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Anaerobic digestion using lignocellulosic material as the substrate is a cost-effective

strategy for biomethane production, which provides great potential to convert biomass

into renewable energy. However, the recalcitrance of native lignocellulosic biomass

makes it resistant to microbial hydrolysis, which reduces the bioconversion efficiency of

organicmatter into biogas. Therefore, it is necessary to critically investigate the correlation

between lignocellulose characteristics and bioconversion efficiency. Accordingly, this

review comprehensively summarizes the anaerobic digestion process and rate-limiting

step, structural and compositional properties of lignocellulosic biomass, recalcitrance

and inhibitors of lignocellulose and their major effects on anaerobic digestion for

biomethane production. Moreover, various type of pretreatment strategies applied to

lignocellulosic biomass was discussed in detail, which would contribution to cell wall

degradation and improvement of biomethane yields. In the view of current knowledge,

high energy input and cost requirements are the main limitations of these pretreatment

methods. In addition to optimization of fermentation process, further studies should focus

much more on key structural influence factors of biomass recalcitrance and anaerobic

digestion efficiency, which will contribute to improvement of biomethane production

from lignocellulose.

Keywords: biomethane, anaerobic digestion, lignocellulose, cell wall composition, biomass recalcitrance

INTRODUCTION

Lignocellulose is one of the most abundant renewable organic resources with an increasing annual
yield of 200 billion tons, which can be produced from agriculture, forestryand urban wastes
(Patinvoh et al., 2017). The prominent abundance and low cost of lignocellulose make it a potential
substrate for second generation bioenergy production, such as bioethanol and biomethane (Florian
et al., 2013). During these, biomethane production is one of the most cost-effective methods
for energy generation from lignocellulosic cellulose, which has been implemented worldwide
(Grosser, 2017).
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Biomethane production through anaerobic digestion is a
naturally occurring biological process, which can be divided
into four steps (Figure 1). In the beginning of the process,
complex organic polymers are decomposed to their component
units, e.g., amino acids, fatty acids, and sugars, respectively.
Then, these monomers are converted into a mixture of short
chain volatile fatty acids by fermentative bacteria (Acidogens).
Acetogenic bacteria or acetogens further convert the volatile
fatty acids to acetate, carbon dioxide, and hydrogen, which are
natural substrates for Methanogenesis to generate biomethane.
Theoretically, AD process can decompose the organic fraction
of any feedstocks to produce biomethane, such as crop and
livestock residues, food waste and lignocellulosic feedstocks
(Hagos et al., 2016). However, methane production varies
greatly with different types of substrates. For example, high
methane yields up to 450mL CH4/g volatile solids can be
achieved with sugar and starch crops (Frigon and Guiot,
2010), while no more than 330mL CH4/g volatile solids
can be produced from lignocellulosic biomass (Table 1). The
complexity of biomass structure is the major challenge, which
makes lignocellulosic biomass highly recalcitrant to anaerobic
degradation and ultimately results in low biomethane yield
(Sawatdeenarunat et al., 2016). The stubborn anti-degradation
characteristics of native lignocellulose was known as biomass
recalcitrance, which extremely restricts the hydrolysis during
the first step of anaerobic digestion process and finally limits
the commercial biomethane production from lignocellulose
(Himmel et al., 2007).

In order to overcome this recalcitrance, lignocellulose must be
pretreated and many pretreatment methods have been developed
in recent years. The positive effects of various pretreatments
(e.g., increase of surface area, lignin removal, decrease of
cellulose crystallinity) have been reviewed elsewhere (Paudel
et al., 2017). However, an overall review and assessment about
the impacts of lignocellulose recalcitrance on anaerobic digestion
and biomethane production is still needed and imperative for
further biomethane development. Hence, the aim of this paper is
to provide a comprehensive review of lignocellulose recalcitrance
and its relative effects on anaerobic fermentation and biomethane
production. In addition, the technology for acceleration of
anaerobic digestion of lignocellulose and future prospective was
also discussed.

BASIC STRUCTURAL PROPERTIES OF
PLANT CELL WALL AND
LIGNOCELLULOSE RECALCITRANCE

Lignocellulosic biomass is mainly composed of cellulose,
hemicellulose and lignin, which vary a lot based on types of
plants, growth conditions and maturation both in quantity
and quality (Table 2). The detailed structure has been
comprehensively reviewed elsewhere (Jeoh et al., 2017). Biomass
recalcitrance refers to the anti-degradation characteristics of
native lignocellulose, which protect plant cell wall from pathogen
attack or degradation by microorganisms and enzymes. It
was caused by the complicated compositions and structure of

plant cell wall (Figure 1). Cellulose is a relative homogeneous
substance in terms of the composition and structure, which
provides the basic backbone to lignin-carbohydrate complexes.
Hemicelluloses are embedded through the cell wall and form
covalent bonds to the surface of cellulose fibrils (Somerville
et al., 2004), which help strengthen the cell wall. As a filler
compound, lignin wrappers itself in the interspace of cellulose
and hemicellulose chains and formed a hydrophobic lignification
structure, which plays an important role in maintaining the
structural integrity of the cell wall (Yuan et al., 2013). Besides
the three main compositions, cell wall proteins, lipids, pectin,
mineral and other matters are also involved in the formation
of biomass recalcitrance. Moreover, in addition to chemical
composition and physical structure, the arrangement and
density of the vascular bundles, epidermal protection and some
process-induced causes also play considerable role in building
the cell wall matrix.

As discussed above, biomass recalcitrance refers to
lignocellulosic building blocks which are naturally evolved
to block their microbial and enzymatic deconstruction. This
is the result of a sophisticated combination of the crystalline
cellulose in microfibrils, heteropolysaccharides, lignin, and
other components (Table 3). In the first step of anaerobic
digestion process (Figure 1), biomass recalcitrance protects
itself from degradation by microorganisms and enzymes,
which result in lower monosaccharide production and finally
limits the biomethane efficiency. It is known that the degree
of recalcitrance varies depending on the composition of the
lignocellulosic biomass, which closely correlated to genotype,
environmental conditions, crop management practices and
plant parts (Surendra et al., 2018). However, there are some
basic components and major influencing factors which generally
exist in different plants. The detailed of these properties and its
impacts on anaerobic digestion for biomethane production are
discussed in the following.

Accessible Surface Area of Cellulose
Accessible surface area of substrate refers to the surface area,
by which cellulases can contact with cellulose. In anaerobic
digestion process, it could directly affect the biodegradability
of lignocellulosic materials, which limits the contact between
lignocellulose and enzyme, microbial or chemical reagents and
result in insufficient fermentable sugars for the subsequent
process (Kratky and Jirout, 2015). Accessible surface area can
be affected by many indirect factors, e.g., epidermal feature,
particle size of raw material powder, chemical and physical
characteristics of plant cell wall (Florian et al., 2013). Accessible
surface area can be divided into two forms: interior surface
area which is determined by substrate porosity and exterior
surface area which is correlated with particle size (Zhao et al.,
2012). Generally, natural lignocellulosic substrates have very
small interior surfaces, especially for dried material (Park et al.,
2006). Arantes and Saddler (2011) have reported that cellulose
accessibility to enzymes or chemical regents is mainly through
the inside pores of substrate (about 90%) rather than the external
surface, suggesting that the external surface only plays less
important role in hydrolysis progress.
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FIGURE 1 | Process stages of the conversion of lignocellulosic biomass to biomethane. Biomethane production is a naturally occurring biological process, which can

be divided into four stages. Recalcitrance of lignocellulose restricts the hydrolysis during the first stage. Pretreatment is necessary step for biomethane production.

The positive effects of pretreatment strategies can help to facilitate the hydrolysis of lignocellulosic in the first stage (Florian et al., 2013; Hagos et al., 2016).

Lignocellulosic biomass is hydrolyzed by hydrolytic bacteria
to release saccharides for biomethane production. These
microorganisms will bind to the lignocellulose surface through
physical contact, and then secrete extracellular multi-enzyme
complexes to initiate the hydrolysis. Accessible surface area is
considered as an important factor for the biodegradability of
lignocellulosic materials and the substrate should have enough
pores for efficient hydrolysis (Karimi and Taherzadeh, 2016).
Generally, the diameter of the pore ranged from 0.2 to 20µm,
which is similar to the size of the bacteria. During the anaerobic
digestion progress, the accessible surface area will increase along
with the removal of partial cell wall component, resulting in
higher surface availability. However, enzymatic hydrolysis is
usually faster at the beginning and slower in the latter stages
(Vivekanand et al., 2014), indicating that the surface area is not
the only controlling factor for the hydrolysis. At the initial stage,
lager surface area allows sufficient contact between enzymes and
digestible amorphous cellulose, resulting in faster hydrolysis.
But in the later period of anaerobic digestion, even though
the accessible surface area is increasing, the remaining higher
crystalline cellulose and the compact structure become the main
factors which finally limit the hydrolysis efficiency (Khodaverdi
et al., 2012).

Cellulose Polymerization and Crystallinity
Degree of cellulose polymerization referring to the molecular
weight of cellulose chains is an important factor affecting
the enzymatic hydrolysis of cellulose. In the last few decades,
many methods have been developed to give more accurate

polymerization degree of cellulose (Hubbell and Ragauskas,
2010). It is known that the enzymatic hydrolysis of cellulose
is the depolymerization process of cellulose by cellulase, which
is directly related with cellulose polymerization degree. With
the prominent reduction of cellulose polymerization degree
from 247 to 151, steam explosion pretreatment yields 5–6 folds
enhancements of enzymatic saccharification (Huang et al., 2015).
Generally, more intramolecular hydrogen bond in long cellulose
chains will hinder the cellulose conversion compared to shorter
ones (Karimi and Taherzadeh, 2016). According to Waliszewska
et al. (2018), the partial cellulose with lower polymerization was
hydrolyzed preferentially in anaerobic digestion; resulting in the
increase of cellulose polymerization degree after the methane
fermentation process.

Cellulose crystallinity refers to the proportion of crystalline
region of cellulose, which generally ranges from 30 to 80%.
Hydrogen bonds and van der Waals forces are main acting forces
to form crystalline structure (Zhang et al., 2013). Cellulose chains
have different orientations, leading to three different levels of
crystallinity including crystalline, sub-crystalline and amorphous
forms. There are several crystalline and non-crystalline regions
in microfibrils, however, no obvious boundary exists between
different regions (Park et al., 2010). The crystallization zone
is characterized by the good chain orientation, compact
arrangement, high density and strong intermolecular bonding.
The non-crystalline region is characterized by the poor chains
orientation of cellulose, unordered molecular arrangement, large
distance between molecules, low density and less hydrogen
bonding between molecules (Park et al., 2010).Because of the
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TABLE 1 | Biomethane production of selected lignocellulosic biomass.

Biomass Inoculum Operation conditions Methane production References

Hydrolysis lignin (lignin

content of 80%) of Birch

wood chips

CSTRc running with food

waste and cow manure

37◦C, 90 rpm, 39 days 125mL CH4/g VS Mulat et al., 2018

Paper paste Anaerobic sludge Pretreated with cellulolytic microbial

consortium, then pH 7.3, 55◦C, 90 days

101mL CH4/g cellulose Kinet et al., 2015

Rice straw Anaerobic sludge Fungal pretreatment, then SS-AD

reactors, 37 ± 1◦C for 45 days

152∼263mL CH4/g VS Mustafa et al., 2016

Reed canary grass

(Cultivated and wild)

Sewage sludge 35 ± 1◦C, pH 7.0, 20∼40 days Cultivated: 406 ± 21;

Wild: 120 ± 16mL CH4/g

VS

Oleszek et al., 2014

Miscanthus. giganteus Mesophilic digestate 35◦C, 90 days 285∼333mL CH4/g VS Wahid et al., 2015

Miscanthus. sinensis Mesophilic digestate 35◦C, 90 days 291∼320mL CH4/g VS Wahid et al., 2015

Switchgrass (WHSa) – Different pretreatment (Gd, GAe, GAAf ),

35◦C anaerobic fermentation for 38 days

G: 112.4 ± 8.4; GA: 132.5

± 9.7; MA A:139.8mL

CH4/g VS

Frigon et al., 2011

Switchgrass (SHSb) – Different pretreatment (Cg, Mh, MAi ),

35◦C anaerobic fermentation for 36 days

C: 94.7 ± 4.4; M: 152.3 ±

1.2; MA: 256.6 ± 8.2mL

CH4/g VS

Frigon et al., 2011

Barley AD reactor digesting cattle

slurry and grass silage

37◦C, 35 days 314.8mL CH4/g VS
Himanshu et al., 2018

Wheat straw Anaerobic sludge Laccase, versatile peroxidase

pretreatment, then 37◦C anaerobic

fermentation for 30 days

250.5mL CH4/g VS Schroyen et al., 2015

Sunflower Digestate 35◦C, pH 8.1 ± 0.3, 30 days 210∼286.1mL CH4/g

ODMj
Herrmann et al., 2016

Sorghum Digestate 35◦C, pH 8.1 ± 0.3, 30 days 298.9∼311.3mL CH4/ g

ODMj
Herrmann et al., 2016

Corn straw Biogas slurry 55◦C and 5 ml/g O2 pretreatment, then

37◦C anaerobic fermentation

325.7mL CH4/g VS Fu et al., 2015

aWHS, winter harvested Switchgrass.
bSHS, summer harvested Switchgrass.
cCSTR, continuously stirred tank reactor.
dG, ground.
eGA, ground and alkalinization.
fGAA, ground, alkalinization and autoclaving.
gC, chopped.
hM, mulched.
iMA, mulched and alkalinization.
jODM, organic dry matter.

high endo-glucanase activity of cellulase with the amorphous
(non-crystalline) region, cellulose crystallinity plays noticeable
role in affecting initial hydrolysis of cellulose. The yield of
monosaccharides decreased with the increased crystallinity of
the substrate, indicating that amorphous domains are hydrolyzed
first before the hydrolysis of crystalline parts (Zhe et al., 2017).
Mirahmadi et al. (2010) found that alkaline pretreatment with
NaOH resulted in the significant reduction of crystallinity,
which improved enzymatic hydrolysis and led to 83 and 74%
improvement in methane production from birch and spruce.

In order to understand the mechanism of impacts of
cellulose crystallinity on cellulose hydrolysis, several functional
quantitative models have been designed. Jeoh et al. (2017)
pointed out that cellulose crystallinity greatly impacted the
adsorption of cellobiohydrolase Cel7A (CBHI), which resulted
in lower cellulase hydrolysis efficiency. Moreover, with constant
concentration of adsorbed enzyme, the initial enzymatic

hydrolysis rate decreased with increasing cellulose crystallinity,
which means that cellulose crystallinity can also affect the
effectiveness of adsorbed cellulase components (Hall et al., 2010).
In addition, different cellulase components showed different
capacities and activities of adsorption with various cellulose
forms (Zhang and Lynd, 2004). For example, endoglucanase I
showed greater capacity of adsorption than CBHI and its higher
crystallinity resulted in increasing adsorption of a non-hydrolytic
protein named fibril-forming protein from Trichoderma reesei
(Ding and Xu, 2004).

Cellulose is the most important component of plant cell
wall, and the negative effect of cellulose polymerization
degree and cellulose crystallinity on enzymatic hydrolysis
has been recognized as mentioned above. However, more
investigation is needed regarding the various cellulose properties
and parameters, e.g., changes of cellulose structure during
fermentation process (Waliszewska et al., 2018), the cellulase
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TABLE 2 | Biochemical composition of selected lignocellulosic biomass (w/w, %).

Biomass Cellulose Hemicellulose Lignin References

Sunflower stalk 31.0 15.6 29.2 Monlau et al., 2012

Barley straw 34.3 23.0 13.3 Saha and Cotta, 2010

Wheat straw 35.0 22.3 15.6 Boladorodríguez et al.,

2016

Miscanthus 38.2 24.3 25.1 Vrije et al., 2002

Rice straw 38.6 19.7 13.6 Zhu et al., 2005

Pine 43.3 21.5 28.3 Florian et al., 2013

Polar 44.5 22.5 19.5 Florian et al., 2013

Corn straw 45.4 22.7 10.8 Fu et al., 2015

Spruce 45.5 22.9 27.9 Florian et al., 2013

Eucalyptus 54.1 18.4 21.5 Florian et al., 2013

adsorption and desorption (Yang et al., 2011), combined effect
of cellulose and other cell wall properties (Jeoh et al., 2017).

Crosslinkages of Hemicellulose and Lignin
In contrast to cellulose, hemicellulose is a branched
polysaccharide consisting of various sugar units. Xylan, the
backbone chains of 1, 4-linked β-d-xylopyranose is the most
abundant component of hemicellulose. The matrix properties
of hemicellulose are complicated and significantly influenced
by crosslinking agents (e.g., ferulic acid), monosaccharides
characteristics and abundance of side chains (Somerville et al.,
2004; Vogel, 2008).

It is generally believed that hemicellulose can increase the
structural strength of plant cell wall and the space resistance,
resulting in decreased hydrolysis efficiency. Pretreatment can
effectively remove or dissolve lignin and hemicellulose, thereby
increase the accessibility of the cellulose to microorganisms or
enzymes (Hendriks and Zeeman, 2009). By carefully controlling
the solids retention time, methane production can be enhanced
from hemicellulose exclusively, while cellulose and lignin
are left over in the residues. For anaerobic bioconversion
of lignocellulose, hemicellulose was commonly removed
earlier which decreased the structural obstacle degree for
downstream enzymatic hydrolysis. Therefore, some result
indicated that hemicelluloses were might be a positive factor
to promote biomass digestibility by negatively affecting
lignocellulosic recalcitrance. Our previous study suggested
that the hemicellulose branch connected to the cellulose
crystalline region and construct the non-crystalline region, thus
positively reduce the crystallinity of cellulose, resulting in much
more easy hydrolysis site and higher hydrolysis efficiency of
cellulose consequently (Xu et al., 2012). Moreover, branched
arabinose (Ara) might be an important influence factor, which
could build interlinking (β-1, 4-glucans) to cellulose fibers
to decrease cellulose crystallinity, and would improve the
saccharification efficiency (Li et al., 2015). In a word, because
of the complexity of hemicellulose structure and cross-linking
between cell wall components, more research is still needed to
carefully interpret the hemicellulose properties and its effect on
methane production.

Lignin is a complex polymer of phenylpropane units that
form a three-dimensional network inside the cell wall. It is
generally considered to be the most important factor which
limiting the biodegradability of lignocellulose. Studies have
shown that 1% increase of lignin content would result in
an average reduction of 7.49 L CH4/kg total solid (Thomsen
et al., 2014). Moreover, Triolo et al. (2012) found that the
excess of lignin (>100 g/kg volatile solid) would result in
notable lower methane yield. Lignin restricts the degradation
of structural polysaccharides by hydrolytic enzymes, thereby
limiting the bioconversion of lignocellulose (Ahring et al.,
2015). Generally, two main mechanisms have been proposed
to illustrate this phenomenon. First, lignin consolidates the
cell wall structure by covalent linkages with other cell wall
components, which increases space resistance and prevents the
carbohydrate from enzymatic hydrolysis (Yuan et al., 2013). A
comparison between woody materials and grass revealed that the
higher abundant of covalent linking and the phenyl groups in
lignin result in harder digestion in wood than grass (Ververis
et al., 2004). Moreover, the lignin structural units also have
influence in biomass degradation efficiency. A previous study
reported that different contents of three lignin monolignols
(Syringyl, Guaiacyl, and p-Hydroxyphenyl), syringyl/guaiacyl
ratio and interlinked-phenolics could affect enzymatic digestion
after NaOH and H2SO4 pretreatments (Li et al., 2014).

Another influence of lignin is its adsorption capacity
to enzymes (Lu et al., 2016). Lignin can affect enzymatic
hydrolysis by non-specific or non-productive adsorption of
cellulase (Palonen et al., 2004). The adsorption of cellulase
to lignin has been mediated by three mechanism: hydrogen
bonding (Berlin et al., 2006), hydrophobic (Eriksson et al.,
2002) and electrostatic interactions (Nakagame et al., 2011).
In lignocellulose digestion progress, three types of interactions
may be involved in the non-productive adsorption of cellulases
to lignin. Most studies suggested that hydrophobic interaction
is the major cause for non-productive adsorption of enzyme
to lignin, while less attention has been paid on hydrogen
bonding and electrostatic interactions. However, until now, it is
difficult to point out which one is the dominant in the specific
reaction because of complex structure of different substrate (Saini
et al., 2016). Electrostatic action was a main factor influencing
the adsorption of endo-beta-1, 4-glucanases and xylanase onto
lignin, while hydrophobicity mainly affected the adsorption of
cellobiohydrolases and β-Glucosidase onto lignin (Lu et al.,
2016). Thermodynamic analysis of enzyme adsorption onto
lignin indicated that the adsorption was a spontaneous process
and higher temperature would accelerate the process (Tu et al.,
2009). This provides enlightenment that the enzymatic hydrolysis
should be conducted at as low temperature as possible to avoid
cellulase adsorption with lignin.

Non-structural and Other Factors
Restricting Lignocellulose Degradation
Besides physical and chemical characteristics of cell wall
as mentioned above, there are also some other factors
which may reduce lignocellulose biodegradation. For example,
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TABLE 3 | Different factors constructing biomass recalcitrance.

Factors Relative effects References

Epidermal protection The epidermal tissue of the plant body, particularly the bark, cuticle and

epicuticular waxes

Greenshields et al., 2004;

Zhao et al., 2012

Cellulose characteristic High degree of CrI and DP of cellulose, challenges for enzymes acting on

insoluble substrate

Himmel et al., 2007; Zhang

et al., 2013

Chemical compositions Heterogeneity and complexity of constituents, degree of lignification, and

complexity of chemical cross-linkages Karimi and Taherzadeh,

2016

Cell wall physical structure Arrangement and density of the vascular bundles; the relative amount of

sclerenchymatous tissue

Vogel, 2008; Zhang et al.,

2013

Process-induced causes Inhibitors are generated during conversion processes (e.g., cellulose realignment) Himmel et al., 2007

bioconversion processes may generate some additional inhibitors
or negative variation of cell wall structure. Reduction of article
size to 0.36–0.55mm and 0.71–1.0mm could achieve lower
methane yield when compared with size of 1.4–2.0mm (Rubia
et al., 2011). This result might be attributed to inhibitors
(e.g., overproduction of volatile fatty acid) and chemical
transformation generated from excessive particle size reduction.
Moreover, delignification beyond 50% might cause collapse of
cellulose matrix, resulting in compact and chaotic structure and
subsequent decrease in cellulose accessibility (Zhu et al., 2008). In
addition, the crystal structure of cellulose can be transformed. For
example, alkali extraction can transform cellulose I to cellulose
II, and cellulose II are antiparallel configuration which generally
do not exist in the natural cell wall (Zhang et al., 2013).
Such structural changes or hazardous substances caused by the
pretreatment processes are additional inhibitors to anaerobic
digestion, and should be taken into consideration as part of the
biomass recalcitrance. But compared with the native structures
and characteristics of the plant cell wall, these additional
inhibitors are by-products of the process of cracking cell wall
recalcitrance and are just minor contributors to restrict the
fermentation efficiency. In the process of biomethane production
from lignocellulose, the ideal process strategy is efficiently
breaking down the lignocellulosic recalcitrance while minimizing
the production of by-products.

STRATEGIES TO OVERCOME
RECALCITRANCE FOR HIGHER
BIOMETHANE PRODUCTION

Pretreatment prior to biomethane fermentation is an effective
method to reduce the biomass recalcitrance and increase
the accessibility in AD (Weiland, 2010). Recent years, many
studies have provided various physical, chemical or biological
pretreatments in the production of biomethane, and their major
effects are summarized in Table 4.

Physical Pretreatment of Lignocellulose
Physical (mechanical) pretreatment refers to the pretreatment
processes without chemicals or microorganisms, which includes
comminution (e.g., milling and grinding), irradiation (e.g.,
ultrasound, gamma ray, and microwave), steam explosion, liquid
hot water pretreatment and others.

Comminution is mainly used to reduce the particle size, which
increases the accessible surface area, alters the ultrastructure,
and reduces the cellulose crystallinity and polymerization
degree of cellulose for improved digestibility (Kratky and
Jirout, 2015). Generally, comminution is the most common
pretreatment method and always the first step ahead of the
whole biomethane production process. Biogas production would
be increased with the reduction of particle size. However, to
the different lignocellulose compositions of the various particle
size ranges, excessive particle size reduction may produce
inhibitors and decrease biogas production (Rubia et al., 2011).
Therefore, particle size should be carefully considered when
different lignocellulose substrate was employed. Irradiation could
preferentially dissociate the glucoside bonds of the cellulose and
degrade cellulose chains into brittle fibers, oligosaccharides, or
even cellobiose. Siddique et al. (2017) found that microwave
and ultrasonic pre-treatments on the waste sludge resulted
in supplementary 53 and 25% enhancement of biomethane,
respectively. However, some research reported that excessive
microwave pretreatment at high temperature may have adverse
effect on methane yield due to the side effect of heat-induced
inhibitors, such as phenolic compounds and furfural (Li et al.,
2012). Steam explosion has been used to treat various kinds of
lignocellulosic biomass for enhancement of methane production.
After steam explosion, hemicellulose was hydrolyzed and lignin
was reduced to a certain degree, thus resulting in degradation
of lignin-carbohydrate complexes (Zhou et al., 2016). Moreover,
steam explosion is often facilitated by additional acids, such as
6% SO2 (Vivekanand et al., 2014), diluted H2SO4 (Huang et al.,
2015), and other chemicals. Liquid hot water pretreatment can
enlarge the accessible surface area of substrate for higher cellulose
degradability to cellulase. Under high temperature and pressure,
water can penetrate into the interior of cell wall structure,
solubilize hemicellulose, slightly remove lignin and hydrate
cellulose. This method causes less corrosion to reactors and
produces little amounts of byproducts and inhibitors, thereby has
considerable potential of pentose recovery (Monlau et al., 2012;
Yu et al., 2013).

Chemical Pretreatment of Lignocellulose
Chemical pretreatment refers to the use of chemicals (e.g.,
acids, bases, oxidizing agents, organic solvents) to change
physical and chemical characteristics of native lignocellulose.
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TABLE 4 | Conventional pretreatments and notable effects.

Pretreatment Notable effects References

Grining/milling Size reduction, larger surface area and pore size, lower crystallinity Kratky and Jirout, 2015

Irradiation Cleavage of chemical bonds, lager surface area Siddique et al., 2017

Steam explosion Increase of surface area and pore size, solubilization of hemicellulose Zhou et al., 2016

Liquid hot water Lager surface area, solubilization of hemicellulose
Yu et al., 2013

Alkali Cleavage of lignin, dissolution of hemicellulose, increase of internal surface area,

reduction of polymerization

Boladorodríguez et al., 2016

Acid Hydrolysis of hemicellulose, alteration of cellulose structure, larger surface area Zhou et al., 2014

Oxidizing agents Removal of hemicellulose and lignin, increase of cellulose accessibility Florian et al., 2013

Organic solvent Solubilization of hemicellulose or lignin, larger surface area
Zheng et al., 2014

Ammonia fiber explosion Solubilization of lignin, disruption of LCC structure, increase of cellulose accessibility Huang et al., 2015; Zhou et al., 2016

Ionic liquids Solubilization of cellulose, reduction of crystallinity Xu et al., 2016; Cao et al., 2017

Fungal Delignification and partial hydrolysis of hemicellulose, alteration of LCC structure Kudanga and Roes-Hill, 2014

It has attracted the most research interest because of its higher
efficiency on decreasing the resistant characteristics for better
bioconversion performance. The positive effects of conventional
chemical pretreatments are summarized in Table 4 and
discussed below.

Acid pretreatment can prominently hydrolyze hemicellulose
to mono saccharides, which will increase the pore size or volume
of cell wall and make cellulose more susceptible to enzymatic
degradation (Zhou et al., 2014). It can also disrupt lignin
to a high degree, but only can dissolve little lignin in most
cases. Considering the cost, toxicity by-products and equipment
requirements, dilute acid is usually used for pretreatment in
practical applications (Mussoline et al., 2013). Alkali is another
popular pretreatment method. The function of alkali is believed
to be two important effects: saphonication and solvation of
lignin-carbohydrate linkages, which result in the enlargement
and decrystallization of substrates (Van der Pol et al., 2014).
The solvation can significantly remove lignin, acetyl groups
and uronic acid of hemicellulose, which disrupts the lignin
structure and breaks down the intramolecular bonds between
lignin and other components. Therefore, the effectiveness of
alkali pretreatment is associated closely with lignin content of
lignocellulosic feedstock. Compared with traditional chemicals,
ionic liquids possess some advantages of low toxicity, thermal
stability, low hydrophobicity, enhanced electrochemical stability
and so on. It has been proven to be positive on the improvement
of biofuel production (Cao et al., 2017). During the pretreatment,
ionic liquid can dissolve large amount of cellulose at mild
conditions, and it is feasible to recover almost 100% of used liquid
with high purity and leave little residues for the downstream
anaerobic fermentation. The dissolution mechanism of cellulose
in ionic liquids is the chemical interaction between its molecules
and the oxygen and hydrogen atoms of cellulose hydroxyl
groups (Xu et al., 2016). In the interaction, separation of oxygen
and hydrogen atoms results in the opening of the hydrogen
bonds between cellulose chains, which leads to the dissolution
of cellulose (Feng and Chen, 2008). Then, dissolved cellulose
can be regenerated by adding some specific chemical solvents

which can precipitate cellulose from ionic liquid, such as ethanol,
methanol, acetone, or water. The p mrecipitates have a higher
enzymatic digestibility than native cellulose due to the changes in
macro- and micro-structures. Crystallinity analysis of dissolved
lignocellulose showed that the cellulose precipitates are different
with either amorphous cellulose or cellulose II (Wahlstrom and
Suurnakki, 2015).

Biological Pretreatment of Lignocellulose
Biological pretreatment can be classified into three categories
including fungal, microbial consortium and enzymatic
pretreatment (Wei, 2016). Fungus has two specific systems
including oxidative lignolytic system which exclusively attacks
the phenyl bonds in lignin, and the hydrolytic enzyme system
which degrades cellulose and hemicellulose. This pretreatment
specifically degrades lignin, resulting in enhanced digestibility
of cellulose (Kudanga and Roes-Hill, 2014). Cellulose is
more recalcitrant to fungal attack than other components.
Degradation of lignin and hemicellulose result in increased
digestibility of cellulose, which is preferred for the following
anaerobic fermentation. Microbial consortium pretreatment is
conducted by microbes screened from natural environments
in which rotten lignocellulosic biomass is the substrate. It is
a complex microbial agent containing yeast and cellulolytic
bacteria, heat-treated sludge, clostridium thermocellum, and
mixture of fungi and composting microbes (Zhang et al., 2011).
In contrast to fungal pretreatment, microbial consortium usually
has high cellulose- and hemicellulose-degradation ability which
mainly degrade cellulose and hemicellulose. Compared with
physical and chemical pretreatment, the above two biological
methods usually conducted in mild conditions which required
far lower energy and chemicals input, and generated scarcely
any inhibitors. However, the long pretreatment time limited
the use of these processes in commercial applications. In
addition, another important issue should be considered is
that certain levels of carbohydrates are required by microbes
during biological pretreatment, which resulted the competition
between pretreatment and downstream biomethane production.
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Therefore, one major objective of biological pretreatment is to
minimize the loss of carbohydrates and maximize the lignin
removal. Enzymatic pretreatment prior to or in anaerobic
digestion usually employs pure enzymes to accelerate the
degradation of lignocellulose. The most commonly used
enzymes mainly included cellulase, hemicellulose, and lignin-
degrading enzyme, such as laccases and manganese peroxidase
(Wei, 2016). These enzymes will help to release fermentable
sugars from cellulose and hemicellulose to promote biomethane
production from lignocellulosic biomass. However, the effect
of enzymes in enhancing biogas production was minimal in
most cases, and the cost of enzymes was high (Romano et al.,
2011). Therefore, the application of enzymatic pretreatment has
been limited.

Pretreatments have been proven to decrease the recalcitrance
of native lignocellulose to obtain higher biomethane production.
Generally, every pretreatment method has its major effect on
different chemical or physical characteristics of the recalcitrance.
Such as increasing accessible surface area, reducing crystallinity
and polymerization, removing lignin content and so on (Table 4).
However, all of these have the positive effect on the accessible
area of lignocellulose. Therefore, grinding or milling is the
most common first step for all pretreatment in biomethane
production. Due to the complexity of lignocellulose chemical
structures and different fermentation processes, the selection
of pretreatment technologies must consider several factors,
e.g., the type of lignocellulosic biomass, void the formation
of by-products that are inhibitory to microorganisms, the
downstream biological conversion processes, and the cost
of pretreatment.

Cell Wall Modification and Genetically
Engineered Plants
Besides previous studies on pretreatment methods and
management of anaerobic fermentation, some researches
focusing on plant cell wall modification and even energy
crops. Recently, performance of energy crops under various
management practices has been extensively discussed elsewhere
(Knoll et al., 2015; Cole et al., 2017). There are some strategies
can be applied to modify plant cell wall in vivo, such as
modification or interference of key enzymes in the biosynthesis
pathways, expression of heterologous proteins or enzymes. These
plant cell wall artificial modification would change the native
biomass characteristics and got desired substrate (Vermerris
and Abril, 2015). Li et al. (2018) over-expressed Trichoderma
reesei β-1,4-D-glucosidasein the cell walls, and this significantly
increased biomass porosity and reduced cellulose features
(crystallinity or polymerization degree), resulting in enhanced
biomass enzymatic hydrolysis. Fan et al. (2017) demonstrated
that AtCesA8 -driven OsSUS3 expression in transgenic rice
could reduce cellulose crystallinity and increase cell wall
thickness, resulting in improved biomass saccharification.
Another report found that lasalocid sodium pretreatment
on Arabidopsis could upregulate type III peroxidase genes
and change the cellular arrangement of hypocotyls, resulting
in enhanced enzymatic saccharification (Okubo-kurihara

et al., 2016). Moreover, research about synthesis and assembly
mechanism of cellulose and hemicellulose provide great
possibility to control and alter these processes in ways that
would render the cell walls more easily. It can help to get
better hydrolysis efficiency and considerable reduction of
costly enzymes.

Compared to pretreatment, cell wall artificial modification
or genetic engineered plants has more advantages because
it does not require additional energy or chemicals input,
produces fewer toxic by-products and causes less pollution
to environment. At present, these researches have made
some progress in improvement of bioethanol production. It
is capable to create the desired breakthrough to overcome
biomass recalcitrance. However, there are very limited studies
on the changes in quality or composition of plant cell
wall of tropical energy crops. An in-depth understanding
of the precise plant cell wall structure and identification
of the key affecting factors are still needed for optimizing
the conversion of lignocellulosic biomass to biomethane in
the future.

Process Controlling and Optimization of
Anaerobic Fermentation Process
Compared to mono-digestion, co-digestion of lignocellulose
with animal feces shows significant potential for commercial
biomethane production (Giuliano et al., 2013; Wei et al.,
2014). Wang et al. (2017) reported 256.57 mL/g volatile
solids methane was produced through the co-digestion of corn
stalk and pig manure, which was increased by 17.4% than
that using corn stalk mono-digestion. The higher efficiency
of co-digestion mainly associated with process stability, e.g.,
optimal C/N ratio, ammonia reduction, and essential trace
elements, which help maintain a steady condition for better
performance of microorganisms to break down lignocellulose
recalcitrance (Siddique and Wahid, 2018). Moreover, microbial
reinforcement is another promising option to enhance enzymatic
hydrolysis of lignocellulose and improve the biogas yield.
Zhang et al. (2015) utilized 10% inoculation of Acetobacteroides
hydrogenigenes as reinforcement, and got 19–23% increase of
methane yield finally. Due to abundant enzymes (e.g., cellulase
and xylanase) and sufficient nutrient content, digested manures
have better adaptability in digesting lignocellulose for higher
biomethane production (Gu et al., 2014). There are some basic
requirements for anaerobic microorganism those degrade the
particular lignocellulose in terms of environmental conditions
and feed compositions inside the reactor (Mao et al., 2015).
Different from pretreatment and cell wall modification, process
optimization is an indirect strategy, which aims to provide
a more reasonable environment for anaerobic bacteria to
grow better and secrete more relevant enzymes to degrade
lignocellulose more efficiently. For example, thermophilic
microaerobic pretreatment (oxygen loads of 5 ml/g volatile solids
substrate) on corn straw could promote the growth of aerobic
microorganisms which secreted more hydrolytic enzymes in
the early stage of the fermentation process. These enzymes
would decrease cellulose crystallinity and cause substantial
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structural disruption of plant cell wall, which finally resulted
in 16.24% higher methane production than that of untreated
(Fu et al., 2015).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Lignocellulose substrate shows great potential for biomethane
production. Due to the inherent complicated recalcitrance of
the plant cell wall, lignocellulosic biomass cannot be efficiently
utilized during anaerobic digestion process. Generally, the direct
factor affecting hydrolysis of biomass is the accessible surface area
which is constructed by its chemical compositions that build a
spatial network as a protection barrier. It plays more important
role in reducing the initial enzymatic hydrolysis by limiting the
substrate accessibility to enzymes or chemical regents. During the
anaerobic digestion progress, accessible surface area will increase
along with the removal of partial cell wall components, resulting
in higher surface availability. Then the indirect factors such as
chemical compositions (lignin, hemicelluloses, and acetyl group),
and cellulose structure-relevant factors (cellulose crystallinity
and polymerization degree), will play more important role
in restricting the decomposition of substrate. As cross-linked
polysaccharide networks, different influencing factors are not
isolated, but closely related to each other and have synergetic
impact on bioconversion. Although much is known about the
structure of the plant cell wall and recalcitrance, there are still
some fundamental questions that need further investigation,
especially for the decomposition process in anaerobic digestion.

In the view of current knowledge, current strategies have
positive contribution to improve biomethane production from
lignocellulose. Pretreatment is still the most effective way to
overcome the biomass recalcitrance, and selection of proper
pretreatment method is very crucial for commercial biomethane
production. However, high energy input and cost requirements

of decomposing biomass recalcitrance are the main limitations.
Cost-effective production of biomethane from lignocellulosic

feedstocks depends much on significant improvement in both
biomass quality and conversion efficiency. So, further studies
should focus much more on investigating the relationship
between the precise structure of cell wall recalcitrance and the
key factor affecting the anaerobic digestion progress, which will
be used to explore new methods to improve the biomethane
production. Recently, some researches indicated that plant cell
wall modification and artificial energy croup are fascinating
strategies, which can improve quality, quantity and digestibility
of traditional biomass material. With the development of
biotechnology, transgenic plant may will be frequently applied in
the anaerobic digestion system for biomethane production.
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