURE 2 | Monte Carlo results for topt; Left: pairplots of parameters obtained with a data noise using µ = 0 and σ
2 = 0.16; Right MC vs. FIM.

FIGURE 3 | Monte Carlo results for tbad ; Left: pair plots of parameters obtained with a data noise using µ = 0 and σ
2 = 0.16; Right MC vs. FIM.
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scatterplots are shown. The scatterplot can be directly compared
with the confidence ellipsis obtained from the FIM as illustrated
on the right-hand side of Figure 2. It can be clearly seen that there
is a very good agreement between the FIM and the Monte Carlo
results for topt . The Monte Carlo points also create an ellipsoidal
shape and 94.3% of the points are inside the corresponding
95% confidence ellipse. Considering the measurement times
tbad, the figure shows a reasonable agreement, however non-
linearities already become visible (pairwise plot and comparison
in Figure 3).

The experimental design is indeed improved by MBDoE,
increasing the information content and thereby reducing the
uncertainty of the parameter estimates. For this simple model,
linearization to estimate the parameter confidence intervals
delivers satisfying results even for the worst measurement points,
as can be seen from the good agreement of the FIM and Monte
Carlo sampling. Nevertheless, the results highly depend on the
accuracy of our approximation of the parameter uncertainty and
will fail to deliver correct prediction in problems that show a
higher non-linearity. This can be seen in a real example of a
biocatalytic reaction. In this example taken from a real case,
the limited observations and understanding of the underlying
phenomena make it extremely difficult to correctly predict the
distribution of the parameter estimates and hence find the best
design to minimize it.

CASE STUDY: ENZYMATIC SYNTHESIS OF
PENTOSE-1P USING THERMOSTABLE
NUCLEOSIDE PHOSPHORYLASES

α-D-pentofuranose-1-phosphates (Pentose-1Ps) are of
increasing interest because of their metabolic, industrial
and potential clinical significance (Tozzi et al., 2006; Kamel
et al., 2018). With the world moving toward green chemistry,
the development of efficient enzymatic synthesis process
moved into the focus of scientists and researchers. Recently,
the enzymatic synthesis of Pentose-1P using thermostable
nucleoside phosphorylases was reported as a practical alternative
to the chemical synthesis (Kamel et al., 2018).

Nucleoside phosphorylases are well-studied enzymes
(Pugmire and Ealick, 2002; Yehia et al., 2017). They catalyze the
revisable cleavage of nucleosides, in the presence of inorganic
phosphate (Pi), producing a nucleobase and Pentose-1P. The
reaction speed and equilibrium are dependent on different
factors including: (i) nucleoside concentration, (ii) phosphate
concentration, (iii) the ratio between the nucleoside and the
phosphate, (iv) enzyme concentration, (v) reaction temperature,
and (vi) stability of the reactants and the products.

The Biocatalytical Reaction of Interest
The case study considers 2-deoxy-α-D-ribofuranose-1-
phosphate (dRib-1P) synthesis from thymidine (Thd) using
thermostable pyrimidine nucleoside phosphorylase (PyNP).

TABLE 3 | Experimental design.

Experiment Thd. conc.

[mM]

Pi conc

[mM]

Enzyme conc.

[mg/ml]

Temp [◦C]

1 100 250 0.005 40

2 100 250 0.117 40

3 100 250 0.117 50

4 100 250 0.117 60

5 100 750 0.117 50

6 50 500 0.230 60

7 50 750 0.050 40

TABLE 4 | Comparison of different optimization criteria for different sampling

points.

Sampling points A-criterion Q-criterion Q-criterion with FIM

based scatter

Good 0.01 0.08 0.07

Intermediate 1 0.08 0.55 0.54

Intermediate 2 0.28 2.09 1.81

Bad 3.35 12.86 22.10

Shown are the A- as well as the Q-criterion compared to the Q-criterion calculated for a

multivariate Gaussian distribution with its covariance matrix derived from the FIM.

FIGURE 4 | Reaction scheme of the biocatalytic conversion.
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FIGURE 5 | Confidence ellipses for the optimal parameters obtained with the quasi steady state assumption. (A) Leaving KM,S free, (B) KM,S is fixed at constant

value of 1.3 as derived from literature.

FIGURE 6 | Results from fitting the model to experimental data. (A–G) represent the experimental conditions 1–7 as in Table 3.
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Thd is phosphorolytically cleaved producing thymine (Thy) and
dRib-1P using thermostable PyNP-Y02 as shown in Figure 4.

To estimate the different parameters and examine the effect
of the different factors on the enzymatic synthesis of dRib-
1P, reactions were conducted at different conditions with
varying concentrations of enzyme and substrate or changing
the temperature of the reaction. Moreover, different ratios of
substrate to Pi were tested, since reaction speed is thought to
be affected by this (Kamel et al., 2018). Since many factors
are affecting the enzymatic reaction and there are lots of
possible levels for each factor, using the traditional approach to
identify optimal conversion conditions would require hundreds
of experiments, as well as lot of time and effort. Applying
dynamic mathematical model offers a great chance for finding
optimal conditions with a minimum number of experiments.

Kinetic Model
It is assumed that the product is formed through a single enzyme-
substrate-complex (Enzcomp). The reaction rates for complex
formation are k1 and k−2 and for converting the complex into
educts or products are k−1 and k2, respectively.

Enz+ Thd+ Pi

k1
⇋

k−1

Enzcomp

k2
⇋

k−2

Thy+ R1P+ Enz

The applied quasi-steady-state-approximation yields:

Enz =Enzt=0−Enzcomp (8)

d
(

Enzcomp

)

dt
= 0 (9)

With this approximation, the ODE system is simplified and the
following equation for the product formation as well as substrate
consumption rate are used:

v =
Enzt=0

(

k1k2Thd·Pi−k−1k−2Thy·R1P
)

k1Thd·Pi−k−2Thy·R1P+k−1+k2
(10)

This formation rate can also be written in the classical form of the
reversible Michalis-Menten equation:

v =
r
f
max/KM,S − rrmax/KM,P

1+Thd·Pi
KM,S

−
Thy·R1P
KM,P

(11)

The maximum rates rmax and Michaelis-Menten constants KM,i

are used which can be derived from the reaction rates ki
from above.

KM,S =
k−1+k2

k1
,KM,P =

k−1+k2

k
′

2

, r
f
max = Enzt=0

kcatf = Enzt=0 k2, andr
r
max =Enzt=0 kcatr = Enzt=0 k−1, (12)

Furthermore, the temperature dependence of the reaction rates
ki is considered by the following approximation, which is similar
to a Gaussian distribution, where Tmax represents the optimal
temperature and Twidth the deviation (Szeker et al., 2012):

ki,T = kie
−

(T− Tmax)2

(2∗Twidth)
2

(13)

Thus, for the final model the six model parameters KmS, KmP,
kcatf , kcatr , Tmax, and Twidth need to be estimated.

FIGURE 7 | Monte Carlo results for biocatalytic example; Left: pair plots of parameters obtained with data perturbed with Gaussian distributed noise using µ = 0 and

σ
2 = 9*10−6; Right MC vs. FIM for one example, indicating the non-linearities of the parameter estimation.
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Materials and Methods of the Case Study
Example
To identify the reaction parameters of the mathematical
model, different experimental conditions were tested as
summarized in Table 3. Samples were taken at different time
points. Experimental conditions were determined based on our
preliminary data and suggestions from factorial DoE. The ranges
of the respective concentrations were based on expert knowledge.
All experiments were repeated twice, and 2 samples were taken
and measured at each time point. Thymidine (Carbosynth,
UK) was phosphorolytically cleaved by pyrimidine nucleoside
phosphorylase (PyNP-Y02) (BioNukleo, Germany) in phosphate
buffer. Thymidine and the formed Thymine were separated
via HPLC using a reversed phase C18 column (150 × 4.6mm)
(Phenomenex, USA) as described previously (Szeker et al., 2012)
and were quantified in reference to standards. The conversion to
percent was calculated as following:

Conversion [%]=
cProduct

(

Thy
)

[mM]

cProduct
(

Thy
)

[mM]+ cSubstrate
(

Thd
)

[mM]
×100% (14)

Identifiability Problem and Model Revision
The parameter estimation was performed using the experimental
data obtained from the settings described in Table 3. A Latin
hypercube sampling (LHS) design (Sacks et al., 1989) was used to
generate initial parameter guesses which represent a reasonable
coverage of the parameter search space. A gradient based search
algorithm was used for each realization. The selected estimates
correspond to the best solution obtained. While the parameters
Tmax, Twidth, and kcat seemed to be well-defined, it was found
that different combinations of KM,S and KM,P parameters lead
to comparable RSS values, since both parameters are highly
correlated (cf. Figure 5A). A common way to solve this problem
is to regularize the PE problem using some type of a priori
information (Golub et al., 1999). Alternatively, the problem
can be regularized based on expert knowledge to fix one of
the parameters at a constant value and estimate the remaining
parameters. Since literature values can only be found for KM,S ,

this value was chosen to be fixed at 1.3, as suggested by the work
of Szeker et al. (2012). This reduces the number of parameters
which need to be estimated from the available data and drastically
decreases the confidence intervals of the parameters, as can be
seen in Figure 5B. It can be easily seen that when KM,S is left
free, the (joint) confidence regions are very large, thus it is
not possible to estimate unique values for both parameters at
the same time. However, when the value is kept constant, the
confidence intervals shrink considerably.

Experimental Results and Simulation
In Figure 6, the percentage of conversion from substrate to
product is plotted over time. The only larger deviation can be
seen at the end of the reaction for the experimental setting 4 (see
Figure 6D), where the temperature was set to 60◦C. To assess
the quality of the parameter estimation outcome, the confidence
regions (obtained from the FIM) will be compared to Monte
Carlo simulations.

Accuracy of the Parameter Uncertainty
Using the FIM as an indicator for the accuracy of the parameters
might lead to the false conclusion that the parameters are
accurately estimated and can be used for further simulation as
some scalar measure of the FIM reaches its optimum. However,
due to the model’s inherent non-linearities, the FIM is only a
vague approximation of the actual uncertainties (since the FIM
is based on a linear approximation) and reflects the parameter’s
uncertainties only in the vicinity of their optimal values. To
obtain a more realistic insight into the parameter ranges, Monte
Carlo simulations can be used for a more accurate analysis of
the real parameter regions. These simulations offer a simple
to implement, yet accurate method for the representation of
the parameter’s confidence regions. Researchers are therefore
encouraged to perform Monte Carlo simulations, especially in
cases where the model parameters are far from their optimal
values. Even though the FIM and their scalar measures offer a
quick validation of the parameter estimation outcome and can
be used for simple cases, performing OED based on Monte Carlo
simulations is recommended in bioprocess models, which usually
show a higher degree of non-linearity. Especially when it comes
to scenarios, where the FIM is non-invertible and therefore the
classical criterions are not accessible, performing Monte Carlo
simulations offer a simple method to perform further OED steps.

Considering that we want to compute the following design
with only two experiments at hand, the number of experiments
will be reduced. Pairwise scatter plots of the parameters as well
as comparison with the FIM show that the actual confidence
intervals of the parameters strongly deviate from the ones
estimated by the FIM as can be seen in Figure 7. Thus, regarding
further model validation, it is essential to thoroughly verify the
parameter estimation outcome. Especially nowadays, with easy
and cheap access to large computational power (e.g., clusters
or cloud computing), Monte Carlo simulations for estimating

FIGURE 8 | Kernel density estimation distribution of normalized Q-criterions

for different samples and measurement qualities. The Q-criterion was

calculated 500 times for 80% of the original sample pool and the obtained

distribution normalized by its mean to show the robustness of the criterion.

The legend shows the quality of sampling points.
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the parameter confidence intervals are a powerful alternative to
traditional methods. This opens the possibility for researchers to
easily assess their parameter estimation outcome, even for highly
non-linear models, without utilizing mathematical tools which
require a deeper understanding of the validation techniques.

An important factor when analyzing the confidence regions of
the parameters is the non-linearity of the parameter confidence
regions, which cannot be easily represented by the FIM ellipsoids.
This is true even for experiments with a very high measurement

accuracy (setting the artificial noise variance of the parameters
to a value of 9 × 10−6). A closer analysis of the three more
interesting parameters kcatf, kcatr, and KM,P fitted to two
theoretical experimental conditions (which are derived from
conditions 5 and 7), where the time points were modified as in
the aforementioned example shows that there is a strong non-
linearity. While a pairwise analysis of kcatf and kcatr can still be
approximated by the FIM, plotting the combination of kcatf and
KM,P is rather curve-shaped as depicted in Figure 7. Moreover,

FIGURE 9 | Visualization of the FIM and results from Monte Carlo simulations for two parameters for 4 different sample times (Good, intermediate 1, intermediate 2,

bad, from top right to bottom left). The color bar indicates the individual cost (= LSQ) from that specific experiment. Especially for highly non-linear models, the FIM is

a bad representation of the actual parameter values.
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only around 50.5% of the Monte Carlo samples lie within the
95% confidence region predicted by the FIM. This indicates that
Monte Carlo calculations give a better insight into the model’s
underlying non-linearity and actual parameter distribution.

A New Scalar Design Criterion for
Assessment of General Nonlinear
Confidence Regions
Since most design criteria used for assessing the amount of
information gained from certain experimental data rely on
some scalar metric of the FIM, it is questionable to which
extent they are applicable for non-linear models. Especially when
fitting data to models showing high non-linearity, the parameter
uncertainties might become too large and the FIM thus non-
invertible. To tackle this issue and to quickly assess the outcome
of Monte Carlo calculations, we propose a new criterion to
quantify the variation in the data: The Q-criterion, the quantile
related criteria. This criterion is comparable to the A-criterion,
which adds up the variances of the parameters. Using quantiles as
a measure for the variance in the data offers the advantages of an
easy calculation, which is at the same time robust against outliers
in the data. For the Q-criterion, the squared distance for every
parameter i between the quantile0.9 (90th percentile of the Monte
Carlo based parameter values) and quantile0.1 (10th percentile of
the Monte Carlo based parameter values) is calculated as scalar
measure for the variation in the data:

Qcrit=
∑

θi

(

Qθi,0.9−Qθi ,0.1

)2
(15)

To illustrate the usage of this criterion, in silico MBDoE was
performed with iteratively improved measurement points, based
on the best values of the Q-criterion in every round. The new
criterion can be used to iteratively improve the measuring time
points of an experiment as well as for model calibration. To assess
whether the criterion is sufficiently robust regarding low sample
size, 500 repeats of randomly drawn samples (correspond to 80%
of the original sample pool) were used for calculating the Q-
criterion and normalized by their mean. They showed a very low
deviation from the mean (see Figure 8), and hence suggest that
the Q-criterion is robust against small sample sizes. Hence, even
for small data sets or outliers in the data, the criterion delivers
good results.

Monte Carlo simulations give researchers who are not very
experienced in the field of uncertainty analysis an easy to use tool
for to assessing the outcome of parameter estimations. Especially
when it comes to highly non-linear models in which second
order derivatives cannot or not easily be calculated, Monte Carlo
simulations and the Q criterion offer a great alternative to quickly
improve the optimization outcome regarding MBDoE.

Proof of Concept
Based on the optimal parameters, in silico experimental data was
generated at different time points for the biocatalytic example
to reflect different qualities in the measurements. Subsequently,
Monte Carlo simulations were performed at these time points.
This was done in order to compare the confidence intervals
obtained from the FIM with the results from the Monte Carlo
simulations. By comparing the intervals (Figure 9) it can be
concluded that the FIM is not sufficiently considering the model’s

FIGURE 10 | Comparison of A-/Q-criterion guided optimization of sampling points. The values of the two criteria as well as the suggested sampling points are shown.

An interactive version of this plot can be found at: https://www.tu-berlin.de/?204660.
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non-linearity. The percentage of points from the Monte Carlo
simulation overlap with the region obtained from the FIM only
for the good sample points. For the other sampling points
the FIM becomes only larger in size, while the Monte Carlo
simulations also show a more non-linear distribution.

The infeasibility of the A-criterion to consider the model’s
non-linearity can be further underlined when looking at the
Q-criterion at different sampling points. For the good and
intermediate sampling points, the Q-criterion and the Q-
criterion calculated for 5,000 samples derived from amultivariate
Gaussian distribution with µ = 0 and Cov = FIM−1 deliver
similar values, as can be seen in Table 4. However, it should
be noted that the value of the Q-criterion for the bad sampling
points is much worse when derived from the FIM as opposed to
when derived from the Monte Carlo samples, showing that the
FIM overestimates the variance of the parameters.

Moreover, to proof the usage of the Q-criterion for the
purpose of MBDoE, an optimization of the sampling points
was conducted, using the experimental setting of the Michaelis-
Menten kinetics example. The sampling points tbad (0.75 and
1.5 h) were used as initial values. In every iteration, 500 Monte
Carlo simulations were carried out, and the Q- as well as the A-
criterion were used to guide the optimizer to optimal sampling
points. As depicted in Figure 10, both criterions converge to their
optimum after 20–30 iterations and suggest further measuring in
similar time regions. This proofs that the Q-criterion is a valid
criterion for the usage within MBDoE.

Since the A criterion may not be accessible due to the
FIM being non-invertible in some cases with a high degree
of non-linearity in the model, the Q criterion may be one of
the few available options for performing MBDoE. In contrast
to other methods this criterion is easy to use, as it does not
require a deeper mathematical understanding nor does it use
approximations like pseudoinverses to calculate the A-criterion
(Shahmohammadi and McAuley, 2019). However, more research
with complex models is necessary to further validate this usage.

CONCLUSIONS

Despite the many advantages of planning experiments using
MBDoE, the computation of linearized confidence intervals is
still limiting its application in setups with complex systems
and scarce data sets. We demonstrated that the confidence
region approximated using the FIM is often only a poor
description of the real parameter distribution. For this reason,

we propose to perform Monte Carlo simulations to compute a
more accurate distribution profile, despite the effort of additional
computational burden.

In order to estimate the confidence of the estimated
parameters and thus guide the MBDoE process, the FIM is
commonly used. While this provides a rather good estimation in
the vicinity of the optimal solution, this can be an issue especially
in cases where the experimental information is scarce as shown in
the biocatalytic reaction example. Here, Monte Carlo simulations
provide an attractive alternative to calculate a more accurate
distribution of the parameter confidence regions.

Finally, we propose a very simple and robust optimality
criterion to obtain a convenient and scalar measure of the
parameter distribution: The Q-criterion. The proposed criterion
is based on Monte Carlo simulations making it computationally
expensive. But in view of the rapid increase of computer power
and considering that its parallelization is trivial (calculating 500
Monte Carlo simulations took 30min on our workstation with
40 Intel Xeon E5-2640 2.4 GHz), it can be expected that this
issue will cease to exist. Especially when performingMBDoEwith
highly non-linear models, where the FIM is not invertible, the Q-
criterion can be used as a straightforward measure to optimize
the experimental design.
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NOMENCLATURE

S Substrate concentration (g/L)
P Product concentration (g/L)
E Enzyme concentration (g/L)
ES Enzyme substrate complex concentration (g/L)
k1, k−1, k2 Reaction rates [h−1]
ẋ (t) Ordinary differential equations (ODE)
x (t) Internal model states
u (t) External stimuli
rmax Maximum specific reaction rate [h−1]
Ks Half saturation constant [g∗L−1]
θ Best currently available estimations of the set of parameters which must be determined (rmax, KS)
ŷ(t) Measured response variables
y (t) Simulated response variables (substrate and product)
g (x (t)) Set of relations between the measured response variables ŷ(t) and the internal model states x (t)
η (t) Measurement errors
COV Parameter variance-covariance matrix
6θ Covariance of the measuring noise
nmes Number of measuring points
nresp Number of responses
nexp Number of experiments
J Sum of squares of residuals
y0 Initial conditions for (t = t0 = 0)
tsp Sampling times (n= 2)

S Sensitivity of the responses to parameter values
FIM Fisher information matrix
ϕ Experiment design vector, including sampling times, initial values and other experimental inputs for the future experiment
Ω Measure of the FIM, i.e. optimal experimental design criterium
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