
ORIGINAL RESEARCH
published: 23 August 2019

doi: 10.3389/fbioe.2019.00199

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 August 2019 | Volume 7 | Article 199

Edited by:

Veronica Cimolin,

Politecnico di Milano, Italy

Reviewed by:

Paulo Roberto Garcia Lucareli,

University Ninth of July, Brazil

Nicola Francesco Lopomo,

University of Brescia, Italy

*Correspondence:

Luke A. Kelly

l.kelly3@uq.edu.au

Specialty section:

This article was submitted to

Biomechanics,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 23 May 2019

Accepted: 05 August 2019

Published: 23 August 2019

Citation:

Kessler SE, Rainbow MJ,

Lichtwark GA, Cresswell AG,

D’Andrea SE, Konow N and Kelly LA

(2019) A Direct Comparison of

Biplanar Videoradiography and Optical

Motion Capture for Foot and

Ankle Kinematics.

Front. Bioeng. Biotechnol. 7:199.

doi: 10.3389/fbioe.2019.00199

A Direct Comparison of Biplanar
Videoradiography and Optical Motion
Capture for Foot and Ankle
Kinematics
Sarah E. Kessler 1, Michael J. Rainbow 2, Glen A. Lichtwark 1, Andrew G. Cresswell 1,

Susan E. D’Andrea 3,4,5, Nicolai Konow 6 and Luke A. Kelly 1*

1Centre of Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland,

Brisbane, QLD, Australia, 2 Skeletal Observation Laboratory, Department of Mechanical and Materials Engineering, Queen’s

University, Kingston, ON, Canada, 3Department of Orthopaedics, Brown University, Providence, RI, United States,
4Department of Kinesiology, University of Rhode Island, Kingston, RI, United States, 5 Providence VA Medical Center,

Providence, RI, United States, 6Department of Biological Science, University of Massachusetts, Lowell, MA, United States

Measuringmotion of the human foot presents a unique challenge due to the large number

of closely packed bones with congruent articulating surfaces. Optical motion capture

(OMC) and multi-segment models can be used to infer foot motion, but might be affected

by soft tissue artifact (STA). Biplanar videoradiography (BVR) is a relatively new tool that

allows direct, non-invasive measurement of bone motion using high-speed, dynamic

x-ray images to track individual bones. It is unknown whether OMC and BVR can be

used interchangeably to analyse multi-segment foot motion. Therefore, the aim of this

study was to determine the agreement in kinematic measures of dynamic activities.

Nine healthy participants performed three walking and three running trials while BVR

was recorded with synchronous OMC. Bone position and orientation was determined

throughmanual scientific-rotoscoping. The OMC and BVR kinematics were co-registered

to the same coordinate system, and BVR tracking was used to create virtual markers

for comparison to OMC during dynamic trials. Root mean square (RMS) differences

in marker positions and joint angles as well as a linear fit method (LFM) was used to

compare the outputs of both methods. When comparing BVR and OMC, sagittal plane

angles were in good agreement (ankle: R2 = 0.947, 0.939; Medial Longitudinal Arch

(MLA) Angle: R2 = 0.713, 0.703, walking and running, respectively). When examining

the ankle, there was a moderate agreement between the systems in the frontal plane (R2

= 0.322, 0.452, walking and running, respectively), with a weak to moderate correlation

for the transverse plane (R2 = 0.178, 0.326, walking and running, respectively). However,

root mean squared error (RMSE) showed angular errors ranging from 1.06 to 8.31◦

across the planes (frontal: 3.57◦, 3.67◦, transverse: 4.28◦, 4.70◦, sagittal: 2.45◦, 2.67◦,

walking and running, respectively). Root mean square (RMS) differences between OMC

and BVR marker trajectories were task dependent with the largest differences in the

shank (6.0 ± 2.01mm) for running, and metatarsals (3.97 ± 0.81mm) for walking.

Based on the results, we suggest BVR and OMC provide comparable solutions to foot

motion in the sagittal plane, however, interpretations of out-of-plane movement should

be made carefully.
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INTRODUCTION

The human foot is a complex anatomical structure, with 26
bones, and 33 articulating surfaces. Measurements of foot motion
are complicated by the small size of many of the foot-bones as
well as the complexity of their articular structures. Difficulties
associated with accurately measuring foot motion have limited
advancements in diagnosis and treatment of common foot
pathologies. An accurate understanding of foot motion is crucial
not only for the treatment of common pathologies, but for
the advancement of research that aims to expand our current
understanding of the foot.

Multi-segment foot models have become increasingly popular
for describing foot motion during human walking or running
(Leardini et al., 1999; Stebbins et al., 2006; Bruening et al., 2012;
Kelly et al., 2014). Thesemodels divide the foot intomultiple rigid
segments to measure the motion of generalized foot regions, such
as the calcaneus, mid-foot (cuneiforms, cuboid, and navicular),
and metatarsals (Leardini et al., 1999; Oosterwaal et al., 2016).
While dividing the foot into various segments allows for the
estimation of movement of foot-bones that cannot be easily
measured, this approach requires a number of assumptions that
may lead to inaccuracies in kinematic, and kinetic measures
(Nester et al., 2007; Zelik and Honert, 2018). The source of the
inaccuracies is potentially 2-fold: the models do not account for
individual bone-to-bone articulations (Leardini et al., 2007) and
therefore may violate rigid-body assumptions, and the marker
positions are prone to errors caused by soft-tissue artifact (STA)
(Lundgren et al., 2008; Akbarshahi et al., 2010). Despite the
limitations, multi-segment foot models are widely used due to the
fact they are relatively straightforward to implement, withmarker
placements being reliable, and repeatable between operators
(Simon et al., 2006; Stebbins et al., 2006; Caravaggi et al., 2011;
Wright et al., 2011), and data collection and processing times
being not overly arduous.

Biplanar videoradiography (BVR) has emerged as a viable
tool to capture in-vivo foot-bone motion. This approach maps
the position and orientation (pose) of three-dimensional (3D)
bone models with two or more synchronized and calibrated x-
ray image sequences of dynamic motions (Tashman and Anderst,
2003; Brainerd et al., 2010; Miranda et al., 2011, 2013). The
mapping of 3D bones can be performed via two approaches:
manual markerless tracking, or automatic tracking of implanted
tantalum beads (Miranda et al., 2011, 2013). Tracking three-
dimensional motion of tantalum beads using BVR is considered
the gold standard for motion capture (Miranda et al., 2011),
however given its invasive nature this approach is very difficult to
evaluate across multiple individuals and hence is not considered
here. Manual tracking approaches are slightly less accurate and
can have translational errors ranging from 0.25 to 0.30mm
(Miranda et al., 2011) and rotational errors of 0.3 to 0.44◦

(Miranda et al., 2011). It is important to note, however, the
methodologies applied in these studies are not susceptible to
errors caused by bone occlusion, as tracking was performed
on isolated bones (Miranda et al., 2011; Iaquinto et al., 2014).
Therefore, it is possible the errors associated with manually-
tracking dynamic, in-vivo BVR are higher than reported in

current literature. While BVR provides an opportunity to study
foot-bone motion during locomotion without the limitations of
STA and rigid-body assumptions, it is not without its limitations,
including: time intensive data processing (Miranda et al., 2011),
a small field of view, the use of ionizing radiation, as well as the
potential for operator-tracking errors (Anderst et al., 2009).

Both OMC and BVR may play an important role in assessing
foot function; whether used in isolation or potentially used in
tandem to overcome each other’s limitations. However, before
we can compare results from each system or use them in
tandem to inform foot motion, we must first determine the
convergent validity of the two systems. We must establish if
kinematic measures of foot and ankle motion from OMC and
BVR provide similar estimates of foot kinematics, or whether
systematic differences might exist between the two technologies.
Therefore, the aim of this study was to quantify the agreement
between measures of ankle and medial longitudinal arch (MLA)
motion using OMC and BVR. To compare systems, we created
virtual motion capture markers using the manually-tracked (via
scientific rotoscoping) bones of the foot from BVR. The virtual
markers were then compared to their corresponding OMC
markers, allowing for a direct comparison between the systems
and an opportunity to assess the convergent validity of the
systems. We hypothesized that the two systems, OMC and BVR,
would produce similar ankle, and foot kinematics through the
stance phase. However, small differences may emerge between
individual marker trajectories from the two systems due to STA
or manual BVR tracking errors.

METHODS

Participants
Nine healthy participants originally volunteered to participate in
the study (n= 9; males: 6, females: 3; height: 174± 8 cm; weight:
77 ± 13 kg). Participants were excluded if they had a history
of lower limb injury or cardiovascular disease. Each participant
read and completed an ethics approved consent form. The
experimental protocols were approved in accordance with the
ethical review guidelines at the University of Queensland (Ethics
Approval Number: 2015000955) and the Providence Medical
Center (Ethics Approval Number: NP52015022AP7815).

Participants were provided as much time as they required to
familiarize themselves with walking and running along a raised
walkway (height: 0.6m) in the laboratory (Figure 1). They were
instructed to performwalking and running trials at a self-selected
pace, with the starting position on the walkway designated to
ensure that each participant’s right heel landed in the middle of
the x-ray collection space without altering their natural gait. A
maximum of three walking trials and three running trials were
collected per participant. If a participant’s foot did not land in
the x-ray capture space during a walking or running trial, data
from that trial was discarded from the analysis. Data analysis
was performed on seven of the nine healthy participants (five
males, two female), with two participant’s data not analyzed due
to issues arising with data reconstruction. In total, 17 walking and
14 running trials were analyzed.
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FIGURE 1 | Schematic depiction of the laboratory set up. The two x-ray

sources were set at a 130◦ angle ipsilateral to each other. The intensifiers were

stationed as close to the translucent Dragon Plate (AllRed and Associates,

Elbridge, USA) as possible while maintaining visibility of the foot. The entire

platform was evenly raised 0.60m from the ground. Eight OMC cameras were

stationed around the collection space to optimize viewing of the foot markers.

Data Collection
14 retro-reflective markers were placed on anatomical landmarks
on the participant’s right foot and shank, in accordance with
a previously described multi-segment foot model (Figure 2;
Leardini et al., 2007). 3-Dimensional (3D) marker positions
were captured using an OMC system (Qualysis Track Manager,
Qualysis AB, Gothenburg, SWE) sampled at 250 Hz.

A high-speed, BVR method was used to simultaneously
record x-ray images of the foot across a capture volume that
was in the middle of the OMC space. The BVR system, X-
ray Reconstruction of Moving Morphology (XROMM), has
been previously documented by Brainerd et al. (2010) and
Knorlein et al. (2016) for validation of beaded tracking. This
BVR method consisted of two x-ray transmitters paired with
two x-ray receivers that were coupled to high-speed cameras.
The transmitters emitted x-rays using an exposure of 75 kVp
and 100mA. Lateral-oblique views were obtained by setting the
imaging planes at 130◦ relative to each other about a global
vertical axis. A carbon fiber plate (Dragon Plate, AllRed and
Associates, Elbridge, USA) was placed in the middle of the
capture volume, which allowed for enhanced bone visibility in
the x-ray images. Participants landed with their right foot on
the plate during each trial. The high-speed camera captured
the x-ray images at 250Hz. BVR data collection was manually
triggered just prior to the participant’s right foot entering the data
collection space and was terminated when the participant’s foot

FIGURE 2 | Optical motion capture (OMC) marker placement was performed

in accordance with the Rizzoli model (Leardini et al., 2007). Markers are listed

in order from proximal to distal, and numbered, to assist with identification.

Tibial Markers (Magenta): (1) Lateral Shank (LtS), (2) Medial Shank (MdS), (3)

Distal Shank (Shk). Calcaneal Markers (Green): (4) Superior Calcaneal Ridge,

(5) Inferior Calcaneal Ridge (ICR), (6) Sustentaculum Tali (ST), (7) Peroneal

Tubercle. Navicular Marker (Blue): (8) Navicular (TN). Metatarsal Markers

(Purple): (9) First Metatarsal Base (FMB), (10) Second Metatarsal Base (SMB),

(11) Fifth Metatarsal Base (VMB), (12) First Metatarsal Head (FMH), (13)

Second Metatarsal Head (SMH), (14) Fifth Metatarsal Head (VMH).

was no longer in the field of view. A synchronization signal from
the x-ray system was used to trigger the start of the OMC system,
which was recorded with a 0.5 s pre-trigger, and a trial duration
of 3.0 s.

Computed Tomography (CT)
A computed tomography (CT) scan of each participant’s right
foot was captured with the participant lying prone with the ankle
in a plantarflexed orientation (average resolution: 0.419mm ×

0.419mm × 0.625mm, LightSpeed 16, GE Medical Systems,
USA). This orientation was chosen to improve the in-plane
resolution which aids in the segmentation process. Foot position
was maintained during the scan via a custom-made foam
support. Two participants received CT scans at a different
imaging location (for convenience) and therefore had a different
CT protocol (resolution: 0.488mm × 0.488mm × 0.312mm,
OptimaCT 660, LightSpeed CT, GEMedical Systems, USA). Each
bone of the foot was segmented using Mimics17 (Materialize,
Leuven, Belgium). The segmentation provided a tessellated 3D
surface mesh, as well as, a 3D partial volume for each bone
of interest.

Data Processing
Motion Capture Data
The OMC markers were digitized using proprietary software
(Qualysis Track Manager, Qualysis AB, Gothenburg, SWE), and
exported to Matlab (R2016b, Mathworks, Nattick, USA). The
data was filtered using a dual low-pass second order Butterworth
filter with a cut-off frequency of 10Hz. A custom-written
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software program was applied to determine heel-strike and toe-
off by differentiating the coordinates of the inferior calcaneal
ridge marker (ICR) to provide vertical marker velocity. In cases
where the ICR marker was occluded, the superior calcaneal ridge
marker (SCR) was used. The minimum velocity signified heel-
strike and the maximum velocity signified toe-off (Ghoussayni
et al., 2004).

Biplanar Videoradiography Data
Images obtained with BVR are subject to distortion when x-ray
beams are transformed into visible images (Tersi and Stagni,
2014). To correct for the distortion, an x-ray image was collected
with an “un-distortion” grid (Brainerd et al., 2010). The grid
consisted of a perforated piece of sheet metal with known size and
spacing of each hole (Brainerd et al., 2010). A software program,
XMALab, previously described by Knorlein et al. (2016), used
a distortion-correcting algorithm to correct for any changes to
spacing or size of the holes in the perforated grid (XMALab,
Brown University, RI, USA).

The calibration of the BVR system has been previously
documented (Knorlein et al., 2016). Briefly, a custom calibration
cube was used to calibrate the 3D volume of the BVR system.
The cube consisted of four sheets of plexiglass separated by nylon
tubes. Each layer of plexiglass had 16 holes equally spaced apart
with 3mm radio-opaque beads placed in each hole. To orient
the cube, there were four metal objects placed inside the levels of
plexiglass with their exact location known. Images were taken of
the cube. XMALab determined the locations of the radio-opaque
beads within the field of view in the cube images and computed
the camera calibration matrices (Brainerd et al., 2010; Knorlein
et al., 2016).

The calibration, undistorted x-ray images, and partial volumes
for the bones of interest were imported into Autoscoper, a
previously-described software for 3D markerless bone tracking
(Miranda et al., 2011). The position and orientation of each bone
was determined via scientific rotoscoping (Gatesy et al., 2010).
Scientific rotoscoping is a process by which the 3D partial volume
of the bone of interest is virtually placed in the BVR volume
and a digitally reconstructed radiograph (DRR) is computed
by simulating x-rays from the calibrated sources. The DRR is
projected onto the x-ray image sequences and the partial volume
is rotated and translated until the two DRRs (one for each x-ray
image) match the captured x-ray images (Figure 3). This process
yields six-degree-of-freedom transformation matrices that move
each bone from the CT-based global coordinate system to the
BVR-based global coordinate system. After the initial manual
guess, the position and orientation of the bone was optimized by
minimizing the normalized cross-correlation between the DRRs
and the x-ray images across both views using a downhill simplex
algorithm. This process was repeated every 10 frames and the
remaining frames were interpolated using a quaternion spline.
If the DRR for an optimized frame was misaligned, the bone
was manually retracked to correct the placement, and the spline
was recomputed. All tracking was performed on one bone at a
time for as much of the stance phase that the bone was visible in
both cameras. The transformation matrices were then converted
to quaternions and filtered using a dual low-pass second order

Butterworth filter with a cut off frequency of 10Hz in Matlab
(R2016b, Mathworks, Natick, USA). Using the same gait events,
determined by theOMCheel-strike detection algorithm, the BVR
data was isolated from heel-strike to toe-off, and interpolated to
101 points. If the bone could not be tracked at any point from
heel-strike to toe-off due to lack of visibility, the non-tracked
frames were not used in subsequent analyses.

Synchronization of Technologies
A synchronization test was used to determine discrepancies in
sampling frequency between OMC and BVR. The test required
dropping a retro-reflective marker into the capture volume and
simultaneously recording OMC and BVR. This task was repeated
five times. The marker was digitized in Qualysis, as well as,
XMALab. The two technologies were aligned when the vertical
coordinate (Z-coordinate) of the marker was at its minimum in
both data sets (indicating impact). As a result, we determined
there to be a slight time offset and, as such, OMC was down
sampled to 99% of the original sample frequency to match the
BVR data.

Co-registration and Creation of Virtual Markers
The OMC and BVR datasets were transformed into the same
coordinate system, using a co-registration procedure (Miranda
et al., 2013). A custom-built calibration object with 11 steel beads
placed at the center of spherical retro-reflective markers was
simultaneously captured by both the OMC and BVR systems.
A minimum of three non-collinear markers were used to find
the least squares fit to create a rigid-body transformation matrix
(Soderkvist and Wedin, 1993). The resultant transformation
matrix was used to transform the BVR data from the x-ray
coordinate system into the OMC coordinate system.

The scientifically rotoscoped BVR data was then used to create
virtual markers on each bone, aligned to the location of the skin-
mounted markers in a static standing trial. The virtual markers
were expressed in the reference frame of their parent bone, such
that the 3D position could be calculated based on the movement
of the scientifically rotoscoped bone. The 3D position of the BVR
markers were then compared to the OMC markers in the same
coordinate system.

Data Analysis
Ankle Angle and Medial Longitudinal Arch Angle

Calculations
Optical (OMC) and virtual (BVR) marker data was used to
measure ankle angle (motion of the calcaneus relative to the
shank) and MLA angle (sagittal plane: motion of the first
metatarsal head relative to the calcaneus) to directly compare
the angles measured by the two systems. All segments were
created based on a previously described Rizzoli multi-segment
foot model (Leardini et al., 2007). Rotations about the ankle
were examined across all three planes and defined in accordance
with the recommendations of the International Society of
Biomechanics: sagittal plane (z-axis rotations), frontal plane (x-
axis rotations), and transverse plane (y-axis rotations) (Wu and
Cavanagh, 1995; Sinclair et al., 2012, 2013).
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FIGURE 3 | Scientific Rotoscoping: Depiction of the manual alignment of the calcaneus just prior to toe off. Each bone is aligned with the bony landmarks visible on

the x-ray images in both cameras (camera 1, left and camera 2, right). Once the 3D bone is simultaneously aligned within both camera 1 and camera 2, it is

considered “tracked” for that frame.

MLA angle was calculated using the vectors formed by
the inferior calcaneal ridge to sustentaculum tali and the

sustentaculum tali to first metatarsal head, (∢
−−−−→
ICR ST;

−−−−−→
ST FMH).

The angle between the vectors was projected onto the plane
orthogonal to the plane of the foot. The plane of the foot was
established using the sustentaculum tali to the first metatarsal
head markers to define the “x” axis, and the sustentaculum tali
to the peroneal tubercle markers were deemed the “y” axis.

Ankle angle andMLA angle were only averaged across periods
where bones were tracked for all trials. This resulted in ankle
angle and MLA angle being processed from 11% of stance
through to 75% of stance for all trials.

Marker Trajectory Differences
The root mean square (RMS) difference in 3D position between
virtual markers created from BVR measurements and the OMC
marker positions was calculated during the stance phase of each
walking and running trial.

RMS =

√

mean((OMC − BVR)
2)

The RMS equation was then used for each individual plane to
provide directional differences of marker trajectories in each
axis in the global coordinate system (X—anterior-posterior, Y—
medial-lateral, Z—superior-inferior).

As the capture volume for BVR was only slightly larger than
the foot, the entire stance phase (e.g., foot contact to toe-off)
was sometimes not captured, with a small period of data missing
either at the beginning or end of stance. To mitigate this issue,
walking and running trials were only analyzed from the first time
point where tracking was present across all trials, and analysis
concluded at the final time point where tracking was present for
all trials, for each individual participant. This process provided
an average RMS difference across stance per marker for walking
and running for each participant.

Statistics
To quantify the agreement between ankle andMLA angles output
by BVR and OMC, we used two statistical methods: a linear
fit model (LFM) and a root mean squared error (RMSE). (A
visualization of the LFM of one participant’s data is represented
in Supplementary Figures 3, 4). The use of LFM to compare
kinematics has been well-documented by Iosa and Cappozzo
as a reliable, sensitive and specific means of comparing gait
waveforms (Iosa et al., 2014). The LFM assesses waveform
similarities via a strength of linear fit (R2), offsets or shifts (a0),
and variation of one wave relative to another (a1) (Iosa et al.,
2014). If the two systems were to produce identical waveforms,
we would anticipate the following values: R2 = 1, a0 = 0, and
a1 = 1, RMSE = 0.0◦. R2 relationships range from 0.0 to 1.0
(no relationship = 0.0 to 0.3, weak = 0.3 to 0.5, moderate =

0.5 to 0.7, and strong = 0.7 to 1.0) (Zikmund, 2000; Mukaka,
2012). Kinematic waveforms were compared from 11% of stance
through to 75% of stance for all trials.

A Shapiro-Wilk Test of Normality was performed to
determine normality of the distribution of the RMS differences
in marker trajectories. RMS trajectory differences (walking and
running) and marker trajectory directional differences (walking
and running) were not normally distributed (P ≤ 0.05). As such,
a non-parametric t-test was used to compare RMS differences in
marker trajectories in walking and running. A non-parametric
Kruskal-Wallis test was used to determine the significance
of directional differences in marker trajectories in walking
and running.

RESULTS

Ankle Angle
Group mean ankle angle during the stance phase for walking and
running is presented for all three anatomical planes in Figure 4

(individual participant data is shown in Supplemental Figure 1).
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The LFM of ankle angles produced using OMC and BVR
varied between anatomical planes and ranged from weak (0.178)
to strong (0.947) (Table 1). The weakest LFM fit was found
in the transverse plane for both walking and running (R2 =

0.178, range: 0.02–0.50, walking; R2 = 0.326; range: 0.04–0.58,
running). Sagittal plane angles demonstrated the strongest R2

fit within the LFM (R2 = 0.947, range: 0.9–0.98, walking; R2

= 0.939, range: 0.87–0.99, running). When examining potential
offset or phasic shifts of the waveforms produced by the two
systems, no clear pattern emerges, with seemingly random offset
values ranging from−4.7 to 9.0◦.

The RMSE, a measure of 3D differences between ankle angles,
produced the smallest difference in the sagittal plane for walking
and running (2.45 and 2.67◦, walking and running, respectively).

The largest RMSE differences were in the transverse plane for
both walking and running (4.28 and 4.70◦, respectively).

MLA Angle
Group mean MLA angle during stance phase is presented
in Figure 5 (individual participant data is shown in
Supplemental Figure 2). The LFM for the MLA angle produced
by OMC and BVR displayed moderate-to-strong similarity
(R2 = 0.672 and 0.719, for walking and running, respectively)
(Table 1). The offset for MLA angle during running trials
displayed considerable variability (range: −4.09 to 4.45◦).
However, for walking trials the MLA angle offset was less variable
(range: 0.11 to 2.52◦).

FIGURE 4 | Ankle Angle Group Means: The group mean ankle angle across stance with the first column showing walking data, and the second column representing

running data. The y-axes represent the three rotations (Inversion/Eversion, Abduction/Adduction, and Plantarflexion/Dorsiflexion), and the x-axes represent percent of

stance. The optical motion capture (OMC) ankle angle ± 1 SD is represented in teal while the biplanar videoradiography (BVR) ankle angle ± 1 SD is displayed in light

purple.
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TABLE 1 | Waveform analysis of ankle angle and Medial Longitudinal Arch (MLA) angle produced by optical motion capture (OMC) and biplanar videoradiography (BVR)

using a linear fit model (LFM) and root mean squared error (RMSE).

LFM

R2
LFM

a0 (◦)

LFM

a1 (slope)

RMSE

(◦)

WALKING

Ankle

Inversion/Eversion: 0.322 (0.16, 0.47) 5.491◦ (3.28◦, 8.53◦) 0.079 (−0.66, 0.38) 3.574◦ (1.51, 5.16)

Abduction/Adduction: 0.178 (0.02, 0.50) 4.234◦ (−0.23◦, 6.60◦) 0.212 (−0.01, 0.81) 4.281◦ (2.21, 6.29)

Plantarflexion/Dorsiflexion: 0.947 (0.9, 0.98) –0.175◦ (−3.89◦, 3.58◦) 1.146 (1.03, 1.39) 2.446◦ (1.05, 4.22)

MLA

Angle: 0.719 (0.58, 0.80) 1.60◦ (0.11◦, 2.52◦) 0.538 (0.37,0.80) 2.463◦ (1.12◦, 3.94◦)

RUNNING

Ankle

Inversion/Eversion: 0.452 (0.02, 0.90) 4.539◦ (−2.30◦, 8.96◦) 0.403 (−0.28, 0.75) 3.668◦ (1.46◦, 5.49◦)

Abduction/Adduction: 0.326 (0.04, 0.58) 5.500◦ (0.90◦, 8.77◦) 0.266 (−0.15, 0.57) 4.704◦ (2.57◦, 8.31◦)

Plantarflexion/Dorsiflexion: 0.939 (0.87, 0.99) 0.825◦ (−4.67◦, 4.60◦) 0.915 (0.82, 1.07) 2.670◦ (1.06◦, 4.17◦)

MLA

Angle: 0.672 (0.54, 0.82) 1.894◦ (−4.09◦, 4.45◦) 0.844 (0.68, 1.26) 2.927 (2.27◦, 3.92◦)

The results compare waveforms across stance for 17 walking trials and 14 running trials. R2 represents the correlation between the waveforms, a0 represents an offset or shift between

the data, a1 represents the variation of the datasets. RMSE represents the difference in 3D space between the angles. Bold values represent the group mean, while parenthetical values

represent the range.

Marker Trajectory Differences
The group mean RMS differences in trajectories between OMC
and BVR are shown for each marker in Table 2. The RMS
differences between OMC and BVR markers were significantly
larger when running compared to walking (P < 0.001). The
shank and first metatarsal possessed the greatest RMS differences
(shank: 3.35mm and 6.00mm, first metatarsal: 3.97mm and
4.55mm walking and running, respectively). The navicular (3.04
and 3.79mm, walking and running, respectively) and calcaneus
(2.99 and 3.93mm, walking and running, respectively) were
found to have the smallest RMS difference between modalities.

The group mean marker trajectory directional differences
are shown in Table 2. When separating the RMS differences
into directional components, there was no significant difference
between the XYZ components during walking (P = 0.73).
The RMS difference was significantly different between the
XYZ components when running (P ≤ 0.05), with the largest
differences observed in the medial-lateral direction and the
smallest differences in the anterior-posterior direction.

DISCUSSION

We created an approach to directly, and non-invasively, compare
footmotionmeasurements based on trajectories of skin-mounted
markers (OMC) and trajectories of the same markers, virtually
attached to the underlying bones (BVR). As hypothesized, we
observed differences between the skin-mounted and virtual
marker trajectories for all markers, with the magnitude of
difference varying with each bone. We observed relatively small
absolute differences in joint angles produced by the two systems
across all planes of motion. The angles produced in the primary
plane of motion (sagittal plane) for the ankle and MLA displayed
strong agreement for both walking and running, however where

FIGURE 5 | Group mean (± 1 SD) medial longitudinal arch (MLA) angle during

stance phase for walking and running: optical motion capture (OMC) MLA

angle (teal) and biplanar videoradiography (BVR) MLA angle (light purple). The

y-axis represents MLA normalized to MLA at static. The x-axis represents

percent of stance. General patterns of motion appear similar despite an offset

in initial angle.

there was little overall motion (e.g., ankle transverse plane) the
agreement in waveforms was weaker. Our data suggests that
the two motion capture technologies produce similar kinematic
outputs during walking and running in the sagittal plane, while
other planes show larger relative differences.

Ankle and Medial Longitudinal Arch Motion
The primary purpose of this study was to determine if measures
of ankle and MLA motion were in agreement when quantified
using two different motion capture technologies. Our data
suggests that the plane in which angular rotations are measured
has a large influence on the similarity of angular outputs
produced from the OMC and BVR systems. Sagittal plane angles
were found to have a strong level of agreement, in the absence
of specific offsets in amplitude or phase shifts. Conversely, angles
produced at the ankle in the frontal plane and transverse plane
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TABLE 2 | Root Mean Squared (RMS) differences in marker trajectories (± 1SD) produced by optical motion capture (OMC) and biplanar videoradiography (BVR) with

differences expressed in millimeters (mm).

Marker Walking Running

RMS ± 1SD (mm) Directional differences (mm) RMS ± 1SD (mm) Directional differences (mm)

X Y Z X Y Z

SCR 3.60 ± 1.47 2.94 3.18 2.59 4.21 ± 1.34 4.22 3.11 3.4

ICR 2.86 ± 1.06 2.14 2.65 1.9 3.92 ± 0.91 3.39 2.62 3.93

ST 2.74 ± 0.73 3.2 1.93 2.06 3.79 ± 0.78 3.73 2.46 3.51

PT 2.70 ± 1.11 3.03 1.37 2.33 3.96 ± 1.44 3.94 1.88 4.12

TN 3.04 ± 0.69 3.32 1.91 2.76 3.79 ± 0.82 3.51 1.91 4.32

FMB 4.02 ± 0.69 2.92 3.87 3.78 4.78 ± 1.12 3.93 4.14 4.5

FMH 3.93 ± 0.98 3.53 3.42 3.37 4.33 ± 1.35 3.54 2.96 4.77

LtS 3.72 ± 1.82 3.58 3.95 1.83 6.21 ± 1.97 8.12 3.71 3.71

MdS 3.72 ± 1.60 3.39 4.1 1.59 6.54 ± 2.26 8.01 3.91 4.46

ShK 2.62 ± 1.31 2.64 2.58 1.29 5.27 ± 1.86 6.37 2.44 4.26

Marker Trajectory acronyms are as follows: Calcaneal Markers - superior calcaneal ridge (SCR), inferior calcaneal ridge (ICR), sustentaculum tali (ST), peroneal tubercle (PT). Midfoot

Marker: Navicular (TN). Metatarsal Markers: first metatarsal base (FMB), first metatarsal head (FMH). Shank Markers: lateral shank (LTS), medial shank (MdS), distal shank (ShK). For

marker placement reference, please refer to Figure 2.

displayed weak to moderate levels of shape similarity and a
wide range of a0/a1 values, suggesting that these waveforms
vary in both shape, magnitude and offset. Furthermore, given
the variance of angle offset values, and lack of trend, it is likely
the difference between the systems is movement dependent and
participant specific.

It is important to note that the absolute differences in angles
produced by the two systems was rather consistent across all
planes (mean RMSE of 2.45–4.70◦). This suggests that the small
range of motion of the ankle in the frontal and transverse planes
is a contributing factor to the reduced agreement in waveforms
in these planes. For example, small fluctuations in angles arising
from STA or bone alignment error, may have a larger influence on
the overall waveform for the transverse plane, but not the sagittal,
due to the much greater range of motion in the sagittal plane.
Therefore, the overall foot posture is in good agreement between
OMC and BVR.

The angle produced at the MLA was also generally similar
in magnitude between the two technologies. The R2 for walking
and running suggests a strong correlation between MLA angles
assessed using OMC and BVR. Interestingly, for walking, the
Y-intercept was positive for 90% of the trials. This would be
indicative of a smaller MLA angle at 11% of stance when
measured with BVR. It is possible that the smaller MLA angle
measured by BVR may be a result of the deformation of the
heel pad, which has been shown to deform between 10 and
12mm (De Clercq et al., 1994; Wearing et al., 2009). This
compression of the heel pad has been shown to occur rapidly,
in the first 50ms following heel strike. It is likely given the
magnitude and the rate of change, this compression of the
heel pad is otherwise indistinguishable using motion capture
(De Clercq et al., 1994) and resulting in an overestimation of
MLA immediately following heel strike.

Marker Trajectory Differences
RMS differences between the two measurement methods were
task dependent, with differences being slightly higher for running

compared to walking (mean RMS: 3.29 ± 0.55, 4.68 ± 1.01mm,
walking and running, respectively). In both walking and running,
the larger errors were seen in the shank markers. It is likely
the larger magnitude of trajectory differences in the shank
is attributable to greater soft tissue mass and the associated
movement of the skin mounted marker relative to the leg. On
average RMS differences reported here are slightly lower than
current literature values obtained from bone pin studies, that
report STA errors ranging from 10 to 27mm (Benoit et al., 2006;
Akbarshahi et al., 2010). Potentially, the current literature values
have resulted in higher STA errors due to the use of bone-pins,
which have been suggested to sustain vibrations or bending when
a participant walks or runs (Ramsey et al., 2003). Thus, the
bone-pins themselves could be responsible for registering higher
STA error.

The magnitude of planar differences for marker trajectories
were also task dependent. Walking produced the largest errors
in the anteroposterior direction whereas the smallest were found
for the superoinferior direction. Conversely, in running, the
greatest errors were observed in the anteroposterior plane and
the smallest errors were in themediolateral plane. Themagnitude
observed in directional differences for walking is consistent with
the single-plane videoradiography data computed by Akbarshahi
et al. (2010). While the general pattern of directional differences
in our data are similar to those of Akbarshahi et al. (2010), the
magnitude of difference in our data is noticeably smaller. These
differences are most likely due to the Akbarshahi study using a
single plane approach, which the authors cited as introducing
rotoscoping errors up to 3mm (Akbarshahi et al., 2010). While
the planar differences for all marker trajectories occurred in
all directions, it is important to note the magnitude of these
differences are minimal (average: 2.35–4.87 mm).

Implications for Future Research
Comparing in-vivo bone-motion to bone-motion estimated from
OMC presents a unique insight into foot biomechanics. Our data
demonstrates that OMC and BVR produce similar results for
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standard gait analysis, particularly in the sagittal plane during
the period of stance analyzed (11–75%). These results suggest
that BVR and OMC can equally be used to inform sagittal plane
motion of current foot models. BVR provides advantages in being
able to directly quantify motion of joints that have bones that are
almost impossible to track directly with skin-mounted markers
(e.g., subtalar and talonavicular joint). In contrast, OMC is
sufficient for basic foot and ankle motion estimates, such as those
explored here. Optical motion capture can be used to measure
kinematics across multiple full strides, as opposed to partial
strides often only available with BVR. Synchronous use of the two
systems to explore specific joint function (BVR) in the context of
general foot motion (OMC) would keep processing times shorter
while enhancing understanding of individual joint function.
Equally, OMC could be used to provide valuable initial guesses of
bone position and orientation in the BVR, such that optimisation
approaches could be used to inform the rotoscoping procedure.

Despite the sagittal plane agreement, the frontal and
transverse plane dissimilarities are of some concern. The source
of the divergence between the systems is unclear, and this
research demonstrates that more work needs to be done to
determine why the kinematics vary depending on the system
recording them. It is possible the differences stem from BVR
being more sensitive to bone movement, and therefore, a
more accurate measure of kinematics not susceptible to STA.
However, it is also likely that some of the differences are the
result of scientific rotoscoping errors in BVR where poor bone
alignment could create movement artifacts. We note that the
image intensifiers were oriented primarily in the sagittal plane,
which may affect the ability to resolve the orientation in the
frontal and transverse planes. However, further work needs to
be done to determine the exact source of the variation between
the systems.

LIMITATIONS

Our results should be interpreted in the context of several
limitations. First, of the two systems being compared, neither are
considered gold-standard (tantalum beads). Instead, we aimed to
compare two methodologies to find convergent validity, as such,
there is no way to determine whichmeasurement system is “more
accurate”. Instead our results should be interpreted to mean that
ankle and MLA angles measured in the sagittal plane between
the systems are directly comparable, while out-of-plane angles are
more questionable.

The BVR data is rotoscoped manually, leaving it susceptible to
intra-tracker errors and resulting in long processing times. Future
BVR use would benefit greatly from an automated tracking
algorithm, possibly informed by OMC to provide initial pose
estimates, and research into the repeatability of this approach.
Second, BVR is limited by the available field of view for
data collection. The collection space at present is only large
enough to examine one joint complex at a time. Our study
also only had a relatively small sample size. As we have not
used inferential statistics here (which are only appropriate for
assessing differences, rather than similarity), performing a sample

size calculation is not possible. However, we have provided
descriptive statistics which describe similarity. While our sample
size is small, an estimate of the standard error of the mean
suggests that the margin for the mean RMS angles or marker
positions would be approximately 0.52◦ or 0.37mm across
both conditions.

Finally, the processing times of the two systems is notably
different. The BVR approach requires segmentation and
subsequent rotoscoping of each individual bone, both heavily
time intensive processes. When compared to the relatively quick
processing of OMC data, which was performed over 1 week—the
benefit of directly measuring bonemovementmay be outweighed
by the lengthy processing times. Current understanding of OMC
and BVR and their effect on kinematic outputs would benefit
from studies with more participants, across a range of foot
anatomical types, and compared to the gold-standard (tantalum
beads) to assess validity of measures.

CONCLUSION

In conclusion, when looking at group mean for ankle angle and
MLA angle, OMC and BVR are in good agreement for sagittal
planemotion. However, there is a divergence between the systems
in the transverse and frontal planes, with the exact cause for
divergence unknown. Notably, BVR can provide novel insight
into the 3D motion of bones that were previously difficult or
impossible to measure. Future work with BVR would benefit
from determining the cause of the divergence between the
two systems.
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