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Immunoisolation of pancreatic islets is a technology in which islets are encapsulated

in semipermeable but immunoprotective polymeric membranes. The technology

allows for successful transplantation of insulin-producing cells in the absence of

immunosuppression. Different approaches of immunoisolation are currently under

development. These approaches involve intravascular devices that are connected to

the bloodstream and extravascular devices that can be distinguished in micro- and

macrocapsules and are usually implanted in the peritoneal cavity or under the skin. The

technology has been subject of intense fundamental research in the past decade. It

has co-evolved with novel replenishable cell sources for cure of diseases such as Type

1 Diabetes Mellitus that need to be protected for the host immune system. Although

the devices have shown significant success in animal models and even in human

safety studies most technologies still suffer from undesired tissue responses in the

host. Here we review the past and current approaches to modulate and reduce tissue

responses against extravascular cell-containing micro- and macrocapsules with a focus

on rational choices for polymer (combinations). Choices for polymers but also choices for

crosslinking agents that induce more stable and biocompatible capsules are discussed.

Combining beneficial properties of molecules in diblock polymers or application of these

molecules or other anti-biofouling molecules have been reviewed. Emerging are also

the principles of polymer brushes that prevent protein and cell-adhesion. Recently also

immunomodulating biomaterials that bind to specific immune receptors have entered

the field. Several natural and synthetic polymers and even combinations of these

polymers have demonstrated significant improvement in outcomes of encapsulated

grafts. Adequate polymeric surface properties have been shown to be essential but

how the surface should be composed to avoid host responses remains to be identified.

Current insight is that optimal biocompatible devices can be created which raises

optimism that immunoisolating devices can be created that allows for long term survival

of encapsulated replenishable insulin-producing cell sources for treatment of Type 1

Diabetes Mellitus.
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INTRODUCTION

Type one diabetes mellitus (T1D) impacts 1.25 million
individuals in the US alone and is associated with an annual
health care cost of $9.8 billion (American Diabetes Association,
2018). These costs can be reduced by tight regulation of the
blood glucose levels such as can be done with allogeneic
transplantation of pancreatic islets. Up to now these islets
are obtained from cadaveric donors that regulate glucose
levels from a minute-to-minute level (Choby, 2017). This
replaces insulin injections and prevents regular hypoglycemic
events and thereby contributes to improved quality of life.
The mandatory use of immunosuppression to prevent graft
rejection is unfortunately an obstacle for large scale application.
Application may be facilitated with effective encapsulation
technologies for immunoprotection of islets that prevent
graft rejection and autoimmune destruction of islets (Barkai
et al., 2016). To generate immunoisolative membranes, several
materials have been explored but an ongoing challenge remains
prevention of too strong tissue responses that might lead to
graft failure (Paredes-Juárez et al., 2014b). The tissue responses
might manifest in vivo as immune cell adhesion and fibrotic
overgrowth on the surface of micro- or macrocapsules but also
strong responses in the immediate vicinity of the capsules might
lead to cytokine production and death of islet-cells (de Vos,
2017; Krishnan et al., 2017). Here we review current and past
approaches in which polymer engineering has been applied
to improve biocompatibility of natural and synthetic polymers
applied for islet micro- or macroencapsulation.

Need for Islet Transplantation in T1D
In T1D insulin-producing pancreatic β cells are destroyed by
a specific autoimmune reaction resulting from a complex of
environmental and genetic factors (Atkinson et al., 2014). This
autoimmune destruction is irreversible, which implies lifelong
insulin administration by injections to regulate homeostasis of
blood glucose (Hirsch, 2009). Although this therapy is life-
saving, it has a major impact on the quality of life of patients.
Patients need to be taught to self-monitoring blood sugars and
to adjust insulin dosing according to daily needs. Despite this
intensive way of regulating glucose levels, it cannot regulate
blood glucose on a minute-by-minute basis. As a consequence,

Abbreviations: APC, activated protein C; BW, body weight; CHOPA, acrylate

modified cholesterol bearing pullulan; DOPA, 3,4–dihydroxyphenethylamine;
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HEMA, 2-hydroxyethyl methylacrylate; IgG, immunoglobulin G; M, β-D-

mannuronic acid; MAA, methacrylic acid; MGC, methacrylated glycol chitosan;

MMA, methyl methacrylate; MSCs, mesenchymal stem cells; NF-κB, nuclear

factor kappa-light-chain-enhancer of activated B cells; NO, nitric oxide;

PAMPs, pathogen-associated molecular patterns; PAN, polyacrylonitrile; PEG,

poly (ethylene glycol); PEG-4MAL, PEG-maleimide; PEG-b-PLL, poly(ethylene
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mellitus; Teff, T effector; TM, thrombomodulin; TM, hrombomodulin; ToF-

SIMS, Time-of-Flight Secondary Ion Mass Spectrometry; Treg, T regulatory;

UK, urokinase; VEGF, vascular endothelial growth; XPS, X-Ray Photoelectron

Spectroscopy.

of this lack of precise regulation diabetic complications may
develop such as retinopathy, neuropathy, and cardiovascular
disease (Choby, 2017). Also, intensive insulin therapy holds the
threat of regular hypoglycemic episodes which might eventually
lead to hypoglycemic unawareness (Bragd et al., 2003). Better
and more precise regulation of glucose levels is highly needed
to prevent diabetic complications, and for improving patient’s
life quality.

Ever since the groundbreaking publication of the Edmonton
protocol (Shapiro et al., 2000), which reported insulin-
independence in seven recipients after an average of 12
months, pancreatic-islet transplantation provides an alternative
strategy to restore physiological insulin-responses to plasma
glucose changes (Berney et al., 2009). Since that time 1,086
patients were transplanted with islets according to the
Collaborative Islet Transplant Registry (CITR) 10th Annual
Report (Collaborative Islet Transplant Registry, 2017). These
patients all have a complete absence of hypoglycemia, in
many cases remain insulin independent and most of them
experienced an improved quality of life (Ryan et al., 2002,
2005). Despite these successes, islet transplantation is not
yet a widely applied treatment for T1DM. The reason for
that is the mandatory use of life-long immunosuppression
of the patient to prevent graft rejection (Berney et al., 2009).
Immunosuppression is associated with increased risk for serious
infections and cancer (Dantal and Soulillou, 2005), as well as
associated with metabolic disorders and toxicity for kidneys
(Ekberg et al., 2009). Immunosuppression is therefore not
considered to be an acceptable alternative for insulin therapy
(Ricordi and Strom, 2004).

ISLETS ENCAPSULATION TECHNOLOGY

An advantage of islet-transplantation over whole pancreas
transplantation is that islets are clumps of cells that can
be packed in immunoisolating membranes. Immunoisolation
is a technology that potentially allows for transplantation
of islets in the absence of life long immunosuppression.
Within this technology islets are encapsulated inside semi-
permeable membranes that can isolate islet grafts from immune
cells and antibodies of recipients while allowing ingress of
nutrients, oxygen and glucose, and egress of insulin (de
Vos et al., 2010). In the past three decades, three major
categories of encapsulation approaches were studied for islet
immunoisolation. These include intravascular macrocapsules,
extravascular macrocapsules, and extravascular microcapsules
(Teramura and Iwata, 2010; O’Sullivan et al., 2011). Intravascular
devices are connected to the bloodstream which implies fast
correction of changes in blood-glucose levels due to faster
exchange of glucose and insulin (Prochorov et al., 2008).
However, its clinical application was and is limited by high risks
for thrombosis and infections, and the demand for major surgery
for implantation. Although some groups still publish novel
approaches for intravascular devices that are associated with less
risks (Prochorov et al., 2008; Gmyr et al., 2017), the majority
of research papers in the past decade focus on extravascular
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FIGURE 1 | Immunoisolating devices. (A) In macrocapsules, groups of islets are encapsulated in a selectively permeable membrane. Because of the unfavorable

volume to surface ratio in macroencapsules insufficient supply of nutrients such as oxygen is a major issue. (B) Schematic illustration of Beta-O2 device. Beta-O2 is

equipped with a refillable oxygen chamber that allows the diffusion of oxygen to the islet-containing chamber. (C) Schematic illustration of microcapsules with a better

surface to volume ratio than macrocapsules which facilitates ingress of oxygen and glucose and egress of insulin.

devices. Extravascular devices are therefore the major focus of
this review.

Extravascular devices can be distinguished into macro- and
microcapsules. Macrodevices contain groups of islets inside
the membrane (Figure 1A). The technique is rather simple in
concept. Groups of islets are encapsulated in the devices and
implanted either subcutaneously or intraperitoneally without
direct connection to the blood stream. Within days blood vessels
grow toward the surface for mandatory nutrient supply, but also
to exchange glucose and insulin. A major issue in the field of
macrocapsules, however, is the unfavorable surface to volume
ratio (Orive et al., 2018). As a consequence, diffusion of essential
nutrients such as oxygen is slow and islets inside the capsules
compete for these nutrients. Because of this there is a limitation
in seeding density that almost never exceeds 5–10% of the volume
of the devices (Lacy et al., 1991).

A promising solution for this diffusion issue is the so-
called Beta-O2 device (Figure 1B). Beta-O2 is a bioartificial

pancreatic device, which is implanted under the skin or into
the pre-peritoneal cavity with minimal surgery. The Beta-O2
device consists of two modules. A chamber is connected with
an oxygen port that allows infusion of gas into a chamber
by an injector that is operated manually. The other module
is the islet graft containing capsule which is surrounded by
a perm-selective membrane consisting of three layers, i.e., a
polytetrafluoroethylene, a highmannuronic acid alginate gel, and
a silicon rubber (Barkai et al., 2016). The multilayer membrane
allows free diffusion of oxygen, glucose, and insulin and forms
an effective immunoisolating membrane (Ludwig et al., 2010).
Due to the presence of an oxygen supply module more islets
can be encapsulated into a predefined volume without hypoxia.
In the original concept of the Beta-O2 device, 2400 IEQ/device
were loaded at a surface density of 1,000 IEQ/cm2 with a
refueling every 2 h with atmospheric air (Barkai et al., 2013).With
this device diabetic rat recipients maintained normoglycemia
through up to 240 days which was the end point of the
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experiment. Also, efficacy of this approach was demonstrated in a
large animal model, i.e., mini-pigs. The device with two separated
islet modules attached to a gas chamber containing 6,730 ± 475
rat IEQ/kg body weight (BW) was introduced in diabetic mini-
pigs. The rat islets induced normoglycemia up to 75 days without
immunosuppression demonstrating efficacy and safety as well
as the ability to use xenogeneic approaches with the device in
larger mammals (Neufeld et al., 2013). Efficacy of xenogeneic
porcine islets was recently also shown in a nonhuman primate
model with T1D with 20,000 islets/kg BW (Ludwig et al., 2017).
The device induced a persistent stable glycemic control even
during a stepwise reduction in daily exogenous insulin dose up
to 190 days after which the devices were explanted (Ludwig et al.,
2017). Upon retrieval, a strongly vascularized fibrous capsule
was observed around the device that according to the authors
facilitates the exchange of substances in and out of the device
(Ludwig et al., 2017).

Microcapsules in contrast tomacrocapsules do suffer less from
diffusion issues as they have a very optimal volume to surface
ratio (Figure 1C). Other advantages are that when a minority
of microcapsules are suffering from cell adhesion due to local
imperfections (de Vos et al., 1996a; De Vos et al., 1996b) the
grafts will not immediately fail while such a response is more
deleterious for macrodevices. Additionally, microcapsules are
mechanically stable and encapsulation can be done with nontoxic
molecules and reagents (Bhujbal et al., 2014a). The majority of
encapsulation approaches use alginate as core material followed
by poly-amine thin coating to provide immunoprotection or
to enhance mechanical stability (Kendall and Opara, 2017). To
enhance biocompatibility many different alginates with a large
variation of chemical modifications have been tested. In one of
the studies, 744 alginate analogs were tested, which revealed 200
analogs associated with lower immune cell activation compared
to the others (Vegas et al., 2016a). The evaluation of alginate
analogs in both rodents and non-human primates identified
three analogs that showed little presence of macrophages and
fibroblasts on the capsule surface demonstrating that alginates
are biocompatible in the correct chemical structure (Vegas et al.,
2016a; Bochenek et al., 2018). A challenge in this area is however
to identify and document the relationships between the surface
properties and biocompatibility because even the microcapsules
tested in the studies had different surface properties (Vegas et al.,
2016a) and provoked different degrees of tissue responses.

Although the large surface to volume ratio of microcapsules
facilitates oxygen and nutrient diffusion, the optimal size of
capsules to prevent tissue responses has recently become subject
of debate (Veiseh et al., 2015; de Vos, 2017). It was reported that
microcapsules with a diameter of 500µm induced significantly
more macrophage and fibroblast adhesion on the surface than
capsules of 1,800µm (Veiseh et al., 2015). Remarkably, we and
others using microcapsules in the 0.5mm range (Orive et al.,
2006; de Vos et al., 2009; Hall et al., 2011; Paredes-Juarez et al.,
2013) never observed these responses. A possible explanation
form this (de Vos, 2017) might be a variations in the level of
alginate purityused by the different groups (Paredes-Juarez et al.,
2013, 2014a; Paredes-Juárez et al., 2014b). Veiseh et al did not
apply alginates that were purified and were free of endotoxins

(Veiseh et al., 2015). These endotoxins will diffuse after capsule
formation to the surface. As smaller capsules have a higher
surface to volume ratio than larger capsules, more immune
stimulatory endotoxins will be present on the surface of the
smaller capsules, leading to stronger tissue responses (Paredes-
Juarez et al., 2013, 2014a; Paredes-Juárez et al., 2014b; de Vos,
2017). It is well known that alginate which is not sufficiently
purified may provoke stronger tissue responses than purified
alginates (Liu et al., 2011; Fang et al., 2017b). We but also others
(Tomei et al., 2014; Manzoli et al., 2017, 2018; Buchwald et al.,
2018a) do not see severe responses against small capsules and also
recognize that larger diameters for capsules also implies lower
oxygen supply to the islets (Tomei et al., 2014; Manzoli et al.,
2017; Buchwald et al., 2018a; Komatsu et al., 2018; Tomei, 2018)
which unfortunately is not discussed in the Veisah study (Veiseh
et al., 2015). For this reason, we prefer and keep on working on
smaller capsules (Spasojevic et al., 2014a; Paredes-Juarez et al.,
2015; Llacua et al., 2018a,c) which will be further discusses in the
next sections.

As mentioned above a major advantage of encapsulation
is the possibility to use cells from non-human sources or
a replenishable cell source from animal or human origin.
World-wide there is a huge gap between supply and demand
for cadaveric pancreata (Robertson, 2004; Bruni et al., 2014).
This might be solved by using stem cell-derived insulin-
producing cells or by using islets obtained from animals (Ekser
et al., 2015). Encapsulation and protection from the recipients’
immune system may facilitate clinical use of these cell sources.
Due to significant progress in the field of stem-cell research
and creation of a replenishable insulin-producing cell source,
fundamental research toward better capsule formulations has
revisited. Several groups report that encapsulated porcine islets,
which is considered to be a replenishable insulin-producing
cell source, successfully survived in non-human primates for
over 6 months with both microencapsulation (Dufrane et al.,
2006) and macroencapsulation (Dufrane et al., 2006) approaches.
Another study with microencapsulated porcine islets reported
up to 70 days survival in non-human primates which might
be improved by enhancing oxygen supply (Safley et al.,
2018). Successes also have been shown in human patients
transplanted with microencapsulated porcine islets (Omami
et al., 2017). A clinical study has reported improved HbA1c
levels and reduced hypoglycemic episodes for more than 600
days (Matsumoto et al., 2016). Living Cell Technologies has
performed a larger clinical study using Diabecell R©, which
is a commercial microencapsulated porcine islet graft which
in humans resulted in a reduction in exogenous insulin
use (Tan, 2010; Hillberg et al., 2013). Also, with stem-
cells the usefulness of encapsulation technologies has been
demonstrated. Pagliuca et al. (2014) transplanted alginate
microencapsulated glucose-responsive stem-cell-derived β cells
without any immunosuppression into T1D mice models which
induced normoglycemia until their removal at 174 days
after implantation (Vegas et al., 2016b). More recently, the
maturation of human stem-cell-derived β cells was stimulated
by forming islet-sized enriched β-clusters that responded to
glucose stimulation as early as 3 days after transplant (Nair
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et al., 2019). This, however, is not the only development
in replenishable cell sources in which cell-encapsulation is
instrumental. Genome-editing techniques have been creating a
novel field that might lead to new insulin-producing cell sources
(Cooper et al., 2016).

Despite its revisiting and promising application, cell
encapsulation in extravascular systems still suffer from a
common issue which is host responses against the capsules. These
responses might ultimately lead to adhesion of inflammatory
cells, fibroblast, collagen deposits that interfere with nutrition
of the cells in the devices (Krishnan et al., 2017). Some groups
report more and stronger host responses than others (Orive
et al., 2018) with seemingly similar approaches. In this review we
discuss progress made in the field and novel approaches to reduce
or delete these responses on extravascular devices. This involves
choice of type of polymer, the absence of proinflammatory
residues or contaminants in the devices or polymers, insights
in chemical conformation of surfaces to reduce host responses
but also novel approaches for biofouling or immunomodulating
biomaterials and application of polymers that form polymer
brushes. In addition, we discuss possible beneficial effects of local
release of immunomodulation molecules or inclusion and/or
co-encapsulation of immunomodulatory cells.

ATTENUATE HOST RESPONSES BY
RATIONAL CHOICES FOR POLYMERS

The original promise of the islet encapsulation technology is to
hide islets from the host immune system and to make them
untouchable (de Vos and Marchetti, 2002). This is still the
basis of many membranes that have been developed over the
past decade (Paredes-Juarez et al., 2013; Paredes-Juárez et al.,
2014b; Paredes-Juarez et al., 2015; Llacua et al., 2016). Another
pertinent aim is to use and design encapsulation materials
that are biocompatibility and are having a permeability that
guarantees protection against larger immune mediators such
as immunoglobulins and complement factors but at the same
time allowing exchange of essential nutrients in and out of
capsules (Grace et al., 2016). The polymers that have been
tested are derived from both natural sources or synthetic. There
are different classes of natural polymers i.e., polysaccharides,
polypeptide, and polynucleotides, of which polysaccharides are
the most commonly used in cell encapsulation. They offer several
advantages over the other two natural sources. They can provide
cells with a membrane in a relatively mild fashion and generally
without application of toxic solvents (de Vos et al., 2014).
Furthermore, the majority of polysaccharides form hydrogels
that are as flexible as natural tissue, mechanically stable (Li,
1998), and reportedly associated with minor host responses
(Cieslinski and David Humes, 1994). Synthetic polymers are
also widely investigated. Theoretically synthetic polymers can
be reproducibly be produced without batch-to-batch variation.
Another relevant advantage is that synthetic polymers can be
tailor-made to improve biocompatibility or to induce other
desired properties (Miura et al., 2006; Najjar et al., 2015;
Pham et al., 2018).

Alginate
The most commonly applied and detailed studied polymer
in encapsulation is alginate and applied in both macro- and
microencapsulation approaches (Wang et al., 2011; Cañibano-
Hernández et al., 2019). Alginate can be extracted from
several organisms including Azotobacter vinelandii, several
Pseudomonas species, and a variety of algae (Wee and Gombotz,
1998). Alginate is a natural anionic linear polysaccharide

consisting of 1,4
′
-linked β-D-mannuronic acid (M) and α-L-

guluronic acid (G) in different sequences or blocks, namely G-
G blocks, G-M blocks, and M-M blocks (de Vos et al., 2014).
The ratio and molecular weight of the blocks depends on the
applied natural raw material for alginate extraction and is used
to form capsules with different physical and chemical properties
(Ostgaard et al., 1993; de Vos et al., 2014). Alginate capsules are
usually formed by collecting cell-containing alginate droplets in
a solution with a high concentration of cations. The cations in
the solution bind to uronic acid blocks in alginate according a so-
called egg-box model (Figure 2) (Li et al., 2007). The pliability
and rigidity of alginate capsules depends on both the type of
alginate and type of cation applied. Ca2+, Sr2+, and Ba2+ are
having a high affinity and are in the concentration and duration
of exposure not toxic for cells (Stokke et al., 1991). Gels generated
from alginates with a high guluronic acid (High-G) content also
form stronger gels (Uludag et al., 2000; de Vos et al., 2004;
Bhujbal et al., 2014a). It was reported that the proinflammatory
properties of alginate also depends on alginate types (Grace
et al., 2016). Intermediate-G alginate provoked a lower immune
response than low- and high-G alginate (Paredes-Juarez et al.,
2013). This however can be changed by varying the cation types.
Eg using barium instead of calcium in high-M alginates results in
stable and biocompatible capsules. Barium in contrast to calcium
can bind to both G-G and M-M and produces capsules with
completely different properties. Duvivier-Kali et al. demonstrated
with this approach survival of islet grafts in diabetic BALB/c and
NODmice for more than 350 days (Duvivier-Kali et al., 2001).

Other Natural Polymers
In addition to alginate, there are many other natural polymers
used in encapsulation, which have received less attention than
alginate but have shown some success. These include agarose,
chitosan, cellulose, and collagen (de Vos et al., 2014).

Agarose is produced from agar and associated with
minimal immune responses (Fernández-Cossío et al., 2007;
Takemoto et al., 2015). Some successes have been shown in
diabetic dogs with allogeneic islets in agarose microcapsules
inducing normoglycemia for up to 49 days without significant
accumulation of inflammatory cells and fibroblasts around the
capsules (Tashiro et al., 1997). In diabetic Balb/c mice agarose
microencapsulated mouse islets induced normoglycemia for up
to 56 days without inflammatory cell infiltration (Agudelo et al.,
2009). Also, agarose macrocapsules have been tested in diabetic
mice (Iwata et al., 1994) and pancreatectomized dogs (Gazda
et al., 2014). The main challenge with agarose is to create a gel
with sufficient immunoprotection as it does not block diffusion
of cytotoxic immunoglobulin G (IgG) (Iwata et al., 1992a,b). In
principle, the immunoprotective properties of agarose gels are
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FIGURE 2 | Manufacturing islet-containing alginate-based microcapsules. Islets are suspended in an alginate solution solved in a balanced physiological salt solution

in the absence of calcium. Alginate containing islet droplets are formed by an air- or electrostatic driven droplet generator. Droplets are collected in a CaCl2 solution to

form microcapsules. The basis of the gel formation is calcium crosslinking constitutive alginate molecules according to the egg-box model.

determined by the concentration of agar solution to form perm-
selective membranes. Usually 5% agarose is used to generate
immunoprotective capsules (Kobayashi et al., 2003). However,
to enhance immunoprotection in in vivo studies, the agarose
concentration was raised to 7.5–10% (Iwata et al., 1994). Another
approach to enhance immunoprotection has been coating of
agarose microcapsules with poly-acrylamide, which successfully
prevented the entry of antibodies but provoked major host
responses (Dupuy et al., 1990). To overcome the host responses
more complex three layer agarose-based immunoisolation
systems were introduced (Tun et al., 1996). To improve
immunoprotection and mechanical stability, 5% polystyrene
sulfonic acid (PSSa) was added together with 5% agarose to
form the core of microcapsules. A polybrene layer coating was
applied to prevent the leakage of PSSa that may stimulate host
responses. Another layer of carboxylmethyl cellulose as the
outermost shell offered biocompatibility of microcapsules (Tun
et al., 1996). In addition to fine tuning permeability to enhance
immunoprotection, researchers also investigated the possibility
to combine local immunosuppression by co-encapsulating
SEK-1005. SEK-1005 is an anti-inflammatory agent (Kuriyama
et al., 2000). The rod was explanted 10 days after implantation
leaving a subcutaneous transplant site that was surrounded
by highly vascularized granulomatous tissue (Kuwabara et al.,
2018). Islet transplanted in the site survived more than 100 days
without immunosuppression owning to regulatory T cells in the
granulomatous tissue that regulated immune reactions against
islet grafts (Takemoto et al., 2015).

Also chitosan has been proposed as alternative for alginate.
Several groups have shown success with chitosan as a coating
layer for alginate-based microcapsule to reduce pericapsular
fibrosis (Yang et al., 2016). Chitosan-alginate complexes have
been suggested to improve long-term mechanical stability

(Baruch and Machluf, 2006). However, the application of
chitosan in islet encapsulation is somewhat limited due to low
solubility of chitosan under physiological pH (Kubota et al.,
2000; Ruel-Gariépy et al., 2002; Yang et al., 2010). PH values
as low as four are needed to solve the polymer. Islets are
very sensitive for low pH. Significant attempts have been made
to modify chitosan as such that it is soluble under more
physiological pH. Novel water-soluble chitosan derivatives have
been developed (Sobol et al., 2013) that can be dissolved at pH
7.0. These novel formulations are obtained from oligochitosan
and different aliphatic amines. When applied as membrane for
alginate/calcium beads, no negative effects were observed (Sobol
et al., 2013). Another study focusing on chitosan derivatives
synthesized methacrylated glycol chitosan (MGC) in a saline
solution at pH 9. These MGC membranes on the outside
of alginate capsules enhanced mechanical stability and were
associated with less fibroblast overgrowth than alginate/poly-
L-ornithine/alginate capsules (Hillberg et al., 2015). Another
approach to generate chitosan hydrogel that allow capsule
formation at physiological pH values is adding glycerol 2-
phosphate disodium salt hydrate into acetic chitosan solution
(Yang et al., 2010). Rat islets macroencapsulated in this hydrogel
reversed hyperglycemia in diabetic mice with a progressive
increase in body weight as a consequence (Yang et al., 2010).

Cellulose is also proposed for cell encapsulation but a poorly
soluble polysaccharide and has been chemically modified to
hydroxypropyl cellulose (Heng and Wan, 1997), carboxymethyl
cellulose (Tun et al., 1996), and ethylcellulose (Wandrey
et al., 2010) for better solubility facilitating application in
cell-encapsulation processes. Cellulose has been applied as
encapsulation material with rat (Wang et al., 1997), porcine
(Schaffellner et al., 2005) and mouse islets (Risbud et al., 2003). A
pertinent issue with cellulose derivates is controversies about its
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biocompatibility. Some groups report absence of host reactions
to cellulose-based capsules (Pelegrin et al., 1998; Schneider et al.,
2001), whereas other authors report visible tissue reactions
involving immune infiltrates and fibrous capsular formation in
vivo (Risbud et al., 2003). Another issue is that in contrast
to alginate-based membranes, cellulose molecules can arrange
closely together and form rigid structures which impact the
permeability of the membranes. It has been shown that cellulose
membranes prevent contact between activated complement
proteins and the encapsulated islets (Risbud and Bhonde,
2001), but the low-permeability also delays insulin responses
(Risbud et al., 2003).

Collagen is also able to form microcapsules for cell
encapsulation. An advantage is that collagens are associated with
minimal host responses (Yin et al., 2003). Although there are five
major types of collagens, collagen type I is the most commonly
applied polymer and also the most abundant type in the
human body (Ramachandran, 1963; Lee et al., 2001). However,
application of collagen in capsule manufacturing was limited by
short-term mechanical stability and unstable permeability due
to rapid enzymatic degradation post-transplantation (Szymanska
and Winnicka, 2015). An enzyme resistant outer shell is
required to maintain the integrity of the inner collagen core.
A tetrapolymer of 2-hydroxyethyl methylacrylate—methacrylic
acid—methyl methacrylate (HEMA– MAA–MMA) has been
tested for this purpose (Chia et al., 2002; Yin et al., 2003).
The capsules showed enhanced mechanical stability, a smoother
surface and absence of protruding cells resulting in enhanced
cell survival and function (Lahooti and Sefton, 2000; Chia
et al., 2002). Other approaches involve application of crosslinkers
to achieve long-term stability (Jorge-Herrero et al., 1999).
Glutaradehyde was used as crosslinker to increase collagen
stability but experiments were limited to in vitro studies due
to severe host immune reactions (Marinucci et al., 2003).
Success has been shown in reversing hyperglycemia in a
diabetic rat model with hyaluronic acid-collagen hydrogel (HA-
COL) encapsulated rat islets. These collagen based capsules
were functional for up to 80 weeks with minimal fibrotic
overgrowth or cellular rejection (Harrington et al., 2017). This
might be due to more durable covalent crosslinks between HA
and COL.

Synthetic Polymers
Compared with natural polymers, synthetic materials do not
suffer from batch-to-batch variations and can be chemically
modified to achieve different physical, chemical and biological
properties (Pişkin, 1995). However, toxic conditions such as
non-physiological pH or temperature, UV illumination or
harsh solvents needed during manufacturing of immunoisolating
devices might compromise cell viability and function of cells in
synthetic polymer-based capsules (Young et al., 2012; Headen
et al., 2014; Esfahani et al., 2017). This is the reason why
in the majority of studies with synthetic molecules focus on
macrocapsules which can be manufactured in absence of islets.
With macrocapsules in contrast to microcapsules membranes are
first produced and islets loaded later when all solvents are washed
out. This is more difficult with microcapsules were islets have to

be packed in the capsules and polymerization has to occur when
islets are embedded in the polymers.

Poly (ethylene glycol) (PEG) is one of the most versatile
synthetic polymer and also the most commonly applied synthetic
molecule for encapsulation of pancreatic islets (Hill et al., 1997;
Cruise et al., 1999) and coating microcapsules (Villa et al., 2017).
PEG is a water-soluble polymer, which allows application in
microencapsulation in absence of too harsh solvents. Several
groups have shown success with PEG as an immunoprotective
membrane to prolong islet functional survival (Weber et al., 2009;
Knobeloch et al., 2017). In contrast to most synthetic polymers,
PEG forms hydrogels with a high water content that offers a
mild microenvironment (Lutolf and Hubbell, 2005; Nuttelman
et al., 2008) for encapsulated cells inside and a protein-resistant
surface outside (Andrade and Hlady, 1987). Although without
harsh solvents, a threat to islet survival still exists during the
photopolymerization crosslinking process (Nguyen and West,
2002; Lin et al., 2009), which is associated with free radical
generation and, consequently, functional cell loss (Sabnis et al.,
2009). However, novel approaches have emerged. A microfluidic
strategy for generation of PEG-maleimide (PEG-4MAL) was
developed (Phelps et al., 2013). PEG-4MAL showed minimal
toxicity to islets and inflammation in vivo. The PEG-4MAL
microcapsule was generated by enveloping cells in the core of
the PEG-4MAL solution and subsequently rapid crosslinking
the droplets with dithiothreitol, which was associated with short
residence time,minimal cell stress in absence of generation of free
radicals. The system is still versatile as the network structure of
PEG-4MAL can be tuned by applying PEG of different molecular
weights to fine-tune molecular weight cut-off (Headen et al.,
2014) Recently, an innovative four-arm PEG-4MAL polymer
carrying vascular endothelial growth factor (VEGF) has been
introduced for coating macrocapsules in order to accelerate
device vascularization post-transplantation (Weaver et al., 2018).

Aliphatic polyesters have also been proposed for cell
encapsulation (Cameron and Shaver, 2011) but its mechanical
instability and difficult to tune permeability due to its
biodegradability (Buchholz et al., 2016) has limited its
application. Poly (lactic-co-glycolic acid) (PLGA) is a linear,
polymerized aliphatic polyester that may overcome some issues
as it possesses better biostability (Angelova and Hunkeler, 1999).
However, PLGA still undergoes hydrolysis under physiological
conditions and produces lactic acid and glycolic acid (Ding and
Schwendeman, 2008) but these two monomers are non-toxic
at normal physiological dose. It has been reported however
that the degradation of PLGA lowered the surrounding pH and
subsequently created an autocatalytic environment for proteins
(van deWeert et al., 2000). The low pH in the microenvironment
may influence the release of insulin and may even evoke host
responses (Jiskoot et al., 2009). PLGA microencapsulated
porcine islets have been xenotransplanted into diabetic rats
and reduced hyperglycemia significantly, but hyperglycemia
could be completely reversed (Abalovich et al., 2001). The
PLGA encapsulated islets release less insulin than islets placed
in diffusion chambers in vitro, which might illustrate a negative
impact of PLGA degradation products on islet function or insulin
releasing capacity (Abalovich et al., 2001). If the degradation of
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FIGURE 3 | Microcapsule made from polymers might contain pathogen

associated molecular patterns (PAMPs) that can be recognized by

pattern-recognition receptors (PRRs) on macrophage and evoke subsequent a

cascade of proinflammatory responses, ultimately leading to a pericapsular

fibrotic overgrowth of capsules and necrosis of the islets.

PLGA can be inhibited by modifying its structure, or its degree
of crystallinity or amount of residual monomer (Xu et al., 2017)
it still is a promising material for cell encapsulation because of
its biocompatibility.

Another synthetic polymer that has been tested for cell-
encapsulation is polyacrylate. This has been applied for both
microencapsulation and macroencapsulation of pancreatic islets
(Ronel et al., 1983; Sugamori and Sefton, 1989). Initial
formulations of polyacrylate-based capsules had insufficient
membrane permeability for water-soluble nutrients (Lahooti and
Sefton, 1999). A modification that enhanced its applicability in
cell encapsulation was that polyacrylate can be copolymerized
with different acrylate units to tailor capsules with optimal
biocompatibility and permeability (Stevenson and Sefton, 1987).
To get an optimal rigidity and permeability, the hydrogel poly (2-
hydroxyethyl methylacrylate) (HEMA) was copolymerized with
the glassy poly (methyl methacrylate) (MMA) to manufacture
the copolymer HEMA-MMA that can form flexible hydrogels for

microcapsule generation (Babensee et al., 1992). A comparison
of permeability between EUDRAGIT R© RL (a commercially
available copolymer of ethyl acrylate, methyl methacrylate, and
methacrylic acid ester) and HEMA-MMA indicated sufficient
permeability offered by both of the two materials to insulin and
glucose (Douglas and Sefton, 1990). However, it was too porous
to protect enveloped cells for immunity and consequently only
postponed graft destruction (Surzyn et al., 2009). The molecular
weight cut-off of HEMA-MMA is around 100 kDa (Crooks
et al., 1990), which cannot protect for escape of antigens and
subsequent T cell activation (Surzyn et al., 2009). The application
of HEMA-MMAmicrocapsules needs a novel approach to reduce
and fine-tune permeability.

As a derivative of polyacrylate, polyacrylonitrile (PAN)
was copolymerized with methallylsulfonate to produce AN69
(polyacrylonitrile-sodium methallylsulfonate) (Honiger et al.,
1994). AN69 has been applied in macrocapsules (Kessler
et al., 1991, 1992; Honiger et al., 1994; Colton, 1996). The
AN69 membrane possesses optimal immunoisolation ability
and is permeable to small molecular water-soluble substances
(Sevastianov et al., 1984). However, the in vivo studies of
AN69-based macrocapsules showed a reduced permeability for
nutrients and insulin (Kessler et al., 1992), as a consequence of
extreme protein adsorption (Silva et al., 2006).

Current challenges in application of many synthetic polymers
for cell encapsulation are overcoming the use of hazardous
solvents (Olabisi, 2015), reducing strong host responses (i.e.,
polyurethane and polypropylene) (George et al., 2002; Kawiak
et al., 2003), or preventing fibrotic overgrowth (i.e., polyvinyl
alcohol and polypropylene). Probably because of these issues
combinations of natural and synthetic materials have attracted
much attention from researchers. Several new concepts and
multilayer encapsulation systems have emerged, which are
discussed in following sections. However, first a common issue
in application of synthetic and natural polymers needs to be
discussed which is possible contaminations with endotoxins
or better, pathogen-associated molecular patterns needs to
be discussed.

Pathogen-Associated Molecular Patterns
(PAMPs) in Polymers
A still ongoing and pertinent consideration in application of any
polymer in cell-encapsulation is the need to use the polymers
as pure as possible. Taking the most widely used natural
polymer alginate as an example, all commercially available
crude alginate contain proinflammatory PAMPs, including
flagellin, lipopolysaccharide, peptidoglycan, lipoteichoic acid,
and polyphenols (Paredes-Juárez et al., 2014b). Also other
sources such as synthetic molecules i.e., polyethylene glycol
was found in our assays to contain PAMPs. All of the above
mentioned contaminants will play a negative role in host
responses against capsules (Krishnan et al., 2017). During
recent years it has been shown that these PAMPs (Paredes-
Juarez et al., 2013, 2014a; Paredes-Juárez et al., 2014b) induce
inflammatory responses in recipients either by diffusing out
of the capsules or by being present at the capsule surface.
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This happens primarily via pattern-recognition receptors (PRRs)
(Figure 3). After activation of PRRs on immune cells a cascade
of intracellular signaling pathways are activated, leading to
translocation of nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) inducing inflammatory cytokine
secretion, ultimately resulting in overgrowth of the capsules
by immune-cells and fibroblasts (Kendall et al., 2004; Tam
et al., 2006; Ménard et al., 2010; Paredes-Juárez et al., 2014b).
Because fibrosis of the surface obstructs the ingress of nutrient
and egress of waste, effective regulation of hyperglycemia is
restricted to a limited period (de Vos et al., 1994, 2002b, 2012).
Notably, apart from contaminants, it has been reported that
uncrosslinked mannuronic acid polymers can trigger immune
activation (Flo et al., 2002). For all these reasons, it is mandatory
to apply purification procedures and quality assessment systems
for purity of alginate (Paredes-Juarez et al., 2014a; de Vos, 2017;
Orive et al., 2018).

There are a number of purification strategies published
that obtain relatively endotoxin-free alginate. There are three
mainstream classic “in-house” purification approaches (Klöck
et al., 1994; De Vos et al., 1997b; Prokop and Wang, 1997).
The protocol of de Vos starts with protein extraction with
chloroform/butanol mixtures under acidic and neutral pH
conditions (De Vos et al., 1997b). Prokop purified alginate
by charcoal treatment and dialysis (Prokop and Wang, 1997),
whereas the processes of forming, washing and dissolving
alginate Ba2+ beads are applied in Klöck’s protocol (Klöck
et al., 1994). Purification procedures can reduce endotoxin,
polyphenols, and proteins, but the final product differs greatly
in degree of purity (Dusseault et al., 2006). In 2016 a novel
purification strategy was added to the list of methods. This
method is based on activated charcoal treatment, hydrophobic
membrane filtration and dialysis (Sondermeijer et al., 2016).
Using this approach, purified alginate was created that induced
minimal foreign body reactions up to 1month after implantation.
In addition to purification a fast and efficient platform is
needed to test the efficacy of purification. Paredes-Juarez et al.
have published a platform that allows for identification of PRR
activating capacity of polymers and finally identification of the
type of contaminant in the polymers (Paredes-Juarez et al.,
2014a). This eventually can lead to strategies to remove the
contaminants. Despite the availability of several methods to
purify alginates and to identify contaminants in polymers, it is
still rarely used. This is however highly recommended as there
are several lines of evidence that even polymers sold as ultrapure
(Paredes-Juarez et al., 2013; Paredes-Juárez et al., 2014b) still
contain endotoxins that might be responsible for inflammatory
responses after implantation.

POLYMERIC ENGINEERING APPROACHES
TO REDUCE TISSUE RESPONSES

Multilayer Capsules
Due to shortcoming of some of the above discussed available
polymers, the majority of researchers choose to produce
microcapsule with application of combinations of molecules.

Often these are applied in layer-by-layer systems (Tun et al.,
1996; Schneider et al., 2001; Chia et al., 2002; Park et al., 2017).
Alginate, as the most commonly used encapsulation materials,
was in some confirmations, too porous to prevent penetration of
IgG (Dembczynski and Jankowski, 2001) and some formulations
were associated with low mechanical stability and higher surface
roughness caused by cell protrusions after long term culture.
Cationic polymers from chemical synthesis procedures were
used to coat alginate-based capsules and overcome these issues.
Commonly used examples are alginate coated with poly-l-lysine
(PLL) (de Vos et al., 2002b), poly-L-Ornithine (Darrabie et al.,
2005), PEG (Park et al., 2017), chitosan or agarose.

PLL was originally applied to decrease the pore size of
alginate membranes and to enhance mechanical stability (De
Vos et al., 1997a; Kendall and Opara, 2017). For many years,
application of PLL was reported to be associated with enhanced
immune responses against capsules. However, systemic studies
with application of, for the field new, physics and chemical
technologies such as Fourier-transform infrared spectroscopy
(FT-IR), X-Ray Photoelectron Spectroscopy (XPS), and Time-
of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) has
revealed that PLL should be forced in a specific conformation
to avoid responses. Any PLL that is not in the structure will
bind cells in the vicinity of the capsules and provoke tissue
responses. The following steps are essential to generate capsules
with PLL that do not provoke responses. First, after gelification in
a calcium solution alginate-based capsules have to be suspended
in a low calcium high sodium buffer. During this step calcium
on the surface of capsules is displaced by sodium that has
lower affinity for alginate than PLL. This has to happen in the
first few microns of the surface. Sodium will subsequently be
substituted by PLL in a PLL-solution that lacks divalent cations.
This process is temperature sensitive and should always be done
in a consistent way. If done correctly, it creates a calcium alginate
system that is composed of two layers, namely an alginate core
and a layer of PLL-alginate complexes. There are three different
binding modes in the outer layer, including (i) random coil
formation between alginate and PLL, (ii) α-helicoidal structure
between amide groups of PLL, and (iii) antiparallel β-sheet
structure between amide groups of PLL (de Vos et al., 2002a;
van Hoogmoed et al., 2003; Paredes-Juárez et al., 2014b). All
PLL should be in this network which can be documented by FT-
IR. By a stepwise approach and repeated implantations in mice
it has been demonstrated that optimal biocompatible alginate-
PLL capsules can be created as long as the PLL is in these
confirmations (Juste et al., 2005). The PLL also improved the
mechanical stability and permeability of alginate-based capsules
(van Hoogmoed et al., 2003; Bhujbal et al., 2014b).

Conformal Coating
As outlines in section Islets Encapsulation Technology many
groups prefer to encapsulate islets in the smallest capsule possible
to guarantee optimal nutritional supply to the enveloped islets
(Orive et al., 2006; de Vos et al., 2009; Hall et al., 2011; Paredes-
Juarez et al., 2013; Villa et al., 2017; Buchwald et al., 2018a).
A recent study even suggest that the distance between islet-and
surrounding fluid should be below 100µm to allow optimal
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supply of nutrients (Iwata et al., 2018). These type of distances
can be achieved with a technology called conformal coating
(Tomei et al., 2014; Manzoli et al., 2017, 2018; Buchwald et al.,
2018a). In addition to improving oxygen and nutrient transport
conformal coating strategies also reduce the total transplant
volume allowing implantation in other sites than the traditionally
applied peritoneal cavity (Tomei et al., 2014; Buchwald et al.,
2018b; Ernst et al., 2019). As this review does focus on polymers
and tissue responses, we will discuss this subject in view
of polymers applied and not current developments with this
technology. Islet conformal coating approaches typically apply
polyelectrolytes or complementary materials which are coated
on a surface of cells or cell aggregates via intermolecular forces,
i.e., electrostatic forces, hydrogen-bonds, or covalent linkages
(Borges and Mano, 2014; Yamamoto et al., 2016). PEG was
one of the first and still commonly applied polymers in islet
conformal coating technologies. PEG is used in conformal
coating techniques with photopolymerization (Cruise et al., 1999)
microfluidic approaches (Tomei et al., 2014), via ester-bonding
(Lazarjani et al., 2010), and via hydrogen-bonds (Wilson et al.,
2010). In order to regulate permeability, multiple-arm PEG
was developed. Islets conformally coated with this technique
successfully corrected hyperglycemia for more than 100 days in
mice (Rengifo et al., 2014; Giraldo et al., 2017). More recently, a
heparin functionalized, 8-arm PEG was synthesized to coat islets
with nanoscale barriers. This enhanced survival as it inhibited
islet-cell apoptosis and promoted neovascularization in vitro
(Lou et al., 2017). However, the potential anti-inflammatory
effects of incorporated heparin, which is a well-known effect of
heparin (Mao et al., 2017), was not discussed in this study.

During recent years the lay-by-layer (LBL) assembly with PEG
has emerged as another promising alternative strategy (Ryan
et al., 2017) to conformally coat islets. Theoretically this should
overcome some limitation of the single-layer-PEG approach and
in particular the potential harmful effects of PEG conformal
coating techniques (Miura et al., 2006; Wilson et al., 2010;
Chen et al., 2011) on mechanical instability (Itagaki et al.,
2015; Yamamoto et al., 2016), and on sometimes inadequate
immune-protection (Teramura et al., 2007). Polyelectrolytes
applied in LBL coating can both be synthetic and natural
polyelectrolytes (Granicka, 2014). In a recent study, acrylate
modified cholesterol bearing pullulan (CHOPA) was employed
to create a multilayer coating on β cell aggregates under
mild polymerization conditions (Bal et al., 2018). In these
CHOPA nanogels, pullulan can form immunologically inert
gels without the use of toxic cations or other chemicals. In
this system cholesterol units provide hydrophobic crosslinking
points that promote self-assembly of polymeric particles (Bal
et al., 2018). To reach an optimal equilibrium point of diffusion
and immunoisolation, oppositely charged polymers (positively
charged chitosan and negatively charged PSS) was applied in 9
layers on human islets (Syed et al., 2018). This system could
induce normoglycemia for up to 180 days in a model of human to
mice xenotransplantation with minimal immunocyte infiltration
on the capsules (Syed et al., 2018). Also linear or star-shaped
PEG derivatives are intensively studied for application in layer-
by-layer approaches (Ryan et al., 2017; Perez-Basterrechea et al.,

2018). Haque et al has built an coating layer with thiol-6-
arm-PEG-lipid (SH-6-arm-PEG-lipid) and with gelatin-catechol
to provide islets with a substitute for the extracellular matrix
of islets and added three other coatings with 6-arm-PEG-
SH, 6-arm-PEG-catechol, and linear PEG-SH respectively to
provide immunoprotection (Haque et al., 2016). The multi-layer
system preserved islet cell viability but the polymers showed
minimal adsorption of human serum albumin, fibronectin,
and immunoglobulin G. The system induced prolonged graft
survival in a xenogeneic porcine-to-mouse model, which was
further enhanced by applying an immunosuppressive cocktail
(Haque et al., 2016). There is even efficacy shown in a
xenogeneic monkey-to-mouse model in which 100% of the grafts
survived for more than 150 days. After this period minimal
or no immunocyte infiltration was observed (Haque et al.,
2017). Given the potential severe side effects of generalized
immunosuppression, a more recent study developed a controlled
immunosuppressant FK506 release nanoparticle system using
3,4–dihydroxyphenethylamine (DOPA) conjugated PLGA–PEG
to coat islet surfaces and to provide local immunosuppression
(Pham et al., 2018). This study illustrates the potential of using
layer-by-layer assembly as both barrier and carrier system for
graft-survival promoting molecules.

Anti-biofouling
In the post-transplantation period the host response starts
with nonspecific protein adsorption and subsequent adhesion
of immune cells and fibroblasts onto the capsule surface, a
process termed “biofouling” (Harding and Reynolds, 2014).
Several approaches have been explored to inhibit this issue with
an approach called anti-biofouling which involves application
of molecules on the surface of capsules to reduce protein
adsorption. Most-studied strategies are based on application of
low-biofouling polymers. Coated with hydrophilic polymeric
materials the capsule surface is covered by a layer of water
molecules, providing a highly resistant surface to protein
adsorption (Kingshott and Griesser, 1999).

One of the most commonly applied molecules for anti-
biofouling is PEG. PEG matrices can induce low protein
adsorption but efficacy depends on chain density, length,
and conformation (Michel et al., 2005; Unsworth et al.,
2008). The protein resistance of a PEG surface proportionally
increases with higher polymerization degrees and denser brush
bristles on the surface (Andrade and Hlady, 1987; Cruje and
Chithrani, 2014). PEG has been applied to coat alginate capsules
to lower permeability and enhance mechanical stability but
also served as anti-biofouling layer (Chen et al., 1998; Park
et al., 2017). To coat alginate-based microcapsules, the PEG
backbone was charged with added amine groups (NHs+),
which can interact with naturally negatively charged alginate
(Chen et al., 1998). In this way, PEG-amines can stably
crosslink with alginate as a coating layer (Chen et al., 1998).
Another group of investigators used mild glutaraldehyde (GA)
treatment which increased the capsule strength, flexibility, and
biocompatibility (Chandy et al., 1999). PEG coating brought
many beneficial properties for cell encapsulation, including
prevention of fibrotic overgrowth on the capsule surface
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FIGURE 4 | (A) Principle of formation of polymer brushes. At low grafting density polymers will have a mushroom conformation at the surface of capsules. When the

grafting density increases and space becomes limited, the polymers will stretch and form a polymer brush that does not allow for protein and cell adhesion. (B)

Schematic illustration of antibiofouling polymer brush surface formatted from PEG-b-PLL. PEG has to be long to prevent penetration into the alginate network and to

stimulate stretching of the molecules on the surface (Spasojevic et al., 2014b). The outer PEG layer blocks shed unbound cytotoxic PLL and simultaneously provides

a protein resistant surface, which showed antibiofouling properties in vivo studies.

(Chen et al., 1998). However, still tissue responses may occur
which was further reduced by introducing immunosuppressive
agents. In one of these approaches, rapamycin-PEG-coated
alginate microcapsules inhibited non-specific binding and
proliferation of macrophages in vitro and decreased fibrosis
of capsules with more than 50% in a xenogeneic islet
transplantation model (Park et al., 2017). Another approach
using the protein-resistant property of PEG was by application
of copolymers with PEG. Poly(ethylene glycol)-block-poly(l-
lysine hydrochloride) (PEG-b-PLL) was coated on top of a
proinflammatory, but immunoisolating, perm-selective alginate-
PLL membrane (Spasojevic et al., 2014b). The diblock copolymer
masked proinflammatory PLL and built an anti-fouling outer
layer and successfully ameliorate host responses. A more
recent study present a novel macroencapsulation strategy
(Marchioli et al., 2017) that possibly induces anti-biofouling
but also supports neovascularization while minimizing fibroblast
adhesion. The technology applies two layers made of an anti-
biofouling polyethyleneglycole diacrylate (PEGDA), and two
pro-angiogenic growth factors conjugated to PEGDA. These two
layers were covalently crosslinked and induced controlled release
of basic fibroblast growth factor (bFGF) and vascular endothelial
growth factor (VEGF) for up to 14 days (Marchioli et al., 2017)
stimulating neovascularization.

Polymer Brushes
An emerging new approach to reduce protein adsorption
and cell-adhesion is application of polymer brushes. Polymer
brushes consist of polymer chains that are densely tethered

with other polymer chains on a surface (Figure 4A) (Feng
and Huang, 2018). Polymer brushes form an ultrathin, solid
coating (Kim and Jung, 2016).The polymer brush coating
not only significantly changes the surface properties but also
gives the surface new functionalities (Barbey et al., 2009).
Spasojevic and colleagues showed a novel strategy combining
the benefits of PLL and PEG by creating diblock co-polymers
of poly(ethylene glycol)-block-poly(l-lysine hydrochloride)
(PEG454-b-PLL100) (Spasojevic et al., 2014a). The copolymers
bind with alginate with its positive charged PLL tail. PEG has
to be long to prevent penetration into the alginate network
and to stimulate stretching of the molecules on the surface
(Figure 4B). The outer PEG layer blocks shed unbound
cytotoxic PLL and simultaneously provides a biocompatible
surface. Subsequent in vivo study proved the microcapsules
have better biocompatibility illustrated by an absence of cell
adherence (Spasojevic et al., 2014b).

Also other polymer brushes have been investigated recently.
One of the studies coated soft chitosan surfaces with polymer
brushes of oligo(ethylene glycol) methyl ether methacrylate
and 2-hydroxyethyl methacrylate by photopolymerization
(Buzzacchera et al., 2017). The novel polymer brush surface
was reported to reduce protein adhesion and eliminated platelet
activation and leukocyte adhesion (de los Santos Pereira et al.,
2016; Buzzacchera et al., 2017). The application of diblock
polymers is to our opinion a promising approach to combine
advantages of different polymers but needs a multidisciplinary
approach as in our hands uniform and complete coverage of the
capsules surface with a brush was challenging.
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ACCESSORY CELL STRATEGIES TO
REDUCE TISSUE RESPONSES

Often polymeric approaches are combined with pharmaceutical
approaches to reduce tissue responses but during recent
years a new emerging trend of applying and co-encapsulating
“immunosuppressive” cells has shown some success. One of
these immunosuppressive cell-types are T regulatory (Treg)
cells. Tregs have been successfully immobilized on islet surfaces
through streptavidin-biotin interactions (Gołab et al., 2014).
This was done by first incubating the islets with a Biotin-PEG-
succinimidyl valeric acid ester followed by an incubation with
streptavidin. Subsequently, Treg cells were brought onto the islets
(Gołab et al., 2014; Gliwinski et al., 2017). The islets coated with
Treg-cells showed a lower glucose-stimulated insulin release than
controls (Gołab et al., 2014). Although efficacy in vivo is not
reported yet, this approach holds some promises as recruiting
Treg cells by intramuscular co-transplantation of islets with
a plasmid encoding Treg cell specific chemokine CCL22 was
efficacious in preventing graft rejection (Vågesjö et al., 2015).
Some success has also been shown in xenotransplantation with
blockade of the costimulatory pathway of CD40/CD154, which
inhibited T cell and B cell signaling (Ock et al., 2018; Do et al.,
2019). In mice treated with this approach, increased numbers
of Treg cells and an elevated anti-inflammatory cytokine profile
was found around a porcine islet grafts (Wu et al., 2017).
More recently, it was shown that Jagged-1, i.e., a potent
immunomodulatory factor, immobilized on PEG-coated islet
surfaces induced an increased population of Treg cells and a
decreased level of proinflammatory cytokines in vitro, and an
improved blood glucose control in vivo (Izadi et al., 2018).
However, instead of enhancing the population of Treg cells,
a recent study induced downregulation of proinflammatory T
effector (Teff) cells by co-transplanting microgels conjugated
with Fas-ligand on their surface (Headen et al., 2018). Fas,
as a death receptor on the surface of T effector cells, can be
activated by Fas-ligand resulting in an increased ratio of Treg to
Teff (Headen et al., 2018). This system induced normoglycemia
for more than 200 days in mice (Headen et al., 2018). The
results show that a combination of polymeric encapsulation with
recruitment of immune regulating cells might provide improved
islet survival.

In addition to application of T-cells to regulate tissue
responses, various endothelial cell types have been applied for
co-encapsulation to promote survival of encapsulated cells (Ernst
et al., 2019). Endothelial cells might have some benefits for islets
as they have been shown to resist and neutralize reactive oxygen
species, inhibit thrombogenesis, promote revascularization, and
form extracellular matrices (Staels et al., 2016; Karimian et al.,
2017). Co-transplanting these cells with islets has successfully
promoted graft revascularization and promoted survival in
several micro-and macroencapsulation approaches (Gupta and
Sefton, 2011; Buitinga et al., 2016; Li et al., 2017). One
study reports successful and expedited islet cell engraftment by
coating islets with vascular endothelial cells (Barba-Gutierrez
et al., 2016). During the last decade, also the application
and co-encapsulated mesenchymal stem cells (MSCs) has been

intensively studied in islet transplantation (Ben Nasr et al.,
2015; Hirabaru et al., 2015; Unsal et al., 2015; Yoshimatsu
et al., 2015; Cao et al., 2016). MSCs theoretically support
angiogenesis and produces immunomodulatory molecules (Kim
et al., 2019; Laporte et al., 2019), when co-transplanted with
islets. Indeed co-encapsulation of MSCs have been shown
to increase neovascularization and reduce islet cell death in
both micro- and macroencapsulation approaches (Vériter et al.,
2014; Borg et al., 2016; Buitinga et al., 2016; Bal et al., 2017;
Hamilton et al., 2017) and might hold promises for improving
graft survival.

IMMUNOMODULATORY MATERIALS

During recent years novel biomaterials have been designed
that eventually might serve as immunomodulating polymers
to reduce or prevent host reactions to encapsulated cell
systems. One such an approach is application of Staudinger
ligation chemistry to link immunomodulatory proteins with
PEG. Staudinger chemistry, based on the specific crosslinking
reaction between azide- and phosphine-labeled molecules, was
successfully applied for conjugating different polymers (Hall
et al., 2011) or bio-functional molecules with encapsulation
polymers (Chen et al., 2011). Specifically, an amide bond
was generated from an azide on protein and a specifically
functionalized phosphine on triphenylphosphine-PEG. By this
approach, thrombomodulin (TM) was bound with PEG,
subsequently being immobilized on islet surfaces through
streptavidin-biotin interactions. TM catalyzes the generation
of activated protein C (APC) (Esmon, 2004), which possesses
potent anti-inflammatory activity by inhibiting proinflammatory
cytokines production in macrophages (Grey et al., 1994; Esmon,
2004). Co-immobilized TM induced protein C activation,
which was similar to the activated protein C level catalyzed
by endogenous TM in mouse pancreatic islets indicated
reduction of inflammatory processes (Wilson et al., 2010).
Chen and colleagues reported a different method to co-
immobilized urokinase (UK) and TM on islet surfaces by
PEG-conjugated phospholipids (Chen et al., 2011). Maleimide–
PEG–lipid-anchored to the lipid bilayer membrane through
hydrophobic interactions. Thiol (SH) groups on the SH-UK
and SH-TM replaced maleimide groups and conjugated at the
end of PEG chains on the cell membrane (Chen et al., 2011).
The surface of islets coated with these membranes increased
APC generation and released functional UK and TM, which
reduced the instant blood-mediated inflammatory reactions after
implantation and prolonged graft survival (Korsgren et al., 2008).
In another approach to immunomodulate, hemoglobin (Hb-C)
was crosslinked with PEG to scavenge nitric oxide (NO) and limit
NO’s negative biological actions (Han et al., 2002; Chae et al.,
2004). Because of constraints that not every immunomodulator
can be conjugated with polymers, an alternative strategy involves
simple mixing immunomodulatory substances with polymers.
Rapamycin has been trapped into PEG microcapsules and
successfully prevented foreign body responses against capsules
containing porcine islets (Park et al., 2017).
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FIGURE 5 | Schematics presentation of how immunomodulatory polymers block proinflammatory receptors and inhibit inflammatory signal pathways.

Also silk hydrogels have been shown to have
immunomodulatory effects on macroencapsulated rat islets
(Hamilton et al., 2017). Islets were seeded on silk scaffold and
subsequently encapsulated in an alginate-Ba2+ network. An
additional alginate-layer was added and cross-linked on the
periphery of the scaffolds for immunoisolation (Kumar et al.,
2017). The results indicate that blended silk hydrogel not only
influenced islet viability, insulin secretion and endothelial cell
maintenance, but also decreased production of proinflammatory
cytokines in vitro. After injected with interleukin-4 (IL-4) and
dexamethasone-loaded hydrogels, the silk macrocapsules showed
a strong macrophage polarization toward a M2 phenotype which
might provide an immunopermissive environment for the
implants. A more recent study demonstrate that 2-aminoethyl
methacrylate hydrochloride coupled to alginate can reduce tissue
responses (Somo et al., 2018). By ionic crosslinking followed
by exposure to ultraviolet light, 2-aminoethyl methacrylate
hydrochloride modified alginate can be formed. The capsules
were reportedly more mechanical stable than the alginate-
beads and showed less inflammation on the surface of the
beads after 3 weeks in LPS-stimulated rats (Somo et al.,
2018). Meanwhile, in the field of intestinal immunity and
bromatology, several heteropolysaccharides have been reported
to possess immunomodulatory properties. Polysaccharide
extracted from Morinda citrifolia Linn (Sousa et al., 2018),
Lentinula edodes (Ren et al., 2018), Schizophyllum commune
(Du et al., 2017), and lemon showed immunomodulatory
effects. Most of these molecules bind to specific pro-
inflammatory immune receptors which to our opinion might
be a valuable approach to create immunomodulating capsules
surfaces (Figure 5).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Although encapsulation in permselective membranes is a field
that is around for more than three decades, important new
polymeric approaches have emerged during recent years that
create optimism that a technology can be developed that
provokes minimal tissue responses and allows long term survival
of encapsulated cells. The technology has revisited together
with new approaches for creating a replenishable cell sources
for curing endocrine diseases such as T1D. Some of these
sources involve the use of xenogeneic tissue which might be
particularly challenging in an encapsulation setting as indirect
antigen presentation might be involved (Shin et al., 2014, 2015).
Conceivable approaches to overcome influences of indirect
antigen presentation might be application of the discussed
polymer brushes and immunomodulating materials. With this
approach either effector arms of the immune response can
be blocked or adsorption of essential molecules to full-fill the
response can be prevented. Also, lowering the permeability may
be a suitable approach. The Beta-O2 device applied in pigs was
having an Mw cutoff of about 80 kDa which might have been
enough to prevent antigens responsible for indirect presentation
to leak out (Neufeld et al., 2013). As such this review has
attempted to demonstrate that rational choices for polymers and
surface modification to modulate tissue responses and to prolong
graft survival.

In addition to novel polymers to reduce tissue responses also
other approaches have emerged. Some promising approaches are
coating or co-encapsulation of nanoparticles for targeted and
local drug delivery without systemical side-effects (Fang et al.,
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2014, 2017a, 2018; Dehaini et al., 2017; Zhang et al., 2017).
Also approaches in which immune regulatory cells are applied
in combination with encapsulation show promise although
convincing in vivo results are not yet available. Apart from impact
of polymers and tissue responses, long-term maintenance of islet
cell viability is an important issue that requires much more
attention by the scientific community. This is essential for graft
function but also for reducing tissue responses as dead cells
release danger-associated molecular patterns that provoke local
tissue responses (Paredes-Juarez et al., 2015). A possible approach
to prevent or reduce cell-death is by including extracellular
matrix molecules (ECM) (Llacua et al., 2018b) in encapsulation
systems (Del Guerra et al., 2001; Llacua et al., 2018a,c). ECM
is damaged during islet isolation and has an enormous impact
on survival of islets in encapsulated islet grafts (de Vos et al.,
2016). ECM can stimulate cell proliferation, and eliminate known
adverse factors.

Overall, current insight points to several potential successful
strategies to reduce tissue responses against encapsulated islets
grafts. This include novel or improved polymers but possibly
also immune modulatory molecules or cells to allow long-
term survival of encapsulated islet grafts. Although many long-
term successes have been shown in several animal models
there is consensus among insurance companies that 1-year
survival is required with possibility to retrieve the graft before
human application can be considered. To achieve this with
in this review discussed approaches is to our opinion a
realistic goal.
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