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The polymerization of aniline to polyaniline (PANI) can be achieved chemically,

electrochemically or enzymatically. In all cases, the products obtained are mixtures of

molecules which are constituted by aniline units. Depending on the synthesis conditions

there are variations (i) in the way the aniline molecules are connected, (ii) in the average

number of aniline units per molecule, (iii) in the oxidation state, and (iv) in the degree of

protonation. For many possible applications, the synthesis of electroconductive PANI

with para-N-C-coupled aniline units in their half-oxidized and protonated state is of

interest. This is the emeraldine salt form of PANI, abbreviated as PANI-ES. The enzymatic

synthesis of PANI-ES is an environmentally friendly alternative to conventional chemical

or electrochemical methods. Although many studies have been devoted to the in vitro

synthesis of PANI-ES by using heme peroxidases with added hydrogen peroxide (H2O2)

as the oxidant, the application of laccases is of particular interest since the oxidant

for these multicopper enzymes is molecular oxygen (O2) from air, which is beneficial

from environmental and economic points of view. In vivo, laccases participate in the

synthesis and degradation of lignin. Various attempts of synthesizing PANI-ES with

laccase/O2 in slightly acidic aqueous media from aniline or the linear aniline dimer

PADPA (p-aminodiphenylamine) are summarized. Advances in the understanding of

the positive effects of soft dynamic templates, as chemical structure guiding additives

(anionic polyelectrolytes, micelles, or vesicles), for obtaining PANI-ES-rich products are

highlighted. Conceptually, some of these template effects appear to be related to the

effect “dirigent proteins” exert in the biosynthesis of lignin. In both cases intermediate

radicals are formed enzymatically which then must react in a controlled way in follow-up

reactions for obtaining the desired products. These follow-up reactions are controlled to

some extent by the templates or specific proteins.

Keywords: aniline, enzyme, lignin, laccase, peroxidase, polymerization, polyaniline, template

THE PARTICIPATION OF LACCASES IN THE IN VIVO SYNTHESIS
AND DEGRADATION OF LIGNIN

Laccases (EC 1.10.3.2) are metalloenzymes that form a subfamily within the superfamily
of multicopper oxidases found in fungi, higher plants, bacteria, and insects (Solomon
et al., 1996, 2014; Sirim et al., 2011). Laccases have four copper ions that constitute
two spatially separated active sites. One active site is formed by one copper ion
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(type 1, abbreviated as T1), the other by a trinuclear copper
cluster (TNC) consisting of T2 (one copper ion) and T3 (two
copper ions). Laccases oxidize a broad range of substrates
at T1 in a one-electron oxidation reaction, for example the
oxidation of phenol derivatives (Ar-OH) to the corresponding
phenoxy radicals (Ar-O•), whereby the electron which is released
from the substrate is transferred via a His-Cys-His tripeptide
from T1 to the TNC where dissolved molecular oxygen (O2)
is bound, activated and reduced in a four-electron reduction
(Bertrand et al., 2002; Morozova et al., 2007a; Solomon et al.,
2014; Jones and Solomon, 2015). In one catalytic laccase cycle,
four substrate molecules (e.g., Ar-OH) are oxidized at the
expenses of one molecule O2, yielding in the case of Ar-
OH four phenoxy radicals (Ar-O•) and two water molecules
as side products: 4 Ar-OH + O2 → 4 Ar-O• + 2 H2O
(Figure 1A). Ar-O• then undergoes follow-up reactions. The
copper ion at T1 is responsible for the blue color of laccases,
with λmax ≈ 600 nm and a molar absorption ε≈600 ≈ 5,000
M−1 cm−1 (Solomon et al., 1996). Although these “blue laccases”
(Morozova et al., 2007a) are the ones we think of if laccases are
mentioned, white and yellow laccases also exist as modifications
of blue laccases, lacking the absorption band at λ ≈ 600 nm
(Leontievsky et al., 1997; Agrawal et al., 2018).

In plants, laccases participate in the biosynthesis of lignin,
which is a complex, branched, heterogeneous, and water-
insoluble, amorphous polymer (Roth and Spiess, 2015). Due to
the insolubility of lignin it is difficult to determine its molar mass.
Reported values for number or weight averaged molar masses
are in the range of a few thousands to tens of thousands grams
per mol (with a rather high polydispersity), depending on the
lignin source, the pre-treatment conditions, and the isolation
method (Tolbert et al., 2014). Lignin is formed from basically
three hydroxycinnamyl alcohols (so-called monolignols): non-
methoxylated p-cumaryl alcohol, mono-methoxylated coniferyl
alcohol, and di-methoxylated sinapyl alcohol (Figure 1B). These
monolignols are polymerized through radical couplings of their
oxidized forms, resulting in an entangled polymeric network of
phenolic and non-phenolic linking units (Barros et al., 2015; Roth
and Spiess, 2015; Munk et al., 2018). Plant laccases participate at
least in the very first step of lignin formation (Sterjiades et al.,
1992; Solomon et al., 2014), which is the laccase/O2-catalyzed
oxidation of monilignols to the corresponding monolignol
phenoxy radicals. Since the unpaired electron can be located
on different atoms of the radicals (see the different resonance
structures in Figure 1B), the next step of the reaction, the
coupling of two radicals to form a dimer (called lignan), leads
to products which can have very diverse constitutions and
different configurations. This is due to the various radical-radical
coupling possibilities. Follow-up reactions, in which peroxidases
and hydrogen peroxide (H2O2) are involved as well (Solomon
et al., 2014; Barros et al., 2015), lead to the formation of oligomers
and the final polymeric product (lignin). There is increasing
evidence that the in vivo coupling of the phenoxy radicals
which are produced from monolignols by oxidative enzymes like
laccases (Figure 1B) is controlled, at least to some extent, through
interactions with so-called “dirigent proteins” (Davin and Lewis,
2005). Whether these directing proteins are true enzymes with

catalytic activity or not, needs to be clarified (Gasper et al., 2016).
In any case it is evident that “dirigent proteins” direct regio-
and stereoselectivity in bimolecular phenoxy radical coupling
during lignan biosynthesis, and they may play the same role
during the follow-up steps leading to the formation of lignin
(Pickel and Schaller, 2013; Kim et al., 2015; Guerriero et al., 2016;
Paniagua et al., 2017).

Apart from the involvement of plant laccases in the
complex biosynthesis of lignan and lignin, laccases which are
released fromwood-rotting fungi together with other ligninolytic
enzymes (including lignin peroxidase andManganese-dependent
peroxidase) (Wong, 2009; Janusz et al., 2017; Martínez et al.,
2018) also participate in the degradation of lignin present in the
wood on which the fungi live (e.g., Baldrian, 2006; Giardina et al.,
2010; Roth and Spiess, 2015). For an efficient in vitro degradation
of lignin the removal of degradation products seems to be
important for preventing a re-synthesis (Roth and Spiess, 2015;
Munk et al., 2018). Furthermore, the efficiency of the laccase for
degrading lignin can be improved by using so-called mediators
(organic or inorganic compounds or metal ions), which can
reach the T1 site of the laccase and which have redox potentials
that are lower or comparable to the redox potential of the
laccase involved, such that these mediator molecules are oxidized
by the laccase (Bourbonnais and Paice, 1990; Morozova et al.,
2007b; Roth and Spiess, 2015; Longe et al., 2018). In this case,
fungal laccases oxidize the mediator molecules, and the oxidized
mediator molecules oxidize lignin, which can occur via different
mechanisms, finally resulting in lignin degradation. The presence
of mediator molecules seems to be essential for the complete
degradation of lignin by laccases; without mediators, only the
breaking of bonds in phenolic model compounds of lignin
is catalyzed, for non-phenolic subunits, the use of mediators
appears a must (Munk et al., 2015).

THE USE OF LACCASES FOR IN VITRO

OLIGO-AND POLYMERIZATION
REACTIONS

Laccases, in particular the ones from Trametes fungi with
their high oxidation potentials of ∼0.78V vs. NHE at the T1
site (Morozova et al., 2007a) and solvent exposed, about 5–
8 Å deep, hydrophobic binding site near T1 (Solomon et al.,
2014), have a very broad range of accessible substrates (Xu,
1996; Baldrian, 2006; Tadesse et al., 2008; Strong and Claus,
2011; Reiss et al., 2013). This allows for mediator-free in
vitro applications which go beyond laccase-catalyzed oxidative
transformations of physiological substrates. One example is
the oxidation of aniline (Ph-NH2) (Reiss et al., 2013) despite
its relatively low standard oxidation potential of −1.0V (E◦ox
(Ph-NH2/Ph-NH

•+
2 ) = −1.0V vs. NHE) (Jonsson et al.,

1994). If laccase-catalyzed transformations of non-physiological
substrates in the presence of mediators are considered as
well, it is not surprising that laccases are recognized as
very valuable biocatalysts for many commercial and research
applications in various areas (e.g., Riva, 2006; Rodríguez Couto
and Toca Herrera, 2006; Kunamneni et al., 2008; Mikolasch
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FIGURE 1 | Laccase/O2-catalyzed reactions in connection to the synthesis of lignin. (A) The crystal structure of the two active sites of Trametes versicolor laccase

illustrates the four copper ions which participate in the reaction. At the T1 site, the substrate molecules are oxidized, followed by electron transfer from T1 to the

trinuclear copper cluster (TNC) where reoxidation takes place with dissolved O2. Reproduced and modified from Sirim et al. (2011). (B) Monolignols as natural

substrates of plant laccases, showing the resonance structures of the intermediates obtained from the one-electron oxidation of the monolignols. The initial follow-up

reactions are assisted by dirigent proteins and lead to the formation of lignans, which upon further oxidative oligomerization yield lignin.

and Schauer, 2009; Kudanga et al., 2011; Hollmann and
Arends, 2012; Polak and Jarosz-Wilkolazka, 2012; Sousa et al.,
2013; Pezzella et al., 2015; Mate and Alcalde, 2016; Upadhyay
et al., 2016; Cannatelli and Ragauskas, 2017; Yang et al., 2017;
Slagman et al., 2018).

Applications of laccase-catalyzed in vitro reactions
include the laccase/O2-mediated syntheses of polymeric (or
oligomeric) products from methyl methacrylate or styrene (with
acetylacetone as mediator, see Tsujimoto et al., 2001), acrylamide
(Ikeda et al., 1998), phenols (Mita et al., 2003; Marjasvaara et al.,
2006; Sun et al., 2013; Su et al., 2018a, 2019a), pyrrole (Song
and Palmore, 2005; Junker et al., 2015), dopamine (Tan et al.,
2010; Li et al., 2018), 3,4-ethylenedioxythiophene (Shumakovich
et al., 2012b; Vasil’eva et al., 2018), or various arylamines
(Ćirić-Marjanović et al., 2017; Zhang T. et al., 2018; Su et al.,
2019a,b). With respect to the latter type of monomers, the focus
often was—and still is—on the synthesis of oligo- or polyaniline
(PANI) from aniline (Karamyshev et al., 2003; Vasil’eva et al.,
2007, 2009; Streltsov et al., 2008, 2009; Shumakovich et al., 2010,
2012a, 2014; Leppänen et al., 2013; Zhang et al., 2014, 2016;

Zhang Y. et al., 2018; Junker et al., 2014a; de Salas et al., 2016;
Su et al., 2018b) or from p-aminodiphenylamine (PADPA), the
linear para N-C-coupled aniline dimer Shumakovich et al., 2011;
Junker et al., 2014b; Janoševic Ležaić et al., 2016; Luginbühl et al.,
2016; Kashima et al., 2018;Kashima et al., 2019).

LACCASE/O2-CATALYZED SYNTHESIS OF
POLYANILINE (PANI) AND THE ROLE OF
“TEMPLATES”

If a high oxidation potential laccase is added to an aqueous
solution containing aniline (Ph-NH2) as monomer in the absence
of any mediator, the one-electron oxidation of the neutral form
of aniline occurs in analogy to the oxidation of monolignols
(see above) according to the following stoichiometric equation:
4 Ph-NH2 + O2 → 4 Ph-NH• + 2 H2O (Figure 2A). This
means that in each catalytic laccase cycle four aniline molecules
are oxidized by the laccase at the expenses of one molecule
O2, yielding four anilino radicals (Ph-NH•) and two water
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molecules as side products (Junker et al., 2014a). Ph-NH• then
undergoes follow-up reactions (radical-radical couplings and/or
further oxidations). All follow-up reactions are probably nomore
under direct control by the enzyme, resulting in a mixture of
products the composition of which being determined by the
actual reaction conditions, i.e., the pH of the reaction mixture,
the reaction temperature, the aniline concentration, the type and
amount of laccase used, and whether “templates” are added or
not. The term “template” stands here for any type of reaction
additive which has a positive influence on the intended outcome
of the reaction in terms of chemical structure of the reaction
product(s) (Walde and Guo, 2011). This is somewhat related to
the role “dirigent proteins” have in the biosynthesis of lignan
and possibly also lignin (see above). For the enzymatic synthesis
of electroconductive PANI, excellent templates are sulfonated
polystyrene as sodium salt (SPS, Karamyshev et al., 2003), the
calcium salt of ligninosulfonate (Zhang et al., 2016), micelles
from sodium dodecylbenzenesulfonate (SDBS, Streltsov et al.,
2009), or vesicles from sodium bis(2-ethylhexyl)sulfosuccinate
(AOT, Junker et al., 2014a; Figure 2B). All these template
molecules have sulfonate groups in their structures. In the
presence of the templates and under optimal conditions (usually
pH ≈ 3–4), the laccase/O2-catalyzed oxidation of aniline results
in the formation of products which have the characteristic
properties of the green conductive form of PANI, known as
PANI-ES, the emeraldine salt form of PANI (Figure 2A). PANI-
ES is the half oxidized, protonated form of linear PANI, with the
aniline monomers coupled by N-C bonds in para position to the
amino group. The repeating unit of perfect, defect-free PANI-
ES is the half-oxidized, protonated linear tetraaniline shown in
Figure 2A. Some of the characteristic properties of solutions or
dispersions of PANI-ES in their conductive, polaron state are
(Kashima et al., 2019): (i) high absorption intensity in the near
infrared (NIR) region of the absorption spectrum, often with an
absorption maximum at λ ≈ 800–1,100 nm, assigned to the π

→ polaron transition (do Nascimento and de Souza, 2015);
(ii) an absorption band at λ ≈ 420 nm, assigned to the polaron
→ π

∗ transition (do Nascimento and de Souza, 2015); (iii)
low absorption at λ ≈ 500–600 nm, indicative for the absence
of extensive branching and phenazine unit formation (Liu et al.,
1999b; Luginbühl et al., 2017); (iv) the presence of unpaired
electrons, which results in an electron paramagnetic resonance
(EPR) spectrum (Kulikov et al., 2002; Krinichnyi et al., 2006;
Rakvin et al., 2014); and (v) characteristic Raman bands at ν ≈

1,320–1,380 cm−1, originating from C–N•+ stretching vibrations
of the polaronic form of PANI-ES (Ćirić-Marjanović et al., 2008a;
Janoševic Ležaić et al., 2016).

The role of the templates during and at the end of
the reaction has been investigated and discussed previously,
mainly in reports of experiments using horseradish peroxidase
isoenzyme C (HRPC) and added H2O2 as the oxidant (Liu
et al., 1999a; Junker et al., 2012) instead of laccase/O2. The
templates seem to direct the regioselectivity of the monomer
coupling reaction due to a localization of the reaction in the
vicinity of the templates, favoring para- over ortho-coupling
of oxidized aniline. Furthermore, the templates act as dopants
(counter ions) of the formed PANI (balancing the positive

charge on the PANI polycation backbone), thereby stabilizing the
PANI-ES structure which is essential for its property (electrical
conductivity). This property is often the target of research on
the laccase/O2- (or peroxidase/H2O2-) catalyzed polymerization
of aniline, as environmentally friendly method, an alternative
method to conventional chemical or electrochemical procedures
(Stejskal et al., 2015). In the presence of good templates, the
obtained PANI-ES products remain solubilized or dispersed
in the aqueous reaction medium (no precipitation). Without
template, but otherwise identical conditions, the formation of
undesired, insoluble brown products is observed (Liu et al.,
1999b; Guo et al., 2009).

It is very likely that in all studies that have been published on
the laccase/O2-catalyzed oxidations of aniline in the presence of
templates, mixtures of different products were obtained and not a
single type of PANI-ES molecule with a fully defined chemical
structure. This is due to the different follow-up reactions that
may occur once anilino radicals (Ph-NH•) are produced by
the laccase (see above). Unfortunately, due to the insolubility
of at least some of the products obtained, a separation of all
reaction products and an indisputable quantitative analysis of
their chemical structures are impossible with current methods.
Therefore, the overall product analysis mainly relies on in situ
UV/vis/NIR, EPR, and cyclic voltammetry measurements and
on a FTIR characterization of isolated product mixtures. The
presence of the templates often assists in keeping the formed
products dissolved or dispersed. This allows monitoring the
formation of desired functional groups during polymerization
and after reaching reaction equilibrium, for example by simple
UV/vis/NIR measurements (Junker et al., 2014a). Interestingly,
independent from the type of laccase and type of chosen template
used, the UV/vis/NIR spectrum of the reaction mixture always
appears to have an absorption maximum (λmax) between λ =

700 and 800 nm, and not at λ ≈ 800–1,100 nm, as expected for
the π → polaron transition of PANI-ES (see above): λmax ≈

750 nm (with Trametes hirsuta laccase and SPS as template at
pH = 3.5 and T = 20◦C; Karamyshev et al., 2003); λmax = 740–
800 nm (with Trametes hirsuta laccase and SDBS micelles at pH
= 3.8 and T = 20◦C, Streltsov et al., 2008); λmax ≈ 700 nm
(with Trametes hirsuta laccase and poly(2-acrylamido-2-methyl-
1-propanesulfonic acid) at pH= 3.5 and T = 20◦C, Shumakovich
et al., 2010); λmax ≈ 750 nm (with Trametes versicolor laccase
and κ-carrageenan at pH= 3.7 and room temperature, Leppänen
et al., 2013);λmax ≈ 750 nm (withDenlite R©, a laccase preparation
from Aspergillus, and SDBS micelles at pH = 4.5 and T =

10◦C, Zhang et al., 2014); λmax ≈ 750 nm (with Denlite R©

and lignosulfonate at pH = 3.5 and T = 5◦C, Zhang et al.,
2016); and λmax ≈ 730 nm (with Trametes versicolor laccase and
AOT vesicles at pH = 3.5 and T = 25 or 8◦C, Junker et al.,
2014a). These observed absorption maxima contrast with what
has been observed for the HRPC/H2O2-catalyzed polymerization
of aniline, even if the same template was used, e.g., AOT vesicles
(λmax ≈ 1,000 nm at pH = 4.3 and T ≈ 25◦C, Junker et al.,
2012; Pašti et al., 2017). One reason for this difference could be
that the PANI-ES products which are obtained with laccase/O2

in the presence of a template are always in a “compact coil”
conformation (MacDiarmid and Epstein, 1994, 1995; Yoo et al.,
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FIGURE 2 | Template-assisted laccase/O2-catalyzed synthesis of oligomeric and polymeric products consisting of conductive PANI-ES units. (A) One-electron

oxidation of aniline to the anilino radical, followed by the formation of the aniline dimer (PADPA) and polymeric products. Similarly, the use of PADPA as monomer can

yield oligomeric PANI-ES-type products. (B) Some of the template molecules used, all containing sulfonate groups but differing in their state in aqueous solution:

dynamic assemblies of polyelectrolytes, micelles, or vesicles. (C) Two examples of in situ recorded spectra of the obtained PANI-ES-type molecules formed with

Trametes versicolor laccase/O2 from PADPA at pH = 3.5 in the presence of AOT vesicles as templates. Reproduced and modified from Kashima et al. (2019), with

permission of the ACS. Further permissions related to (B) and (C) should be directed to the ACS.

2007) with a shorter conjugation length and low delocalization
of polarons, as compared to the PANI-ES products obtained in
the presence of the same template with HRPC/H2O2; in the

latter case, UV/vis/NIR spectra indicated an “extended coil”
conformation and high delocalization of polarons (Xia et al.,
1995). Alternatively, it may be that the PANI products obtained
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with laccase/O2 are overoxidized. This was the conclusion which
was drawn in the case of PANI products obtained from aniline
with Trametes versicolor laccase at pH = 3.5 in the presence of
AOT vesicles as templates (Junker et al., 2014a).

One serious drawback of the template-assisted laccase/O2- or
HRPC/H2O2-catalyzed polymerization of aniline is the relatively
large amount of enzyme required for high aniline conversion. In
the case of AOT vesicles as templates, for the oxidation of 1.0 g
aniline, the estimated amount of pure Trametes versicolor laccase
is also about 1.0 g (Junker et al., 2014a); in the case of HRPC,
it is about 0.1 g enzyme (Junker et al., 2012). It is the formed
polymeric product that inactivates the enzymes (Junker et al.,
2012). From an economic point of view, such waste of enzyme
is inacceptable, although the as obtained PANI-ES product may
have excellent electrochemical properties, as shown for PANI-ES
obtainedwithHRPC/H2O2 (Pašti et al., 2017). It is not clear at the
moment how enzyme inactivation can be avoided or minimized
for these reactions. Possible approaches toward an increase in
operational enzyme stability could be to use mediator molecules
for the reaction (Shumakovich et al., 2012a), to add polymers
for stabilizing the enzyme (Junker et al., 2013), or to try to use
immobilized enzymes (Vasil’eva et al., 2009).

“TEMPLATE” EFFECT ON THE
LACCASE/O2-CATALYZED
OLIGOMERIZATION OF PADPA

The aniline dimer PADPA (p-aminodiphenylamine, Figure 2A)
is the first intermediate product which forms if two anilino
radicals (or their protonated forms, i.e., aniline radical cations)
react with each other in the desired way (head-to-tail coupling).
PADPA must then undergo further reactions with aniline to
finally yield linear PANI-ES. Due to this role as important
intermediate product, PADPA has also been considered as
monomer instead of aniline for the laccase/O2-catalyzed
synthesis of PANI-ES. However, the reactivity of PADPA and
the laccase/O2-catalyzed oxidation of PADPA differ considerably
from those of aniline. First of all, PADPA is much easier
to oxidize than aniline. The standard oxidation potential, E◦ox
(PADPA) is about −0.4 to −0.5V vs. NHE (Gospodinova and
Terlemezyan, 1998), higher than in the case of aniline, E◦ox
(aniline) = −1.0V (Jonsson et al., 1994). Second, like in the case
of the chemical or electrochemical oxidative polymerization of
PADPA (Kitani et al., 1987; Geniès et al., 1989; Ćirić-Marjanović
et al., 2008b), the majority of the products obtained from the
laccase/O2-catalyzed oxidation of PADPA are oligomers and not
true polymers (Shumakovich et al., 2011; Junker et al., 2014b;
Luginbühl et al., 2016). This may have certain disadvantages in
terms of applications, but it also has an analytical advantage. The
obtained product mixture can be separated by high performance
liquid chromatography (HPLC) with UV/vis diode array or mass
spectrometry detection. This is at least the case for the products
obtained from the Trametes versicolor laccase/O2-catalyzed
oxidation of PADPA at pH = 3.5 in the presence (or absence) of
AOT vesicles as templates (Junker et al., 2014b; Luginbühl et al.,
2016; Kashima et al., 2018). Reaction product extraction into an

organic solvent (t-butylmethylether) and analysis are possible for
the specific reaction conditions used. They were optimized in
terms of (i) high PADPA conversion, (ii) desired formation of
PANI-ES-like products by using, (iii) low amounts of template,
(iv) high colloidal stability, and (v) minimal amounts of enzyme.
Before extracting the products into the organic solvent, they were
deprotonated to make them soluble in the solvent. Afterwards,
the products were reduced before applying on the HPLC
column. After the entire product separation and identification
of the molecules present, information on original protonation
and oxidation states is lost. Only through the combination of
the HPLC analysis—which was also carried out with partially
deuterated PADPA monomers and H18

2 O—and complementary
in situUV/vis/NIR, EPR and Raman spectroscopymeasurements
of the entire reaction mixture recorded during the reaction and
after reaching reaction equilibrium, clear conclusions about the
effect of the AOT vesicle template on the outcome of the reaction
could be drawn (Luginbühl et al., 2016; Kashima et al., 2018).
Three essential findings are worth mentioning.

(i) The main product of the reaction in the presence of
the vesicles is the para-N-C-coupled PADPA dimer in its half-
oxidized, protonated state, i.e., the tetraaniline repeating unit of
ideal PANI-ES (Figure 2A). This is the shortest possible PANI-
ES type molecule and contributes most substantially among all
formed products to the in situ recorded absorption spectrum of
the reaction mixture, with λmax ≈ 1,070 and ≈ 430 nm (Junker
et al., 2014b; Kashima et al., 2018; Figure 2C), the in situ recorded
EPR spectrum (Janoševic Ležaić et al., 2016; Kashima et al., 2018),
and the in situ recorded Raman spectrum with characteristic
band positions at ν ≈ 1,350–1,380 cm−1 (Janoševic Ležaić et al.,
2016; Kashima et al., 2018; Figure 2D). Higher PANI-ES-type
oligomers are also formed but to a much lesser extent.

(ii) If the reaction is run without template, many products
contain an oxygen atom which originates from bulk water. The
incorporation of the oxygen atom is most probably caused by
hydrolysis of an intermediate diimine (the protonated form of
N-phenyl-1,4-benzoquinonediimine). If the reaction is run in the
presence of vesicles as templates, undesired products containing
an oxygen atom are absent (Luginbühl et al., 2016).

(iii) Oligomers built from more than two PADPA molecules,
some of them containing phenazine units, are formed in the
presence as well as in the absence of vesicles, with the extent of
phenazine formation being considerably higher without vesicles
(Luginbühl et al., 2016).

In summary, the analysis of the Trametes versicolor
laccase/O2-catalyzed oxidation of PADPA in aqueous solution at
pH = 3.5 in the presence of anionic AOT vesicle templates has
shown that the vesicles steer the reaction toward the formation
of desired PANI-ES-like products. Certain undesired reaction
pathways (hydrolysis or phenazine formation) are prevented or
largely avoided. Although the detailed molecular picture is still
fragmentary and current mechanistic hypotheses still need to be
proven or disproven, it is clear that the reproducible preparation
of PANI-ES-like oligomers, which have the characteristic
spectroscopic features of chemically synthesized PANI-ES,
is possible under environmentally friendly conditions with
laccase/O2 as efficient catalyst, PADPA as monomer, and an
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appropriate template. Apart from AOT vesicles, other templates
with sulfonate groups can be used as well, SPS polyelectrolyte,
SDBS micelles or SDBS/decanoic acid (1:1) vesicles, see Kashima
et al. (2019). For each template, optimal reaction conditions
have to be elaborated. Furthermore, the template type has
an influence on the property of the obtained mixture of
products (Kashima et al., 2019).

CONCLUSIONS

Although there is no doubt that high oxidation potential laccases
can catalyze the oxidation of aniline or its dimer PADPA in
aqueous media in the presence of dissolved O2, the outcome
of the reaction depends on many factors. The presence of an
anionic template is essential for obtaining the emeraldine salt
form of oligo- or polymeric aniline products. This template
effect is related to the role “dirigent proteins” have in the
biosynthesis of lignin. Since the polymeric products obtained
from aniline are difficult to isolate and analyze individually—
often despite their promising electrochemical properties—the
oligomeric products obtained from PADPA allow gaining insight
into the effect the templates exert on the reaction. The templates
act as soft, dispersed interface-rich additives (Serrano-Luginbühl
et al., 2018) that guide the reactions toward desired products.
Despite uncertainties in the composition and chemical structure
of the reaction products obtained, the best choice of monomer,

laccase type, and template may depend on the actual product
application in mind. Nevertheless, the challenge remains in
improving the knowledge about the guiding effect of the
template—also for other related reactions (Junker et al., 2015)—
so that the reaction conditions can be tuned in a controlled way
for achieving products with desired properties in high yield under
as environmentally friendly conditions as possible.
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