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Literature-Based Discovery (LBD) aims to connect scientists across silos by assembling

models of the literature to reveal previously hidden connections. Unfortunately, LBD

systems have been unable to achieve user adoption on a large scale. This work develops

opens source software in Python to convert a database of semantic predications of

all of PubMed’s 27.9 million indexed abstracts into a semantic inference network and

biomedical concept graph in Neo4j. The developed software, called SemNet, queries a

modified version of the publicly available SemMedDB and computes feature vectors on

source-target pairs. Each unique United Medical Language System (UMLS) concept is

represented as a node and each predication as an edge. Each node is assigned one of

132 node labels (e.g., Amino Acid, Peptide, or Protein (AAPP); Gene or Genome (GG);

etc.) and each edge is labeled with one of 58 predications (e.g. treats, causes, inhibits,

etc.). SemNet computes a single feature value for each metapath, or sequence of node

types, between a source node and user-specified target node(s). Several different types

of metapath-based features (count, degree weighted path count, and HeteSim metric)

are computed and vectorized. SemNet employs an unsupervised learning algorithm for

rank aggregation (ULARA) to rank identified source nodes that are most relevant to the

user-specified target nodes(s). Statistical analysis of correlation among identified source

nodes or resultant literature network features are used to identify patterns that can guide

future research. Analysis of high residual nodes is used to compare and contrast SemNet

rankings between different targets of interest. An example SemNet use case is presented

to assess “the differential impact of smoking on cognition in males and females” using the

following target nodes: nicotine, learning, memory, tetrahydrocannabinol (THC), cigarette

smoke, X chromosome, and Y chromosome. Detailed rankings are discussed. Overall

results suggest a hypothesis where smoking negatively impacts cognition to a greater

extent in females, but smoking has stronger cardiovascular impacts inmales. In summary,

SemNet provides an adoptable method for efficient LBD of PubMed that extends beyond

omics-only relationships to true multi-scalar connections that can provide actionable

insight for predictive medicine, research prioritization, and clinical care.
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INTRODUCTION

Biomedical literature represents an ever-growing repository of
complex and interrelated knowledge. PubMed, the largest and
most widely used database and search engine, contains over 27.9
million abstracts and counting. Thus, even with the great power
of user-specified PubMed searches, it is difficult for a scientist or
clinician to keep up with literature in their specialty niche, much
less understand the thousands of articles inter-connected to their
general domain. Yet, the ability to visualize and evaluate the
relative importance of these thousands of literature relationships
could be the key to unlocking new etiological or treatment
discoveries. In fact, the National Library of Medicine has argued
that better knowledge management tools have the potential
to impact the efficacy of biomedical research at the level of
researchers, policymakers, and scientific publishers (Kilicoglu,
2017). The open-source technology developed here, SemNet,
makes PubMed relationship literature mining adoptable by a
much greater audience of scientists or clinicians that desire to
leverage the power of literature mining to guide their research
and development efforts.

To understand the future of literature mining and what
SemNet has to offer, it is important to first briefly walk
through the history of biomedical literature mining and current
limitations. The most recognized forms of traditional literature
mining are meta-analysis and systematic reviews (Graves et al.,
1996). Data is systematically searched, aggregated, and analyzed.
Such analyses compile smaller studies into a larger sample size
in order to assess aggregate findings. These studies have been
particularly valuable in epidemiology (Berry et al., 2012), clinical
medicine decision-making (Park and Han, 2018), as well as
narrowly defined experimental examination of multi-factorial
diseases (Foley et al., 2015; Bond et al., 2018; Huber et al.,
2018). While meta-analysis and systematic reviews continue to
be helpful for examining overarching ideas and hypotheses, they
have well known limitations. Namely, traditional meta-analyses
and systematic reviews only use a very tiny fraction of the
literature corpus and require that studies have high degrees of
similarity for analytic inclusion. Moreover, such studies typically
only examine literature within a niche domain, thus excluding
numerous broader relationships that could greatly impact results.

Another historical form of literaturemining is themanually or
semi-manually constructed “field map,” which visually represents
basic concepts within a particular domain (Kim et al., 2016). Field
maps employ a user-specified ontology or hierarchy to organize
and display literature concepts. While field maps typically utilize
article counts, thereby enabling greater literature corpus sizes to
be included, they do not capture dynamic features, relationships,
or employ mathematical representations that enable ranking or
prioritization. Thus, while field maps greatly assist in visually
understanding the makeup of a biomedical domain, they do
not provide explicitly actionable insight. Finally, traditional field
maps are limited to examination of the internal confines of a
single and typically narrowly defined domain.

The ability to truly compile the entire scientific literature and
use its numerous intertwined relationships within and between
multiple domains presents a challenging but very rewarding

possibility. It was with this lofty goal in mind that Literature-
Based Discovery (LBD) was founded. The field of LBD attempts
to capture knowledge from biomedical text and integrate it
in a way that makes discovery of new knowledge possible. A
common example is Swanson’s ABC co-occurrence model, where
“A” implies “B” and “B” implies “C” are explicitly found in
the literature. The implicit knowledge that “A” implies “C” is
used to generate new and actionable hypotheses. Using this
co-occurrence inference method, Swanson famously discovered
the association between fish oil, blood viscosity, and Raynaud’s
disease (Swanson, 1986). Thus, fish oil, which reduces whole
blood viscosity, is used to prophylactically ameliorate Raynaud’s
disease—a phasic condition where temporary spastic constriction
of arteries reduces bloodflow, most commonly in the fingers
or toes, resulting in the digits turning white until arterial
constriction abates.

The first step in LBD is to construct a model of the
connections between concepts (i.e., genes, proteins, diseases,
etc.) in the literature. Concept-based models are visualized in
a graphical format called a “biomedical concept graph.” To
do this, terminology and methodology from graph theory and
social network analysis is borrowed. Biomedical concepts become
“nodes” (gene, protein, disease, etc.) and relationships between
concepts (inhibits, treats, causes, etc.) become “edges.” Nodes
are standardly depicted as points and edges as lines on a graph
that, collectively, depict the resultant “network”. The sequence
of nodes and edges between two points of interest is defined
as a “metapath.” The two key points of interest are standardly
referred to as the “source” and the “target” and represent
the beginning and end of a metapath, respectively. There
can be multiple different metapath types and sequences that
encode information, which can be assessed for relevant context.
Graphical network information for nodes, edges, and metapaths
are mathematically represented as matrices. A weighting system
is employed to perform calculations based on frequency
and/or edge strength. In modern biomedical LBD systems,
the specific type of graphical network model methodologies
employed are typically co-occurrence, semantic, or distributional
models (Henry and McInnes, 2017).

Notably, most modern biomedical concept graphs have
largely focused on gene-gene and gene-protein network
assessment. A prominent example is the Tukuru Event
Extraction System (TEES) (Bjorne and Salakoski, 2011), which
extracts biomolecular events from abstracts of PubMed and
from full text articles in PubMed Central; the corresponding
database, EVEX (van Landeghem et al., 2013), contains ∼40
million events. A variety of other more general literature
discovery browsers have also been developed (Hristovski et al.,
2006; Smalheiser et al., 2006; Tsuruoka et al., 2008; Cairelli
et al., 2013; Poon et al., 2014; Preiss and Stevenson, 2018).
Unfortunately, a prevailing theme is that the majority of these
modern LBD systems are either too domain-specific (e.g.,
genomics or proteomics) or they involve a significant amount
of effort on the part of the investigator, with relatively limited
depth of insight in return. These are key reasons why LBD
has been criticized for lack of adoption over the last 30 years
(Kilicoglu, 2017).
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The present study contends biomedical concept graphs have
the potential to be developed into a generalized biomedical
literature network that can simultaneously assess etiology,
epidemiology, diagnostics, prognostics, or treatment. Moreover,
with the power of machine learning, the biomedical concept
graph can be dynamically updated and mathematically evaluated
to rank key concepts or relationships. Thus, the ability to
truly navigate the biomedical concept graph can provide
dynamic and actionable insight for predictive medicine, research
prioritization, and clinical care. Most of the previous work in this
area has been related to drug discovery (Sang et al., 2018), drug
repurposing (Himmelstein and Baranzini, 2015), and adverse
drug event prediction (Deftereos et al., 2011). However, SemNet
extends the power of biomedical concept graphs beyond these
aforementioned standard use cases to nearly any research topic
or problem, and it can be used for either exploratory or predictive
literature analyses.

Therefore, the goals of the present work are to: (1) devise an
open-source, adoptable framework for constructing biomedical
concept graphs from the popular PubMed and Semantic
Medline Databases (SemMedDB); (2) embed a machine learning
algorithm for agnostically ranking the importance of features
in the biomedical concept graph to a user-specified target
(e.g., keyword or group of keywords). This project employs a
semantic inference network approach that stores resulting data
from a heterogeneous information network. The Python-based
software, which we call SemNet, queries a modified version
of SemMedDB and computes feature vectors on source-target
pairs. The modified version of SemMedDB represents each
unique United Medical Language System (UMLS) concept as
a node and each predication as an edge. A semantic inference
network is constructed in Neo4j using the information contained
in SemMedDB. Finally, an unsupervised ranking algorithm
uses feature selection to prioritize the “relative importance” of
concepts and relationships to the user-specified target(s). In
summary, SemNet is able to efficiently derive actionable insight
based on all of the PubMed literature connections that tie to the
user-specified target(s) of interest.

METHODS

As a brief overview, these are the basic workflow and operation
steps of SemNet: The first task is to obtain the data for 27.9
million PubMed abstracts needed to concrete the biomedical
concept network. We utilize the publicly available SemMedDB
and the UnitedMedical Language (UMLS)Metathesaurus, which
is explained in more detail below, to convert the raw abstract
text into a set of shared categories (e.g., nodes) and relationships
(e.g., edges). Using the information contained in SemMedDB,
a semantic inference network is created in a Neo4j graphical
database. A SemNet user specifies the “target” node(s) of interest
that describe the research area or question to be addressed.
Once the target is specified, the graphical database is queried
to determine the metapaths [e.g., unique sequences of node
types] between user-specified targets and identified neighboring
source nodes. SemNet then computes three different types of

features based on identified metapath patterns and frequencies,
and the resultant feature values are vectorized for subsequent
analysis. Finally, an unsupervised machine learning algorithm
is used to rank identified source nodes based on their relative
importance to the user-specified target node(s). Finally, post-
simulation clustering and residual methods are used to highlight
concepts or regions of interest that are most pertinent to the
research domain or question being assessed.

Creating the Concept Network
Fortunately, there are already excellent resources available that
regularly convert and standardize the concepts contained within
PubMed literature abstracts. The United Medical Language
System (UMLS) Metathesaurus is a large thesaurus of biomedical
terms taken from a variety of source vocabularies (Bodenreider,
2004). Themost recent release contains 3.85million concepts and
14.6 million unique concept names from 210 source vocabularies.
One significant result of such standardization has been the
development of algorithms for identifying mentions of these
concepts within the text of biomedical articles, a notable example
of which is the MetaMap project (Aronson, 2001). These
algorithms have been extended to extract semantic predications
from the text, consisting of subject-object-relationship triples
(Rindflesch and Fiszman, 2003). The Semantic Medline database
(SemMedDB) is a repository of semantic predications extracted
from the abstracts of biomedical articles from PubMed using
SemRep (Rindflesch and Fiszman, 2003). Each predication ties
together two concepts with a specific relationship. Each concept
is a unique member of the UMLS Metathesaurus and each
relationship is a uniquemember of the UMLS Semantic Network.
In SemMedDB, each node is assigned one of 132 node labels
(e.g., Amino Acid, Peptide, or Protein; Gene or Genome; etc.)
and each edge is labeled with one of the 58 predications (e.g.,
TREATS, CAUSES, INHIBITS, etc.). The database is created by
regularly processing the abstracts of biomedical articles from
PubMed and identifying these concepts and relationships in the
text (Rindflesch and Fiszman, 2003). SemMedDB (Kilicoglu et al.,
2012) is a repository of nearly 100 million such predications. In
the work presented, we utilize the data contained in SemMedDB
as of December 31, 2017.

SemNet transforms tabular data into a graph to allow better
handling of relationships and faster neighbor node queries.
Essentially, SemMedDB is converted into a semantic inference
network where resultant data is stored as a heterogeneous
information network. Each unique biomedical concept is
represented as a node and each unique relationship as an edge.
The number of times a given relationship was found in the
literature is measured as its edge weight, and the unique article
identifiers (e.g., the PubMed IDs) of the abstracts containing
the relationship are a property of the edge. A given concept
is occasionally classified with more than one type. Node types
and node counts are tracked for each node. However, only
the most commonly extracted type is used for computational
purposes. In the case of a tie, the first identified type is used.
This process results in nearly 300,000 nodes and 20,000,000 edges
in the final graphical network. The graph is stored in a Neo4j
graphical database, which provides fast and efficient queries
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through the Cypher query language. The database is queried
in SemNet using the py2neo Python package. The remaining
matrix computation is carried out using custom functions written
in Python.

Computing Metapath-Based Features
The primary objective of the present work was to assess
the relationships between nodes, thereby directing user
attention to unknown but relevant concepts. Thus, analysis
centers on the nodes and edges that connect user-identified
concepts (e.g., target nodes) with potential new concepts
of interest (e.g., source nodes). To this end, each source
node is characterized by the patterns of relationships and
node types, or metapaths, that connect it to the target
node (e.g., PharmacologicSubstance [TREATS] >Finding
[COEXISTS WITH] > DiseaseOrSyndrome). Because a
metapath only represents a sequence of types between
the nodes, each one is associated with a number of real
paths in the network. To extend the given example,
there may be several findings that are treated by the
pharmacologic substance and coexist with the disease
or syndrome.

Several different features can be computed based on these
paths, each of which has different properties. The first feature
is a simple count of the paths associated with each metapath.
The second feature is a degree-weighted path count (DWPC)
that simply down-weights paths through highly connected
nodes (Himmelstein and Baranzini, 2015). Basically, the degree-
weighted path count is used to assess the prevalence of a specific
type of path between nodes; the DWPC addresses the number
of paths between a source and target node for a given metapath
while weighting the connectivity (node degrees) along the path.
The third and final feature is the HeteSim metric, a widely
accepted measure of similarity in heterogeneous information
networks (Shi et al., 2014). Different from homogeneous
networks, the paths in heterogeneous networks have semantics,
which makes the relatedness of object pair depend on the given
relevance path. Following the basic idea that similar objects are
related to similar objects, the HeteSim metric proposes a path-
based relevance measure. Using terminology from the HeteSim
publication (Shi et al., 2014), given a relevance path, P, the
Hetesim score between two similar objects (nodes), s and t, (s ∈

R1·S and s ∈ R1·T) is:

HeteSim (s, t) |R1 ◦ R2 ◦ . . . ◦ Rl =
1

|O (s|R1)| |I (t|Rl)|

|O(s|R1)|
∑

i=1

. . . .

|I(t|Rl)|
∑

j=1

HeteSim
(

Oi, (s|R1
)

, Ij(t|Rl)|R2 ◦ . . . ◦ Rl−1

whereO(s|R1) is the out-neighbors of s based on relation R1, and
I(t|Rl) is the in-neighbors of t based on relation on Rl. Note that
a separate equation is defined for two same typed objects, s and t,
that only possess self-relation, I: HeteSim (s, t|I) = δ (s, t ).

Computation of HeteSim(s,t|P) requires iterating over all pairs
(

Oi (s|R1) , Ij (t|Rl)
)

of (s,t) along the path (s along the path and t
against the path), and summing up the relatedness of these pairs

(Shi et al., 2014). Then, it is normalized by the total number
of out-neighbors of s and the in-neighbors of t. The relatedness
between s and t is the average relatedness between the out-
neighbors of s and the in-neighbors of t. The process continues
until s and t meet along the path. HeteSim(s, t|P) measures how
likely s and t will meet at the same node when s follows along
the path and t goes against the path (Shi et al., 2014). For more
mathematical details and situational examples for the HeteSim
metric, please refer to the HeteSim publication (Shi et al., 2014).

Previous work shows that HeteSim can effectively and
efficiently evaluate heterogeneous objects and outperforms other
similarity metrics (Shi et al., 2014). In terms of HeteSim’s
specific use in SemNet, the HeteSim metric provides a
powerful metapath feature representation for network analysis
and ranking. HeteSim is typically much better for ranking
importance of source nodes and metapaths with respect
to a user-specified target because HeteSim is not overly
biased by sheer counts. Thus, HeteSim was a straightforward
choice for inclusion in SemNet and should be the primary
feature when analyzing SemNet results for most SemNet
use cases.

SemNet simulation commences by identifying the source and
target nodes of interest. Target nodes, T, can be best selected by
the SemNet user by searching through the UMLS Metathesaurus
and selecting several well-connected nodes relevant to the topic
of interest. Typically, the SemNet target nodes will be similar
if not literally identical to the keyword(s) the user would enter
for a standard PubMed query in their domain of interest. From
this starting point, SemNet’s constructed graph database in Neo4j
is queried to find the set of immediate neighbor nodes. The
identified immediate neighbor(s) become the source nodes, S.
The method of finding S should be customized to the specific
application. For example, in an exploration of the connections
between smoking and performance on a memory test, we set S to
be all of the nodes that are directly connected to (Learning OR
Memory)AND(THC OR Cigarettesmoke OR Nicotine). In the
prior example, one of the target nodes of is interest is cigarette
smoke. It is not a requirement that the source nodes of interest
directly connect to the nodes comprising T, but starting at T is
one straightforward way to define S. OnceT and S are defined, the
three metapath-based features are computed (count, DWPC, and
HeteSim) for all metapaths of two or fewer edges that relate each
node in S to each node in T. For this network, considering paths
longer than 2 was intractable, but it could be done with large
computational resources if post-analysis of initial simulations
deems it appropriate. The procedure results in an s x t x m x f
matrix, X, where s is the number of sources, t is the number of
targets, m is the number of metapaths, and f is the number of
features. Figure 1 visually summarizes the processes of SemNet.

Source Node Clustering
Once connections between source and target nodes have been
vectorized, it is trivial to compare the relationships of two
source nodes with a given target node. By computing the
cosine similarities of the feature vectors, the similarity of the
source-target relationships are computed. The result is an s x s
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FIGURE 1 | SemNet: a visual overview of the key methods used to create the network, compute metapath-based features, and aggregate rankers. The

heterogeneous information network was extracted by running the SemRep predication extraction algorithm on all abstracts in PubMed. Three different

metapath-based features were calculated in order to vectorize the complex connections between source and target nodes. Finally, an aggregate ranking scheme

(Klementiev et al., 2007) was used to combine feature information into a useful ranking of source nodes with respect to target nodes.
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similarity matrix, which can be hierarchically sorted to produce
an intuitive map of the similarities of connections with the
target node. Specifically, this work used the scipy and seaborn
implementations (Oliphant, 2007; Waskom et al., 2014).

Unsupervised Rank Aggregation
Modern internet search engines have proven that some
mechanism for ranking search results is crucial for usability.
Likewise, in the case of semantic inference networks, there is
a need to rank identified source node “importance” to user-
specified target nodes. However, “importance” of a specific node
can change based on the context of the search. Thus, there is
not one unique nodal ranking but rather a collection of rankings
for each node with respect to each target for each feature.
SemNet employs an unsupervised learning algorithm for rank
aggregation (ULARA) that is based on a linear combination
of ranking functions guided by the principle that the relative
contribution of an individual ordering to a joint ranking is
determined by its tendency to agree with other members of
the expert pool (Klementiev et al., 2007). In brief, the ULARA
method derives a surrogate signal in the absence of labeled
data, referred to as an incidental supervision signal, which
is based on the agreement of a given ranker compared to
the plurality of the other rankers. ULARA is chosen for the
SemNet application because it is one of the only methods
capable of performing parameterized rank aggregation without
the need for supervision. As such, ULARA is a popular method
for information retrieval and data fusion problems, such as
when retrieved documents from a large online corpus are
ranked for a given query. Gradient descent is used to optimize
ranking weights.

The main equation of ULARA (Klementiev et al., 2007)
is illustrated below. The right hand side of the equation is
equal to the variance-like measure, which is used to measure
ranker agreement. For this initial short explanation, we will
keep consistent with previously published nomenclature and
equations (Klementiev et al., 2007). ULARA takes a set of
queries, Q, of which we do not know the true ranking. For
each item, x, and query, q, the expert ranking for the N rankers
is determined using ri(q,x); the mean (µ(q,x)) is calculated;
the gradient is determined; and the weight update is made.
Once the weight updates are completed, the weight vector is
normalized to generate a probability vector for evaluation. The
original ULARA in Klementiev et al. (2007) provides both
additive and exponential learning rate algorithms for gradient
descent. SemNet employs the additive algorithm code shown
in the original Klimentiev study (Klementiev et al., 2007). For
greater details on the mathematical details, performance, and
pseudocode explanation specific to ULARA development and
implementation, please refer to the previously published work
(Klementiev et al., 2007).

∇i =
∂δi

(

q, x
)

∂wi
=

[

ri
(

q, x
)

− µ(q, x)
]2

Putting the above original explanation of ULARA into context:
“Documental retrieval and ranking” is equivalent to source

node retrieval and ranking in SemNet, with SemNet’s semantic
inference network constructed from SemMedDB serving as the
corpus. ULARA is used to rank identified source nodes for a
given set of user-specified target nodes. Each metapath-based
feature is considered a noisy ranker, where a higher feature score
means a higher rank. As such, rankers can be aggregated by
learning weights by employing the principle that good rankers
correlate well with the across-ranker consensus for a given source
(Klementiev et al., 2007). The feature matrix can be converted to
a ranking matrix, R, by assigning ranks along the s dimension.
In the case of the count features, where many sources may have
the same feature value, a dense ranking algorithm is utilized. We
utilize the built-in Python PANDAs method, Pandas.Series.rank
(method = “dense”, ascending = False). When ranking with
respect to two target nodes simultaneously, more rankers can
be added by concatenating along the m dimension to include
features with respect to multiple nodes in T. Using the previously
described gradient descent algorithm that finds optimal ranker
weights based on agreement with the mean ranking for each
source node, each source is re-ranked with respect to each target
for each feature type. If there are two different specified targets,
Z and A, two noisy ranker matrices for Z and A are developed
for each feature type (count, DWPC, HeteSim metric). Each
of these is m x n, where m is the number of nodes, n is the
number of features. The Z matrix includes features that connect
each node with the Z target node, while A includes concatenated
features connecting each node to the A target node(s). Note that
the number of features can be different for Z and A because a
different set of metapaths apply in each case. A dense ranking
algorithm is used to convert feature values into rankings within
each column, and then these are aggregated according to the
additive ULARA sub-algorithm given in Klementiev et al. (2007).

Ranking Correlations
Aggregate rankings with respect to the target nodes are sufficient
for exploration of that target node, but often scientists may want
to examine similarities and differences across multiple target
nodes. At a high level, the target node rankers can be compared
based on the similarity of their rankings to the source nodes.
Rankers that are too similar raise the question of potential bias.
The correlation of rankings can be compared with respect to
different targets and using different feature types. Pair plots and
Kendall’s τ (Knight, 1966) ranking correlation are useful for
visualization of ranking performance. High correlation across all
targets is an indicator of bias, while some correlation and some
uncorrelation is to be expected for a superior, less-biased ranker.

High Residual Nodes
More useful knowledge can be obtained by looking at the specific
source nodes that are highly ranked with respect to a given
target. Similarities between two target concepts can be judged by
examining their average ranking of a given node and comparing
their ranking differences by looking at the high-residual source
nodes. High-residual nodes are defined as those which are ranked
significantly different by the two aggregate rankers.
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Software Package Information
SemNet is written in Python 3.6.4. The following Python
libraries/packages were utilized: Hetio 0.2.8 is used formetagraph
and metagraph to string operations; Xarray 0.10.7 is used for
storing labeled, multidimensional data; Numpy 1.15.0 is used for
performing linear algebra operations; Py2Neo 3.1.2 is used for
interacting with the Neo4j instance; Pandas 0.23.0 is used for
handling 1-D and 2-D data and for the dense ranking algorithim;
Sklearn 0.19.1 is used for optimization; Scipy 1.1.0 is used for
linear programming and Kendall’s τ calculation (Knight, 1966);
Matplotlib 2.2.2 is used for plotting line, bar, and scatterplots;
Tqdm 4.23.4 is used for progress bar; Seaborn 0.8.1 is used for
heatmap visualization.

The tools necessary to perform SemNet analysis are Python
(SemNet is written in a downloadable Python package); Neo4j,
and a copy of SemMedDB. Neo4j installation/account is required
to make the biomedical concept graph (www.neo4j.com). The
SemMedDB, which contains the PubMed data used by SemNet,
is available for download from the National Library of Medicine
and Semantic Medline. The full SemNet code package is available
for download on GitHub.

RESULTS AND DISCUSSION

This section includes: a basic walk-through of generalized
SemNet results and performance with discussion on how to
visualize and optimize SemNet analyses; a detailed example
of insight gained for a specific use case for a research
question examining “how cigarette smoke or THC differentially
impacts learning or memory in males and females” (see
Table 1 for SemNet target nodes); a discussion of other
general uses for SemNet; and limitations and future directions
for SemNet.

Initial Assessment of the Network and
Features
It is tempting to immediately jump to the “relative importance”
ranking of identified sources nodes, which is the key deliverable
of SemNet. However, performing initial assessment of the
network provides important insight, and therefore, should not
be skipped. Such understanding helps to put ranking results
in perspective, provides key sanity checks, and assesses if/how
the SemNet analysis can be further optimized for a specific use
case. There are three initial assessments that are recommended:
(1) assessment of network connectivity to insure both high
overall connectivity as well as diversity of metapaths between
source nodes and target nodes; (2) source node clustering
to assess hierarchical physiological concepts that could be
contributing to source node identification with respect to a
specified target; (3) assessment and distribution profiling of
metapath-based features.

Network Connectivity
The dataset of 27.9 million PubMed indexed article abstracts
consisted of 300,000 nodes and 20,000,000 edges, which were
stored effectively in a Neo4j database. RAM usage ranged
from 5 to 20 GB, depending on query load. Most interaction

TABLE 1 | List of target nodes considered and/or used for the presented SemNet

use case to “assess the the differential impact of smoking on cognition in men and

women.”

Name Type Identifier Degree # of

AAPPs

Use

Impaired cognition fndg C0338656 62,483 554 –

Nicotine hops C0028040 37,825 1,657 Finding sources and

target

Learning menp C0023185 14,340 408 Finding sources and

target

Memory menp C0025260 12,970 678 Finding sources and

target

Tetrahydrocannabinol orch C0039663 11,058 547 Finding sources and

target

Cigarette smoke hops C0239059 8,663 720 Finding sources and

target

X Chromosome celc C0043292 7,770 103 Target

Y Chromosome celc C0043381 4,547 369 Target

Mental association menp C0004083 1,614 125 –

Learning ability menp C0233832 410 24 –

Association cortex bpoc C0596129 375 14 –

Learning performance fndg C0582590 359 22 –

The name column is the name of the node; type column is the node type as assigned

in SemMedDB; the identifier column is the identifier assigned by SemMedDB; degree

represents connectivity; # of AAPPs column represents number of nodes labeled as

SemMedDB node type AAPP that are associated with the node name; and use column

represents whether the node was used as a user-specified target node, a possible source

node, or both.

with the database consisted of sending repeated neighbor
queries. When implementing feature calculations using 40
parallel workers, compute times ranged from 10min to 12 h,
depending on the number of sources and targets. Each
source/target pair computation averaged 2–3 s with parallel
queries. Since it is derived from the literature, the network
is obviously biased toward highly referenced concepts. It
is important to note that the concept network does not
represent a biological system, but is at its heart a model of
the literature.

When examining SemNet results, a good first step is
chart the number of unique methapaths from each identified
source to each of the user-specified targets. Examining unique
metapath counts helps to better understand network connectivity
and network heterogeneity; it can also help aid in further
optimizing the selection of relevant target nodes. For example,
Figure 2 shows a SemNet analysis with 7 user-specified target
nodes (learning, memory, nicotine, tetrahydrocannabinol, X
chromosome, Y chromosome, and cigarette smoke); each node is
represented by a bar on the graph. The largest bar represents the
target node with the most diverse connections to the identified
source nodes (“nicotine,” shown in green); nicotine has about
3,500 unique metapath connections to identified source nodes.
Tetrahydrocannabinol (or THC, shown in red) and cigarette
smoke (shown in pink) also have diverse connections. The
connections to learning, memory, and the X and Y chromosomes
are much less diverse.

The next step in SemNet analysis is to assess the correlation
between the number of metapaths for a given source node

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 July 2019 | Volume 7 | Article 156

www.neo4j.com
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Sedler and Mitchell SemNet

FIGURE 2 | The distribution of the number of unique metapaths between 324 source and 7 target nodes (depicted as bars) for the example SemNet use case,

“differential impacts of smoking (cigarette smoke or tetrahydrocannabinol) in men and women.” Nicotine generally had the most diverse connections to the source

nodes in this case. The figure shows that number of metapaths varies significantly depending on the target node of interest. Specific and well-known chemicals and

biological entities are generally the most highly connected.

with respect to pairs of target nodes (Figure 3). That is, what
source nodes do pairs of target nodes share? It is expected that
correlations will be rather “high” (e.g.,>0.85) in highly connected
domains where the target nodes are heavily cited. However, there
still should be some diversity in the correlations visualized.

High connectivity is always favored for SemNet literature
networks. Just like more patients increases clinical trial analytical
power, higher connectivity increases the statistical power and
robustness of the SemNet network. However, there needs to be
a balance between high connectivity and diversity in the source-
target pairs in order to obtain the most specific and actionable
insight. There is no “one size fits all” solution to say what
percentage of connectivity or diversity is required for a given
problem. Rather, it will greatly vary based on the target nodes
of interest and usage case. Using SemNet to examine different
combinations of targets is advisable (e.g., analogous to a model
sensitivity analysis) to ascertain a better feel of how connectivity
and diversity vary with the user’s domain of interest. More
general nodes will tend to be more highly connected whereas
more specific/detailed nodes will tend to be less connected.
However, less connected does not always mean less important.
Thus, including some general and some more specific target
nodes in the SemNet analysis is a good rule of thumb to balance
connectivity and diversity and thus, correspondingly, increase
the chance of revealing new, actionable insight.

Source Node Clustering
Source node clustering allows a straightforward, agnostic way to
examine the similarities between source nodes connected to a
specified target node. Visualizing source node clusters enables the
user to quickly assess potential aggregate, physiological concepts
contributing to source node identification with respect to the

target. While this step is not required, it does aid the user in
better understanding the network. Figure 4 illustrates clustering
of source nodes for a separate SemNet use case where the target
node was “impaired cognition.” As seen in Figure 4, biologically
similar source nodes tended to cluster together (e.g., amino acids
clustered near similar amino acids, etc.). Interestingly, regardless
of use case, similarity clustering of source nodes performed
much better with count-based metrics than either DWPC or
HeteSim. This is likely because: (1) counts are inherently larger
values, while DWPC and HeteSim range between zero and one;
(2) counts are less reliant on interactions. Again, clustering of
concepts does not directly represent biological similarity but
similarity in patterns of connections to the target nodes found
by SemRep. Clustering can help to determine if user-specified
target nodes are resulting in source nodes that appear to be
sufficiently relevant to the SemNet use case. For example, if the
preponderance of identified source nodes are deemed by the
user to be “too general” or appear to cluster around too few
physiological concept(s), it may suggest that a revised set of target
node(s) should be tried. Finally, source node clustering should
not be mistaken for rank aggregation or “importance,” which is a
completely separate process, as outlined below.

Assessment of Metapath-Based Features
Once network connectivity has been assessed, the next step is to
evaluate the three metapath-based feature types (count, DWPC,
and HeteSim) used in SemNet. Recall that these three features
can be used to rank “important” concepts. Picking the “best” or
primary feature for ranking will depend on the specific SemNet
use case and target selection. Initial evaluation as outlined below
will help put final rankings into context and help assess which
feature should be the primary for the use case.
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FIGURE 3 | A heatmap of the correlation between the number of metapaths for a given source node with respect to pairs of target nodes. The number of metapaths

to the X chromosome target correlates with the number of metapaths to the Y chromosome target, but less so with the other targets. Similar relationships can be

seen between nicotine and THC and between learning and memory. Correlations remain generally high because entities that are well researched are likely to be highly

connected in general.

One key feature profiling task is to assess the distributions
of metapath-based features. Pair plots provide an excellent
visual tool for examining the distribution of metapath-based
features. As shown in the pair plots of Figure 5, the non-zero
occurrences of the three features of interest showed very different
distributions. Both count and DWPC metrics tended to skew
right, with a majority of values being very close to zero. By
contrast, the HeteSim metric was much more evenly distributed
across its range. Additionally, the range of the countmetric values
was highly dependent on source type (specified as “kind” in the
figure), while DWPC’s and, to a greater extent, HeteSim scores
were more uniform across source types. Overall, this perspective
informs the use of the network in several ways. First, the bias
consequences of using simple count-based features are evident.
Some relatively generic source nodes (e.g., Protein, Amino Acid)
will have a disproportionately large number of connections and
will therefore be judged as important even if they are not actually
meaningful. Second, it is evident that DWPC is also heavily

skewed, with relatively few values >0.1 in its entire 0-to-1 range.
Thus, for this particular use case shown in Figure 5, HeteSim is
the most superior feature for ranking “importance” of concepts
in a way that minimizes count bias or is source node type (e.g.,
kind) dependent.

In an effort to examine potential bias of rankings by the sheer
number of metapath-based features, ranking was plotted as a
function of unique number of metapaths for each of 7 user-
specified target nodes (Figure 6). Figure 6 illustrates that count-
based and even DWPC-based rankings tend to rank source nodes
higher when they have a larger number of metapaths to the
target. While this makes sense, it is intended for the SemNet
ranking method to detect more nuanced information about
the connections. In order for more nuanced connections to be
appropriately ranked as important, a feature ranker must have a
way of normalizing for counts. The HeteSim metric, as described
in Methods, was invented for this purpose in mind. Fortunately,
Figure 6 does affirm that the HeteSim metric does distribute

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 July 2019 | Volume 7 | Article 156

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Sedler and Mitchell SemNet

FIGURE 4 | A hierarchical clustering of amino acids, peptides, and proteins associated with “impaired cognition.” The intensity of the heatmap corresponds to the

similarity of each concept pair’s relationship with impaired cognition. Similarity values are cosine similarities of metapath count features. Examining correlation among

source nodes helps the user to assess underlying hierarchical concepts that could be driving the source node selection.

rankings such that there is less correlation between overall
ranking and number of unique metapath counts. Admittedly,
there is still some remaining bias, as nodes with a higher number
of metapaths still tend to be ranked higher even when using the
HeteSim feature as the primary ranker. Nonetheless, HeteSim is
much less biased than count or DWPC.

Based on both simulations in prior literature examining
HeteSim and multiple different use cases specifically examined
to date in SemNet, we contend that the HeteSim feature is
currently the best in most SemNet use cases. However, feature
profiling as outlined above should be repeated for each SemNet
use case as there could be specific use cases, depending on target
node selection and connectivity, where HeteSim may not be
the preferred primary ranking feature. As new rank aggregation
features are developed in the future, those could be added or
swapped into SemNet (see Limitations).

Unsupervised Rank Aggregation
Unsupervised rank aggregation is arguably the greatest analytical
asset of SemNet. Unsupervised rank aggregation enables
source nodes to be ranked by “relative importance” with

respect to the target node(s) using metapath-based features
(count, DWPC, HeteSim). There are two different types of
suggested analysis for examining SemNet result rankings.
First, standard ranking correlations between source-target
pairs provide a straightforward method to quantify, compare,
and contrast “relative importance” (Figure 7). Second, high
residual node analysis is excellent for comparative analysis
between two different targets [or “rankers”] (Figure 8). In
particular, residual node analysis greatly simplifies construction
of actionable insights.

Ranking Correlations
When a set of “rankers” is created with respect to a set of
target nodes, it is expected that the targets will rank the source
nodes in some unique way. If there is too much similarity
between rankings with respect to different source nodes, it is
assumed there is an underlying bias in the rankings. Figure 7
compares Kendall’s τ (Knight, 1966) correlation between pairs
of ranking models based on different targets and metapath-
based features. For the results shown in Figure 7, 324 amino
acid, peptide, and protein source nodes were ranked with
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FIGURE 5 | A pair plot showing correlations between metapath-based features across a set of source nodes of different types. All non-zero features were plotted,

where each point represents the feature values of a metapath for a given source-target pair. A total of about a half-million points are colored according to their source

type. More distribution represents a less-biased ranking feature. Thus, HeteSim, which has the most distribution or “diversity,” is the least biased feature for the use

case shown.

respect to 7 target nodes for each of the three feature types
(count, DWPC, Hetesim). Thus, Kendall’s τ (Knight, 1966) was
computed between 21 different rankers. Notice that ranking
correlations are fairly high, even for very different concepts,
when using the count feature, but more differentiated when
using the DWPC and HeteSim features. These results illustrate
once again that rankings by count-based features are biased
toward highly connected nodes and metapaths. There is more
confidence in the HeteSim rankings because they are more
diverse; in fact, there are even some pairs that have nearly
zero correlation. Examination of ranking correlations gives a
high level view of the overall correlations between targets
and features.

High Residual Nodes
The residual method is very useful for exploring new concepts
that may be distinctly relevant to two different target nodes or
“rankers.” Recall that unsupervised rank aggregation determines
an aggregate rank order for the source nodes identified for each
target. Comparing both the mean and the specific rankings of
source nodes shared by two different targets can be extremely
informative. The difference in a shared source node ranking
between two rankers is called the residual ranking. Residual
nodes are best illustrated on a Venn diagram (Figure 8). The
highest mean-ranked nodes (e.g., the highest ranked shared
source nodes) are placed in the overlapping, middle section of the
Venn. The highest residual nodes for each respective target node
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FIGURE 6 | The relationship between number of metapaths and final ranking outcome for different feature types (top: count, middle: DWPC, and bottom: HeteSim) is

plotted. The figure contains 324 source nodes with respect to 7 targets using each of the three feature types. Number of metapaths predicts final count and

DWPC-based ranking with fairly high accuracy, while the HeteSim rankings appear to be less influenced by the sheer number of non-zero metapath scores. Thus, the

HeteSim is a superior ranking because its rankings are less biased toward metapath count.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 July 2019 | Volume 7 | Article 156

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Sedler and Mitchell SemNet

FIGURE 7 | Kendall’s τ rank correlations (Knight, 1966) between rankings of 324 source nodes with respect to each of 21 target node and feature type combinations.

Rankings are based on a weighted sum of noisy, feature-based rankings, where weights are learned based on consistent agreement with the average ranking.

are placed on each target’s respective side of the Venn diagram.
Thus, the non-overlapping regions of the Venn diagrams contain
the nodes with the largest discrepancy, whereas nodes in the
overlapping sections are more similarly ranked between the
targets or “rankers.”

Figure 8 illustrates the residual rankings for 324 amino acids,
peptides, and proteins with respect to the same 7 target nodes.
Rankings with respect to one target node were simply subtracted
from rankings with respect to the other target node and sorted by
absolute value to find the most significant discrepancies between
the two rankers. As noted above, the non-overlapping regions of
the Venn diagrams contain the nodes with the largest discrepancy
between the two targets (e.g., NPY was ranked 138 spots higher
with respect to the Y chromosome than the X Chromosome).

Note that “rankers” and targets can be used interchangeably
when discussing the mapping of SemNet high residual nodes.

Typically, we think of comparing two different target nodes
that were both specified and simultaneously assessed within the
same SemNet simulation, as was done in Figure 8. However,
the reason for the separate nomenclature of “rankers” is to
illustrate that the high residual method can also be used to
compare two entirely different SemNet simulations for which
the specified target nodes for each simulation are different, but
yet both simulations still share many of the same source nodes.
The ability to do comparative analysis of say, two different
SemNet simulations of two different diseases, and look at both
their overlapping and high residual source nodes, is another
powerful use case of SemNet. For example, imagine comparing
“frontotemporal dementia” with “Alzheimer’s disease”. Both
are neurological diseases that involve cognitive impairments
and share many of the same biological underpinnings, and
yet they each are clinically characterized as different diseases.
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FIGURE 8 | High residual assessment of rankers. Numbers in the overlapping regions represent the highest average ranking between the two target nodes. (Top)

Comparing the shared source node rankings between the X and Y chromosomes. The non-overlapping regions of the Venn diagrams contain the nodes with the

largest discrepancy between the two rankers (e.g., NPY was ranked 138 spots higher with respect to the Y chromosome than the X chromosome). (Bottom)

Comparing the shared source node raking between nicotine and THC.

Comparative analysis of the literature for each disease could
provide clues for better clinical and etiological differentiation.

Example Insights From a SemNet Use Case
Below a specific example of a SemNet use case is presented
that also aligns with the results figures presented and discussed
previously. The use case examined was to “assess the differences
between men and women regarding the impact of smoking on

cognition.”More specifically, this case study examines differences
in the X and Y chromosome connections and differences between
cigarette smoking and marijuana (THC) smoking.

Defining the Use Case Target Nodes
Table 1 illustrates a list of target nodes searched for a research
use case to “assess the differential relationship between men
and women of the impact of cigarette smoking or THC

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 14 July 2019 | Volume 7 | Article 156

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Sedler and Mitchell SemNet

(tetrahydrocannabinol) on cognition.” Target node selection is
an important process, and should be done iteratively using
both expert domain knowledge as well as the SemNet network
connectivity-diversity concepts discussed previously. For this
case, the final included nodes were: nicotine, learning, memory,
tetrahydrocannabinol, cigarette smoke, X chromosome, and Y
chromosome. The following nodes were tried but removed from
the final SemNet simulation due to low connectivity [connectivity
is illustrated by the “degree” column in Table 1]: mental
association, learning ability, association cortex, and learning
performance. In contrast, “impaired cognition” was initially
included but its inclusion produced either too general sources
nodes or resulted in many connections to other concepts outside
the immediate scope of the research question (e.g., explicit ties to
Alzheimer’s Disease, aging, etc.). Note that some nodes (nicotine,
learning, memory, tetrahydrocannabinol, cigarette smoke) were
used as both user-specified target nodes and source nodes; this
enabled self-connections to also be included in the network. X
and Y chromosome were only used as target nodes in order
to minimize extraneous or irrelevant self-connections. “Men or
male” or “female or women” could have been used as target
nodes to denote gender connections. However, the X and Y
chromosome are a better biological representation, and they have
more connections to the amino acids, peptides, and proteins
(AAPP) node type, which was the selected node type priority for
this specific SemNet use case.

Initial Assessment of the Use Case Network
Initial assessment for this SemNet use case was performed
according to the previous section and Figures 1–6. As previously
noted, the HeteSim feature was the best primary ranker, and is
used to discuss the final rankings and corresponding context.

SemNet Use Case Ranking Analysis
Kendall’s τ (Knight, 1966) rank correlations between rankings of
324 amino acid, peptide, and protein (AAPP) source nodes are
shown with respect to each of the 21 target node and feature type
combinations (Figure 7). The diversity of correlation, especially
among the HeteSim features, is again very apparent. Nicotine
HeteSim correlates moderately well with THC HeteSim, learning
HeteSim, and memory HeteSim. THC HeteSim correlates
moderately well with learning and memory HeteSim.

There is negligible correlation with X and Y chromosome
and the other 5 target node HeteSim features. Admittedly,
these results are at the highest level and provide only general
trends and an assessment of SemNet connectivity-diversity, as
previously discussed.

The Kendall τ method (Knight, 1966) can be repeated to
look deeper into underlying source node clusters for each target.
Here, we were most interested in comparing different rankings of
AAPPs on the X and Y chromosome in the context of cigarette
or THC usage impact on cognition. Differential comparisons are
best made using the high residual method.

Figure 8 illustrates the Venn diagram or the high residual
node ranking analysis. Figure 8 (top) compares connections to
the X and Y chromosomes. The key AAPP source nodes for
the Y Chromosome were angiotensin II, vascular endothelial

growth factor (VEGF), and neuropeptide Y (NPY). Angiontensin
II is a hormone involved in blood pressure. Smoking decreases
the ability of the body to protect against ACEI (Angiotensin-
Converting Enzyme Inhibition), which leads to increased
constriction of blood vessels (Roehm et al., 2017). It is involved in
cognitive impairment and even brain injury (Mogi et al., 2012).
VEGF is a protein involved in the formation of blood vessels.
Cigarette smoking is associated with high VEGF levels, leading
to an increase in blood vessel production and repair (Ugur et al.,
2018). Cognition is known to increase with an increase in VEGF
levels. Both Angiotensin II and VEGF were ranked 90 spots
higher in relative importance in the Y chromosome connections
compared to X chromosome connections. Neuropeptide Y is
an amino acid that plays a pivotal role in cognition and the
modulation of homeostasis and neurogenesis (Chen et al., 2007)
and is the most abundant neuropeptide in the central nervous
system. Cigarette smoking has been found to decrease the levels
of NPY in the hypothalamus (Chen et al., 2007). NPY was ranked
138 spots higher in Y Chromosome connections.

Brain Derived Neurotrophic Factor (BDNF) is a protein
responsible for maintaining the survival of nerve cells and for
regulating synapses. It helps to maintain synaptic plasticity,
which contributes to learning and memory. A prior study on
smoking and BDNF has demonstrated that nicotine leads to an
increase in upregulation of BDNF (Lang et al., 2007). BDNF
was found to be ranked 160 spots higher in the X chromosome
connections compared to the Y chromosome connections.
Metabotropic Glutamate Receptor (MGluRs) are involved in
learning, memory and anxiety. They are expressed in pre/post
synaptic neurons in the hippocampus, cerebellum and cerebral
cortex and have positive effects on cognition (Olive, 2010).
Smoking decreases MGluR density (Hulka et al., 2014). MGluRs
are ranked 124 spots higher in X chromosome connections
compared to Y chromosome connections.

A unique AAPP that was ranked high in both X and Y
chromosome connections is erythropoietin (EPO). EPO is a
hormone produced by the kidneys that causes the bone marrow
to produce more red blood cells and initiates synthesis of
hemoglobin. An increase in EPO is known to increase cognition
as it pertains strongly to delivery of oxygen to the brain.
Smoking has been found to correlate with increased levels of EPO
(Singh et al., 2016).

Often, “smoking” on clinical patient surveys does not specify
a difference between cigarette smoke vs. marijuana smoking
(e.g., THC; Morean et al., 2018). “Smoking” could mean any
type of smoking, albeit cigarette smoke, marijuana smoking,
or electronic vaporizers, etc. However, there could be very
different pathophysiological effects of various types of smoking,
especially at the level of AAPPs. With this in mind, we
compare the literature connections among the two active
chemicals in cigarette smoke (e.g., nicotine) and marijuana
(tetrahydrocannabinol, referred to as THC).

Figure 8 (bottom) examines overlap and differences in ranked
high residual nodes for THC and nicotine. Some of the highly
ranked AAPP nodes are shared by nicotine and THC (e.g.,
CRH, opioid receptor, dopamine receptor, etc.)—all of these
commonalities relate to the brain’s reward system. That is,
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THC and nicotine both increase reward signaling, which makes
these substances have the tendency to be addictive to their
respective users.

However, there are also key differences in the AAPP rankings
of the high residual nodes of nicotine and THC. For example,
estrogen receptor beta was ranked 152 spots higher with respect
to THC compared to nicotine, and NG-nitroarginine methyl
ester was ranked 144 spots higher with respect to nicotine
compared to THC. Estrogen receptor beta has a variety of
physiological functions, including vasodilation, arterial dilation,
cardiovascular metabolomics, and is involved in several cancers,
especially breast cancer. However, estrogen receptor beta relates
to cognition through its normally high expression in the
hippocampus, which is part of the brain’s “memory center”;
loss of estrogen leads to losses in memory, expediting of brain
biological aging (namely amyloid and APOE processes), which
can eventually lead to Alzheimer’s Disease (Foster, 2012). Nearly
all of the nodes more strongly tied to THC directly correlate with
decreased cognition.

Nicotine has much stronger connections to NG-nitroargimine
methyl ester, as it ranks 144 spots higher with respect to nicotine
compared to THC. NG-nitroargimine methyl ester is mostly
associated with nitric oxide synthase (NOS) processes, which
assist in respiration and oxidation pathways. Defective nitric
oxide activity in the brain directly leads to decreased memory.
NO has particularly strong effects on the hypothalamus, but also
on the hippocampus. NO increases blood supply to the brain
but as a relatively short half-life. Thus, exposure to substances
that increase NO result in temporary increases in memory but
can also result in longer-term depletion, which leads to impaired
memory over time (Wang et al., 2018). VEGF is the other
highly ranked AAPP node, which ranks 124 spots higher to
nicotine compared to THC. As noted above, VEGF can actually
improve cognition, and this observation has been noted in other
studies examining smoking (Ugur et al., 2018). Collectively these
literature results suggest why there is dichotomy in the field as to
whether nicotine [from cigarette smoking] increases or decreases
cognition. SemNet ranking illustrate it actually could be doing
both. However, it is most likely that, over time, the small increases
in cognition with nicotine use swing toward cognitive decreases,
most likely resulting in an overall decrease in cognition. It
could be hypothesized this is actually a habituation effect on the
neurons. However, depending on individual differences in AAPP
balance, there could be human sub-populations with different
cognitive responses to cigarette smoking.

So what can be learned from this specific SemNet case
study? Key results illustrate there are X-Y chromosomal
differences in response to smoking. Thus, further examination
is warranted to determine gender-specific effects. It would
appear based on this initial SemNet case study that
cardiovascular connections are greater to the Y chromosome
while neuropeptide/neurotransmitters are stronger to the X
chromosome. This would suggest that females could potentially
be more at risk for cognitive effects related to smoking.
Additionally, comparisons of THC and nicotine suggest that,
other than shared reward/addiction commonalities, they have
differently ranked AAPP connections. Nicotine has connections

that illustrate a “mixed” effect on cognition, whereas the strongest
THC connections all correlate with decreased cognition. This
insight suggests that the definition of “smoking” on a clinical
survey or epidemiological study should be framed to differentiate
cigarette smoking and marijuana/THC smoking in order to
better assess the differing biochemical and functional effects.

How could this initial SemNet use case be iteratively
improved? The SemNet high residual nodes suggest key
AAPPs that can be further investigated using more detailed
SemNet searches (e.g., more specific targets, such as the high
residual nodes for each ranker). As described above, much
can be learned with relative ease by looking at high residual
nodes from SemNet on a Venn diagram (Figure 8). However,
optimization of user-specified target node input could assist
in obtaining even more specific insight. For example, while
several of the highly ranked nodes in the nicotine and THC
example are quite specific, some are more general. Nicotine
in particular has a few more general nodes that are highly
ranked (e.g., “proteins,” “amino acids”), as shown in Figure 8

(bottom) compared to THC, likely because nicotine has a
larger literature pool (e.g., count) than THC. Note that post-
processing of non-specific terms could be done to remove
terms deemed too general to be of help to a specific field,
project, or study. Such a process is analogous to removing
unimportant “stop words” (a, an, the, etc.) in standard text
mining studies. Additionally, keep in mind this use case focused
only on the AAPP node type. High residual node analysis could
be repeated for any of the other 131 node types—diseases,
treatments, etc.

SemNet Applications
There are seemingly an infinite number of applications of
SemNet. Clearly many fields and areas of research can benefit
from leveraging a full semantic inference network of all of
PubMed’s 27.9 million and counting indexed abstracts. Below,
we outline some of the types of literature based discovery that
SemNet enables with its easy to use and adaptable structure in
the popular Python language.

Field Maps
“Field maps” are used to visually map literature within a specific
field to assess sub-topic breadth and depth, and sometimes
relationships between topics. Traditionally field maps were
either done by hand using expert domain knowledge or using
informatics-based methods that combine text mining and expert
domain knowledge (Kim et al., 2016). A key limitation of
traditional field maps is they only look at sets of literature labeled
as part of that field. However, the determination of “related to
field” can be either narrow or subjective. There is certainly no
tying of sub-topics within the field to other related pathology
or physiology. In contrast, SemNet connects not only literature
directly tied to the field but also beyond the field and does so
in a non-subjective manner. Moreover, SemNet can rank the
identified nodes, which greatly enhances the level of information
and context provided.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 16 July 2019 | Volume 7 | Article 156

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Sedler and Mitchell SemNet

The Ultimate Systematic Review and Meta-Analysis
Systematic reviews and meta-analyses, despite rigorous
methodology recommended by Cochrane Systematic Reviews,
can suffer from selection bias (Graves et al., 1996). SemNet is
a great platform for assisting a user that wants to perform the
ultimate systematic review. SemNet enables target-to-source
node relationships to be visualized in a way that extends
beyond a few key terms. Again, SemNet’s ranking system enables
prioritization. Having a better and comprehensive understanding
of node and metapath structure enables comprehensive and
less biased selection criteria. With the understanding imparted
by SemNet to optimize selection criteria and expand article
selection, articles can then have their internal quantitative data
curated in bulk (Mitchell et al., 2015) and statistically analyzed.

SemNet thus can clearly improve the all-important initial
article identification and inclusion required for a systematic
review and meta-analysis. However, SemNet, which is based
on text analysis, cannot yet perform the statistical calculations
directly on articles’ quantitative figure and table data. However,
future updates to SemNet to assign rankings to actual
metapath relationships could make SemNet a standalone tool
for meta-analysis.

Therapeutic Identification and Drug Repurposing
Semantic inference networks have primarily been previously used
for drug re-purposing (Kilicoglu, 2017). However, previous tools
have not been as comprehensive and/or have been difficult to
operate for the average user. The ease and flexibility of SemNet
and its implementation in the popular Python language make
it more accessible and adoptable to a greater number of users.
SemNet’s use of SemMedDB enables therapeutic identification
based on disease, symptom, risk factor, functional measure, or
any number of multi-scalar pathological or physiological nodes.
SemNet is not limited to merely examining nodes related to
“omics” (gene or protein expression), which greatly expands its
capabilities to find potential therapeutics or targets based on
multiple, multi-scalar targets.

Epidemiology and Risk Profiling
Due to the same features outlined above for drug identification,
SemNet can also be utilized to perform more comprehensive
assessments of epidemiology and risk profiling. Metapaths tied
to a given set of cohort characteristics set as target nodes can be
used to explore relevant multi-scalar physiological, pathological,
and therapeutic nodes, which can be used to develop conceptual
patient risk profiles. The case use example comparing X and
Y chromosomes, as shown in Figure 8 (top), illustrates how
differences in risk or etiology between males or females could be
compared based on literature relationships.

Limitations and Future Directions
As previously noted, clustering of biomedical concepts using
SemNet does not directly represent biological similarity, but
similarity in patterns of connections to the target nodes found
by SemRep. Thus, the resulting concept network is only as
good as the literature it represents. The National Library of
Medicine’s SemMedDB is updated regularly, which does allow for

reconstruction of any analyses using new journal article abstracts.
However, clearly SemRep cannot identify relationships between
nodes if those relationships, albeit known or unknown to the
user, do not exist in the literature. However, examination of
nodes and especially DWPC for a particular target node does
allow the user to determine potential “holes,” or areas of low
connectivity in the literature, where future research could be
extremely valuable. Thus, even the lack of expected underlying
metapaths could justify the need for research on a given topic,
relationship, or hypothesis.

Like any given model, SemNet is dependent on the amount
and quality of the data of which it is comprised–the articles
in PubMed, or more specifically, SemMedDB. It is no secret
that judging the quality of a scientific article is subjective and
the variance of literature quality within PubMed is considered
vast by most researchers. Thus, some researchers or potential
SemNet users may worry if perceptually lesser quality research
publications are included. Large sample size likely drowns most
potential issues caused by a smaller percentage of presumed lesser
quality publications. Nonetheless, the perceived quality of the
input data set could be controlled if so desired, albeit by impact
factor, journal name, etc. by altering queries to SemMedDB.
However, care would need to be taken to not overly bias the
input data sources, and in doing so, lose the benefit of agnostic
exploration provided by a large-scale semantic inference network
of a comprehensive scientific body of literature.

While the presented ULARA ranking algorithm (Klementiev
et al., 2007) has been adopted by the text mining field and
appears excellent for general purpose use in SemNet, the
ranking module of SemNet could be swapped for future
more advanced methods or other existing rankers that have
a more project-specific goal. In combination with ULARA,
additional features beyond count, DWPC, and HeteSim
could be added or swapped into SemNet to help improve
rankings as feature methods are improved in the future.
Furthermore, future addition of relationship weighting features
(as mentioned under the Systematic Review and Meta-Analysis
section) would improve context and function using the
SemNet platform.

There is still much to learn about how heterogeneous semantic
networks “behave.” For example, there is an infinite number
of sensitivity analyses that could be performed in the future
to examine how corpus size, node counts, and degree of
connectivity impacts the overall network results and especially
SemNet projected rankings. This information could be used
to help further optimize the platform and better assist in
results interpretation.

Conclusion
In conclusion, a semantic network created using the text of
biomedical abstracts can be effectively used to identify, rank,
and cluster relevant concepts to a user-specified target of
interest. This allows the user to quickly develop an up-to-
date model of a topic by navigating the biomedical concept
graph. SemNet is an excellent starting point for virtually
any biomedical concept, project, or data aggregation study,
which wishes to utilize literature based discovery. Specifically,
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SemNet could be of great value for identifying relationships
that impact the ranking of specific diseases risk factors, multi-
scalar pathophysiology, or therapeutic identification, including
off-label drug re-purposing. SemNet can highlight both areas
of high literature connectivity and as well as literature “holes”
(e.g., areas where there are few publications or connections).
In summary, the ability to easily connect and visualize
relationships using all of PubMed to examine targets of interest
is a valuable asset and major step forward for literature
based discovery.

We have compiled the code into a Python package
that we call SemNet. The package is open-source, along
with the network data adapted from the National Library
of Medicine. Additionally, detailed online documentation
has been assembled for the SemNet software. Download
on GitHub.
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