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To gain insight into the malfunction of the Golgi apparatus and its relationship to various

genetic and neurodegenerative diseases, the identification of sub-Golgi proteins, both

cis-Golgi and trans-Golgi proteins, is of great significance. In this study, a state-of-art

random forests sub-Golgi protein classifier, rfGPT, was developed. The rfGPT used

2-gap dipeptide and split amino acid composition for the feature vectors and was

combined with the synthetic minority over-sampling technique (SMOTE) and an analysis

of variance (ANOVA) feature selection method. The rfGPT was trained on a sub-Golgi

protein sequence data set (137 sequences), with sequence identity less than 25%.

For the optimal rfGPT classifier with 93 features, the accuracy (ACC) was 90.5%; the

Matthews correlation coefficient (MCC) was 0.811; the sensitivity (Sn) was 92.6%; and

the specificity (Sp) was 88.4%. The independent testing scores for the rfGPT were ACC

= 90.6%; MCC = 0.696; Sn = 96.1%; and Sp = 69.2%. Although the independent

testing accuracy was 4.4% lower than that for the best reported sub-Golgi classifier

trained on a data set with 40% sequence identity (304 sequences), the rfGPT is currently

the top sub-Golgi protein predictor utilizing feature vectors without any position-specific

scoring matrix and its derivative features. Therefore, the rfGPT is a more practical tool,

because no sequence alignment is required with tens of millions of protein sequences. To

date, the rfGPT is the Golgi classifier with the best independent testing scores, optimized

by training on smaller benchmark data sets. Feature importance analysis proves that

the non-polar and aliphatic residues composition, the (aromatic residues) + (non-polar,

aliphatic residues) dipeptide and aromatic residues composition between NH2-termial

and COOH-terminal of protein sequences are the three top biological features for

distinguishing the sub-Golgi proteins.

Keywords: random forests, sub-Golgi protein classifier, ANOVA feature selection, split amino acid composition,

k-gap dipeptide, synthetic minority over-sampling

INTRODUCTION

The Golgi apparatus (GA) is an important organelle in eukaryotic cells, because lipids and different
types of proteins are modified, packaged, and transported in vesicles to different destinations (Rhee
et al., 2005). The GA comprises three main parts (Xu and Esko, 2009): cis-Golgi, medial, and
trans-Golgi. The cis-Golgi receives proteins and then delivers them to themedial section for protein
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biosynthesis. The trans-Golgi releases the biosynthesized
proteins from the medial section. The proteins in the cis-region
of the GA are called cis-Golgi proteins, whereas trans-Golgi
proteins are in the trans-Golgi part (Pfeffer, 2001).

Malfunction of the GA can disrupt protein biosynthesis in
the medial part, which can lead to neurodegenerative diseases,
such Parkinson’s (Fujita et al., 2006; Yang J. et al., 2016) and
Alzheimer’s (Gonatas et al., 1998; Yang et al., 2015). A key
step in the understanding of GA function is to determine
whether a protein is a sub-Golgi protein (cis-Golgi or trans-
Golgi). Such determinations will improve comprehension of the
mechanisms for GA dysfunction and provide clues for disease
treatment and more effective drug research and development
(Gunther et al., 2018).

In the past few years, several protein subcellular locations
and protein type prediction tools, including sub-Golgi protein
identification tools (Teasdale and Yuan, 2002; Van Dijk et al.,
2008; Chou et al., 2010; Ding et al., 2011, 2013; Jiao et al.,
2014; Lin et al., 2014; Nikolovski et al., 2014; Jiao and Du,
2016a,b; Yang R. et al., 2016; Ahmad et al., 2017; Wang
et al., 2017; Rahman et al., 2018; Ahmad and Hayat, 2019;
Wuritu et al., 2019), have been developed using various machine
learning algorithms, including increment diversity Mahalanobis
discriminant (IDMD) (Ding et al., 2011), support vector machine
(SVM) (Ding et al., 2013, 2017; Jiao et al., 2014; Lin et al.,
2014; Jiao and Du, 2016a,b), random forest (RF) (Ding et al.,
2016a,b; Yang R. et al., 2016; Yu et al., 2017; Liu et al., 2018),
and K nearest neighbor algorithm (KNN) (Ahmad et al., 2017;
Ahmad and Hayat, 2019), among others. To generate feature
vectors for sub-Golgi protein identification, protein amino acid
composition (AAC) (Rahman et al., 2018), k-gapped dipeptide
composition (k-gapDC) (Ding et al., 2011, 2013), pseudo amino
acid composition (PseAAC) (Jiao et al., 2014; Liu et al., 2015),
and protein sequences evolutionary information (e.g., position-
specific scoringmatrix, PSSM) and their derivative features (Yang
et al., 2014; Jiao and Du, 2016a,b; Yang R. et al., 2016; Ahmad
et al., 2017; Rahman et al., 2018) have been used. Because the
extensively used training benchmark data sets (Ding et al., 2013;
Yang R. et al., 2016) are unbalanced in sub-Golgi protein classes, a
synthetic minority over-sampling technique (SMOTE) has been
adopted to obtain class-balanced data sets for training (Yang R.
et al., 2016; Ahmad et al., 2017; Wan et al., 2017; Rahman et al.,
2018; Ahmad and Hayat, 2019). Diversified feature selection
methods, including analysis of variance (ANOVA) (Ding et al.,
2013; Jiao and Du, 2016a), minimal redundancy-maximal
relevance (mRMR) (Jiao and Du, 2016b; Wang S. P. et al., 2018),

Abbreviations: D/Dim, dimension; D0/D1/D2/D3, data sets; IDMD, increment

diversity Mahalanobis discriminant; SVM, supporting vector machine; KNN, K-

nearest neighbors; RF, random forests; 2-gapDC, 2-gap dipeptide composition;

3-gapDC, 3-gap dipeptide composition; DPDC, Dipeptide compostion; TPDC,

Tripeptide composition; AAC, amino acid composition; SAAC, split amino

acid composition; PseAAC, pseudo amino acid composition; PSPCP, positional-

specific physicochemical properties derived feature from PSSM; PSSM, position-

specific scoring matrix; PSSMDC, PSSM-Dipeptide Composition; BigramPSSM,

Bi-gram features directly extracted from PSSM; EDPSSM, Evolutionary Difference

PSSM; CSP, Common Spatial Patterns; SMOTE, synthetic minority over-sampling

technique; ACC, accuracy; MCC, Matthew correlation coefficient; Sn, Sensitivity;

Sp, Specificity.

maximum relevance-maximum distance (MRMD) (Zou et al.,
2016a,b), RF/Wrapper (Pan et al., 2018; Rahman et al., 2018),
multi-voting for feature selection (Ahmad and Hayat, 2019), and
lasso (Liu et al., 2016), among others, have been used to remove
redundant features and improve the prediction accuracy with as
few features as possible (Yu et al., 2016; Zhu et al., 2017, 2018;
Kuang et al., 2018; Wang H. et al., 2018).

Two widely used benchmark-training data sets have resulted
in different optimization models with various independent
testing prediction scores. For the benchmark data set of
Ding (137 sequences with 25% sequence identity; Ding et al.,
2013), Jiao and Du (2016b) applied 49-dimensional features of
positional-specific physicochemical properties (PSPCP, a derived
feature from PSSM) to train their best SVM model. They
achieved jackknife cross-validation results with accuracy (ACC)
of 91.2%; Matthew correlation coefficient (MCC) of 0.793;
sensitivity (Sn) of 99.0%; and specificity (Sp) of 73.8%, whereas
the independent prediction accuracy of their classifier was 87.1%.
The best predictor built on the benchmark data set of Yang (304
sequences with 40% sequence identity) (Yang R. et al., 2016) was
developed by Ahmad and Hayat (2019). They carefully selected
180-dimensional features from the combined features of split
amino acid composition (SAAC), 3-gap dipeptide composition,
and PSSM with its derivative features to obtain a designed
KNN classifier with good jackknife cross-validation scores (ACC
= 94.9%; MCC = 0.90; Sn = 97.2%; Sp = 92.6%) and good
independent testing scores (ACC = 94.0%; MCC = 0.84; Sn =
81.5%; Sp= 96.9%).

To our best knowledge, all high-profile sub-Golgi protein
predictors trained on either benchmark data sets are constructed
on the basis of a PSSM and its derived feature vectors, whose
acquisition requires the use of a position-specific iterative
basic local alignment search tool to align sub-Golgi protein
sequences with a protein database (Jiao andDu, 2016a,b; Rahman
et al., 2018; Ahmad and Hayat, 2019). Then, a secondary data
transformation is performed (Altschul et al., 1997) in which data
are usually converted into a 20 by 20 matrix with average values
in each feature dimension (Jiao and Du, 2016a,b; Yang R. et al.,
2016; Ahmad et al., 2017; Rahman et al., 2018). The sequence
alignment is typically time-consuming, particularly when the
protein database for alignment is large and the computing power
is limited.

In this paper, instead of using PSSM and its derived
features, the focus was on constructing an efficient sub-Golgi
protein RF classifier, namely rfGPT, based only on amino
acid and dipeptide composition-based feature vectors. Related
studies (Li et al., 2016; Luo et al., 2016; Tang et al., 2018;
Zhang et al., 2018a,b) have demonstrated the effectiveness of
composition and dipeptide and amino acid composition-based
features for solving bioinformatics problems. The rfGPT with
55-dimensional features of 2-gap dipeptide composition attained
better jackknife cross-validation scores (ACC = 91.1%; MCC
= 0.823; Sn = 87.4%; Sp = 94.7%) and better independent
testing results (ACC = 89.1%; MCC = 0.631; Sn = 53.8%; Sp =
98.0%) than those classifiers trained on the same data set (Ding
et al., 2013; Jiao and Du, 2016a,b). Therefore, to date, the rfGPT
is the best sub-Golgi predictor trained from the benchmark
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data set of Ding via SMOTE (Ding et al., 2013). For further
improvement of the rfGPT, 59 2-gap dipeptide composition
features selected through ANOVA technology were fused with
SAAC features to form 119 new dimensional features, which were
then secondarily selected via ANOVA for rfGPT optimization.
Ultimately, the rfGPT with 93 dimensional features [59 2-gap
dipeptide composition (DC) sub-features plus 34 SAAC sub-
features] was the best predictor, with jackknife cross-validation
scores of ACC = 90.5%; MCC = 0.811; Sn = 92.6%; and Sp =
88.4%, and independent test scores of ACC = 90.6%; MCC =
0.696; Sn= 96.1%; and Sp= 69.2%.

MATERIALS AND METHODS

Data Sets
To train models for sub-Golgi protein identification, two
benchmark-training data sets are widely used. One data set, D1
in this text, was constructed by Ding et al. (2013), and the other,
D2 in this text, was constructed by Yang R. et al. (2016). Before
D1 was developed, Ding et al. constructed a smaller data set (D0)
which was used once and never used again (Ding et al., 2011).

In this work, the data set D1 was downloaded from http://lin-
group.cn/server/SubGolgi/data and used to train the sub-Golgi
protein classifier. The D1 data set consisted of 137 Golgi-resident
protein sequences, with 42 cis-Golgi and 95 trans-Golgi proteins.
The D1 data set was selected for model training primarily because
the sequence identity was <25%. Thus, the D1 data set contained
less sequence noise and redundancy than the D2 data set.

For testing the optimized model, an independent data set D3
provided by Ding et al. (2013) was applied. The D3 data set
has been adopted by most of the key researchers in previously
reported sub-Golgi predictors (Ding et al., 2013; Jiao and Du,
2016b; Yang R. et al., 2016; Ahmad et al., 2017; Rahman
et al., 2018; Ahmad and Hayat, 2019). The D3 data set is
generally used only for independent testing and contains 64 test
sequences, including 13 cis-Golgi and 51 trans-Golgi protein
sequences. The D3 data set is available at http://lin-group.cn/
server/SubGolgi/data.

Modeling Overview
The entire rfGPT modeling process is illustrated in Figure 1.
Compared with previous predictors, the major difference of
the rfGPT used in this study was that only extracted features

FIGURE 1 | Modeling framework of the state-of-art random forests sub-Golgi protein classifier. ANOVA: analysis of variance.
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from amino acid and dipeptide composition were used. In this
study, the 2-gapped dipeptide composition profile and SAAC
were adopted. Ding et al. (2013) verified the validity of the 2-
gapped dipeptide composition profile for sub-Golgi prediction.
The SAAC considers that the location of a Golgi protein is related
to the composition of amino acid residues at the N-terminal and
C-terminal of a protein sequence (Paulson and Colley, 1989). As
shown in Figure 1, the 400 dimensions (400D) 2-gapDC features
extracted from D1 were used to generate a class-balanced data
set via ANOVA and SMOTE, which was then fed into a RFmodel
for optimization and estimation by jackknife cross-validation and
independent testing. In this step, an optimized prediction model
was sought, whose selected features were then combined with
the SAAC features as new features of a new model for further
optimization. After the secondary feature selection via ANOVA
and SMOTE, the new optimal model was evaluated through
jackknife cross-validation and independent testing.

Feature Extraction
The methods for feature extraction used for sub-Golgi
classification are divided into three categories: (1) amino
acid and peptide composition and their derived features; (2)
PSSM and its derived features; and (3) features combined with
amino acid residue physical and chemical properties. In this
research, the derived features of category 1 were adopted because
they are simple and convenient for feature extraction, namely, to
calculate the frequency of peptide and amino acid components.
The following two AAC features were adopted.

k-Gapped Dipeptides Composition
In general, the composition of adjacent dipeptides can only reflect
the short-range structure of the protein sequence. The dipeptide
composition in the larger interval may better reflect the tertiary
structure of the protein. In biology, interval residues are more
important than adjacent residues. Especially in some common
structures, such as helices and plates, two non-adjacent residues
are joined by hydrogen bonds (Lin et al., 2015;Wang et al., 2019).
The k-gap dipeptides composition (k-gapDC) is an indirect
mathematical description of the biological significance, which
has been extensively utilized for sub-Golgi protein classification
and other bioinformatics fields (Xu et al., 2018; Agrawal et al.,
2019; Akbar et al., 2019; Wang et al., 2019). For the k-gapDC, the
frequency of a dipeptide separated by k positions is determined,
which is then divided by the total number of k-gapped dipeptides;
thus, a protein sequence is transformed into a 400D feature
vector. The 2-gapDC features were utilized in this work.

Split Amino Acid Composition
It has been proved that the N-terminal and C-terminal
of protein sequences can act as signal-anchor domains for
subcellular locations, e.g., glycosyltransferases all have a short
NH2-terminalcytoplasmic tail, a 16-20-amino acid signal-anchor
domain, and an extended stem region which is followed by
the large COOH-terminal catalytic domain (Paulson and Colley,
1989). Another example is that lysine at position 329 within a C-
terminal dilysine motif is crucial for the endoplasmic reticulum
localization of human SLC35B4 (Bazan et al., 2018). All of

these inspire us to used split amino acid composition for sub-
Golgi protein identification. The split amino acid composition
was proposed by Chou (Chou and Shen, 2007), which converts
variable-length protein sequences into fixed-length amino acids
for feature representation. In SAAC, a protein sequence is
initially segmented into different parts, and then the amino acid
frequency of each independent part is calculated. In the current
work, the protein sequences were split into three segments: 30 N-
terminal residues, 30 C-terminal residues, and the intermediate-
block residues, which are the sequences between N-terminal and
C-terminal parts. A 60D feature vector was obtained from the
SAAC instead of the traditional 20D amino acid component.
The details of the SAAC feature extraction are described as
follows. Considering the length of protein sequence L and the
three segments [NSeg (N-terminal), ISeg (intermediate block),
and CSeg (C-terminal)] with the lengths Xn, L – Xn – Xc,
and Xc (Xn = Xc = 30), respectively, the SAAC feature vector
[

f1, f2, · · · , f60
]

is generated by the following formulas:

• fi =
N(AAi)
Xn

, i = 1, 2, . . . , 20

• fi =
N(AAi)

L−Xn−Xc
, i = 21, 22, . . . , 40

• fi =
N(AAi)

Xc
, i = 41, 42, . . . , 60

AA : amino acid residue;
N (AA) : the numbers of AA in different segments.
L: the length of protein sequence;
Xn: the residues numbers of N-terminal segments;
Xc: the residues numbers of C-terminal segments.
fi: the ith SAAC feature vector element, it is one of the 20
amino acid residue frequency in a segment.

Feature Selection
Feature selection is conducted to remove redundant information
and to overcome over-fitting in machine learning modeling. A
variety of feature selection techniques (Ding et al., 2013; Jiao
et al., 2014; Zeng et al., 2015, 2016, 2018; Jiao and Du, 2016a,b;
Yang R. et al., 2016; Ahmad et al., 2017; Rahman et al., 2018;
Ahmad and Hayat, 2019; Liu Y. et al., 2019; Zhang X. et al., 2019)
have been important for sub-Golgi protein identification and for
other areas of bioinformatics. ANOVA ranks the importance of
features in terms of the ratio of the variance of data within a
category to the variance between categories. The larger the value
of the ratio is, the more important the feature is. The details for
the use of ANOVA as a feature selection technique have been
presented previously (Ding et al., 2013; Jiao and Du, 2016a) and
are not repeated here. In this study, the ANOVA module from
the famous Scikit-learn machine learning tool kit was used for
feature selection (https://scikit-learn.org/).

Synthetic Minority Over-sampling
Technique
The D1 benchmark data set is imbalanced, with the cis-Golgi
protein and trans-Golgi protein sequences ratio of 0.44. Such
an imbalance has a significant impact on the acceptability of
the application, because the classifiers can be overly suitable for
the majority classes. In this case, the prediction accuracy may
seem high, but the results may be unacceptable, as minority
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groups may be completely/partially ignored. To solve this
problem, the very effective SMOTE was proposed by Chawla
et al. (2002). SMOTE helps to balance unbalanced data sets
by creating “synthetic” minority class examples rather than by
oversampling with replacement, and is employed by various sub-
Golgi classifiers trained on benchmark data set D2 (Yang R. et al.,
2016; Ahmad et al., 2017; Rahman et al., 2018; Ahmad and Hayat,
2019). As this manuscript was prepared, the use of SMOTE
with benchmark data set D1 had not yet been reported. In this
research, the SMOTE module implemented was from http://
imbalanced-learn.org.

Evaluation Metrics
Testing Methods
The jackknife cross-validation is a leave-one-out cross-validation
method for testing the efficiency of protein classification (Chou
and Shen, 2006) and is executed in the following steps. A training
data set with T items is separated into two parts. For each
run, one part consists of T−1 item for model training, and the
remaining part contains one item for testing. This process is
repeated T times, and all the items sampled in the training data
set act as a testing sample only once. Jackknife cross-validation
is a time-consuming method, particularly for large data sets, but
the method is robust with small variance. In this article, the
benchmark data set D1 collected by Ding et al. (2013) was used
for the jackknife cross-validation.

In independent testing, a completely different data set from
the training data set is used to evaluate the trained model. Once
the model is built with the training data set, tests are performed
on the independent data set to evaluate the model. In this article,
the independent data set D3 collected by Ding et al. (2013) was
used for model performance evaluation.

Performance Metrics
Four standard metrics were used to evaluate the proposed
models: ACC, Sn, Sp, and MCC. The metrics are previously
described (Wei et al., 2017a,b; Chen et al., 2018; Su et al., 2018;
Feng et al., 2019; Zhang S. et al., 2019) and were calculated
as follows:

• ACC = TP+TN
TP+TN+FP+ FN

• Sn = TP
TP+ FN

• Sp = TN
TN+ FP

• MCC = TP × TN−FP × FN√
(TP+FP) × (TN+FN) × (TP+FN) × (TN+ FP)

where TP is a true positive, TN is a true negative, FP is a false
positive, and FN is a false negative.

Classifier
Support vector machine (SVM) (Ding et al., 2011, 2013; Feng
et al., 2013; Lin et al., 2014; Jiao and Du, 2016a,b; Zeng et al.,
2017; Rahman et al., 2018; Chen et al., 2019; Dao et al., 2019;
Liu B. et al., 2019), K-nearest neighbor (KNN) (Ahmad et al.,
2017; Ahmad and Hayat, 2019), and random forests (RF) (Yang
R. et al., 2016; Pan et al., 2017; Ru et al., 2019; Su et al., 2019;
Zheng et al., 2019) classifiers have been used to identify sub-
Golgi proteins and for other fields. In this study, RF was selected
for modeling because it is a powerful machine-learning tool and
facilitates analysis of feature importance. Previously, Yang R. et al.
(2016) selected 55 features from composite features (3-gapDC +
PSSM derived features) to optimize their random forest classifier.
The jackknife cross-validation scores using data set D2 were
ACC = 88.5%; MCC = 0.765; Sn = 88.9%; and Sp = 88.0%,
and for the independent testing, the scores were ACC = 93.8%;
MCC = 0.821; Sn = 92.3%; and Sp = 94.1% (Yang R. et al.,
2016). However, those results are somewhat confusing, because
other sub-Golgi predictors have lower independent test scores
than those for the jackknife cross-validation. To date, no sub-
Golgi RF predictor has been trained from benchmark data set
D1. In this study, the random forest classification model in the
Scikit-learn tool kit (https://scikit-learn.org/) was applied for the
implementation, testing, and evaluation of the rfGPT classifier
and for the analysis of feature importance.

RESULTS AND DISCUSSION

Performance of Random Forests Classifier
Without Feature Selection
Table 1 shows the performance of the rfGPT using various
extracted features. In the models with the SMOTE technique, the
cross-validation scores improved remarkably for ACC, MCC, Sn,
and Sp. For example, based on 460D SAAC + 2-gapDC features
and SMOTE, the scores of the rfGPT were ACC = 90.5%; MCC
= 0.817; Sn = 96.8%; and Sp = 84.2%, which were increases
of 20, 132, 44, 2.2, and 171.6%, respectively, compared with the
rfGPT without SMOTE. Although the SMOTE technique does

TABLE 1 | Jackknife cross-validation and independent testing results after training on the benchmark data set D1 without feature selection.

Feature(D) SMOTE (Y/N) Jackknife cross-validation Independent testing

ACC MCC Sn Sp ACC MCC Sn Sp

2-gapDC(400) N 74.5% 0.326 94.7% 28.6% 79.7% 0.318 90.2% 38.5%

SAAC(60) N 69.3% 0.073 97.9% 4.8% 78.1% −0.07 98.0% 0.0%

2-gapDC+SAAC(460) N 75.2% 0.351 94.7% 31.0% 79.7% 0.237 94.1% 23.1%

2-gapDC(400) Y 86.3% 0.743 96.8% 75.8% 82.8% 0.351 98.0% 23.1%

SAAC(60) Y 87.9% 0.763 93.7% 82.1% 81.2% 0.388 90.2% 46.2%

SAAC+2-gapDC(460) Y 90.5% 0.817 96.8% 84.2% 81.2% 0.287 96.1% 23.1%
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improve the recognition rate of minority classes, the accuracy
of the independent testing for the rfGPT with diverse features
ranged from 78.1 to 82.8%, with little improvement with SMOTE
(Table 1). For the other metrics (MCC, Sn, Sp), the case was
the same. Thus, other techniques are needed to improve the
generalization prediction model. In this paper, to obtain a better
rfGPT with fewer features, ANOVA feature selection was used to
eliminate redundant features.

Classifier Optimizing via ANOVA Feature
Selection
To obtain the optimized classifier, the ANOVA feature selection
method was first conducted for 400 2-gapDC features. One
hundred sub-data sets containing 1, 2, . . . and 100 2-gapDC
features generated separately after ANOVA feature selection
were used for training 100 corresponding RF classifiers. For
all 100 classifiers, jackknife cross-validation and independence
testing were conducted. Figure 2A shows the accuracy of the
cross-validation and independent tests of the 100 classifiers with
varying numbers of features. Except for the models with nine
and ten selected features, the average accuracy of the jackknife
cross-validation of the other models was higher than that of the
independent test results. Based on the jackknife cross-validation,
the best-trainedmodel with the highest accuracy was the classifier
with 59 selected features (rfGPT_1), whereas the classifier with 55
selected features (rfGPT_2) had the highest independent testing
accuracy results.

The performance scores of both classifiers are listed inTable 2.
The jackknife cross-validation scores of rfGPT_2 (ACC= 91.1%;
MCC = 0.823; Sn = 94.7%; Sp = 87.4%) were slightly lower
than those of rfGPT_1 (ACC = 93.2%; MCC = 86.4%; Sn =
94.7%; Sp= 91.6%). However, rfGPT_2 had the better predictive
performance on the independent test sets with scores of ACC =
89.1%; MCC = 0.631; Sn = 98%; and Sp = 53.8%, which were as
much as 5.6, 35, 8.3, 10, and 16% larger than the corresponding
values of rfGPT_1 (ACC= 84.4%; MCC= 0.466; Sn= 94.1%; Sp
= 46.2%). The 89.1% independent testing accuracy of rfGPT_2
was an increase of 2.2% compared with the best SVM sub-Golgi
classifier (Jiao and Du, 2016b) trained on the same benchmark
data set (D1). The accuracy of 93.2% for rfGPT_1 and 91.1% for
rfGPT_2 from the jackknife cross-validations was an increase of
9.0 and 6.5%, respectively, compared with that of the RF classifier
obtained by Yang et al. which was trained on benchmark data set
D2 (Yang R. et al., 2016).

For further optimization, the 59 2-gapDC features of rfGPT_1
obtained in the previous step were combined with 60 SAAC
features to form 119-dimensional (2-gapDC+ SAAC) composite
features, and then ANOVA was used to construct 100 data sets
with selected 1, 2, ... and 100 features for building 100 classifiers.
The jackknife cross-validation and independent test results for
these models are shown in Figure 2B and Table 2. For the
cross-validation performance, classifier rfGPT_3 with 43 features
was better than classifier rfGPT_4 with 93 features. However,
for independent testing, the predictive metric of rfGPT_4 with
ACC= 90.6%; MCC = 0.696; Sn = 96.1%; and Sp = 69.2%
exceeded that of rfGPT_3 with ACC = 84.4%; MCC = 0.466;

FIGURE 2 | Jackknife cross-validation and independent testing accuracy of

the random forest classifier with the number of features varied: (A) 2-gap

dipeptide composition (2-gapDC) features (B) 59 selected 2-gapDC features

+ 60 split amino acid composition (SAAC) features, and (C) 55 selected

2-gapDC features + 60 SAAC features.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 September 2019 | Volume 7 | Article 215

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lv et al. Random Forest Sub-Golgi Protein Classifier

TABLE 2 | The best evaluation scores from jackknife cross-validation and independent testing of different models with various feature types and feature numbers.

Classifier Features(D) Jackknife cross-validation Independent testing

ACC MCC Sn Sp ACC MCC Sn Sp

rfGPT_1 2-gapDC(59) 93.2% 0.864 94.7% 91.6% 84.4% 0.466 94.1% 46.2%

rfGPT_2 2-gapDC(55) 91.1% 0.823 94.7% 87.4% 89.1% 0.631 98.0% 53.8%

rfGPT_3 2-gapDC+SAAC(43) 93.7% 0.874 93.7% 93.7% 82.8% 0.484 88.2% 61.5%

rfGPT_4 2-gapDC+SAAC(93) 90.5% 0.811 92.6% 88.4% 90.6% 0.696 96.1% 69.2%

rfGPT_5 2-gapDC+SAAC(94) 93.2% 0.864 93.7% 92.7% 84.4% 0.546 88.2% 69.2%

rfGPT_6 2-gapDC+SAAC(66) 90.0% 0.800 89.5% 90.5% 89.1% 0.695 90.2% 84.6%

Sn = 88.2%; and Sp = 61.5%; the increases were 7.3%, 49, 8.3,
9.0, and 13%, respectively.

Optimization was also performed by combining the 55 2-
gapDC features of rfGPT_2 with SAAC features to form 115-
dimensional features for 100 new models with various features.
The cross-validation and independent testing accuracy scores are
revealed in Figure 2C. The scores for rfGPT_5 and rfGPT_6 are
shown in Table 2. The independent accuracy of both models was
inferior to that of rfGPT_4 (Table 2).

Because most cross-validation and independent testing scores
of the classifier rfGPT_4 were superior to those of other models
in Table 2, rfGPT_4 was designated as the final sub-Golgi model
for prediction.

Feature Importance Analysis
To analyze the importance of the features selected for rfGPT_4,
the feature importance function of the Scikit-learn RF model
was exploited (Figure 3). As shown in Figure 3A, 59 2-gapDC
features and 34 SAAC features were adopted in rfGPT_4, and
their importance to the classification of Golgi proteins was 72.4
and 27.6%, respectively. Figure 3B shows the ranking of the 93
features by importance value and the cumulative importance
score by importance value order. Among the combined features,
the single feature importance was diverse and ranged from 0.16
to 3.64%. Figure 3C shows the importance order of the first 25
specific features, which accounted for 50% of the importance for
the rfGPT. Only four of the top 25 features (which included 21
2-gapDC features and 4 SAAC features) had an importance value
of more than 3% (Figure 3C).

To further analyze the feature bio-meaning, the feature
importance values are assigned to different types of amino
acid residues, that is aromatic residues, non-polar, and aliphatic
residues, polar and non-charged residues, positively charged
residues, and negatively charged residues. For instance, FP.gap2
feature as shown in Figure 3Cmeans the composition frequency
of dipeptide, which consists of F (phenylalanine) and P (proline)
amino acid residence. The importance value 3.64% for FP.gap2
feature is divided by 2 to allocate 1.72% to aromatic residues
type and non-polar and aliphatic residues type. Other features
importance values are handled in the same way to assign
importance value to five type amino acid residues (see Table S1).
It finds out that the importance value of non-polar and
aliphatic residues, aromatic residues, negatively charged residues,
positively charged residues, polar, and non-charged residues are
30%, 24%, 21%, 13% and 12%, respectively. The non-polar and

aliphatic property of amino acid residues plays the most critical
role in sub-Golgi protein identification, and then the next is
aromatic, negatively charged, positively charged, and polar and
non-charged in turn. The importance values of the first three
properties add up to 75%, so it concludes that to discriminate cis
or trans sub-Golgi protein is mainly determined by the non-polar
and aliphatic residues, aromatic residues, and negatively charged
residues composition frequency.

For 2-gap DC features, the first three most important features
are FP.gap2 (3.64%), IG.gap2 (3.50%), and GD.gap2 (3.44%),
and five different residue types combined with each other
generate 25 type dipeptides, whose feature importance values
are listed in Figure 3C and Table S2. The (aromatic residues)
+ (non-polar, aliphatic residues) dipeptide, (non-polar, aliphatic
residues)+ (non-polar, aliphatic reduces residues) dipeptide and
the (non-polar, aliphatic residues)+ (aromatic residues) with the
importance values as 8.54%, 8.18%, and 7.36%, respectively, are
the top three important features for sub-Golgi classification.

For SAAC features, the protein sequence is segmented into
three parts: N-terminal segment, C-terminal segment and the
Interblock between N-terminal and C-terminal, whose amino
acid composition frequency feature is labeled as Nterminal_A,
Cterminal_A and InterTier_A (A represents one of the
20 amino acid residues; see Figure 3C and Table S3). The
importance values of N-terminal features, C-terminal features,
and Interblock features are 6.43%, 8.81%, and 12.37%, separately.
The first three important values of 5 types residues of each
block is aromatic residues of Interblock (5.05%), non-polar and
aliphatic residues of C-terminal (3.13%), and negatively charged
residues of N-terminal (3.00%). The D (aspartate) residues
composition of N-terminal, as shown in Figures 3C, is the
most important SAAC feature for sub-Golgi classification, but
the aromatic residues composition frequency features of the
Interblock seem even more important (see Table S3).

To sum up the above, the non-polar and aliphatic residues
composition, the (aromatic residues) + (non-polar, aliphatic
residues) dipeptide and aromatic residues composition between
NH2-termial and COOH-terminal of protein sequences are three
top biological features for distinguishing the sub-Golgi proteins.

Metrics Comparison With Existing
Predictors
Ten optimized sub-Golgi classifiers that have been developed
are presented in Table 3. Three separate data sets (D0, D1,
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FIGURE 3 | Feature importance analysis of random forests sub-Golgi

classifier, rfGPT _4: (A) importance of feature types (B) the ranking orders of

93 features for rfGPT_4 and their integrated importance (red line), and (C) the

importance of the top 25 features, which accounted for 50% of the integrated

importance (blue line). The A1A2.gap2 means the composition of dipeptide

A1A2. A1 or A2 is one of the 20 amino acid residues. Nterminal_D means the

composition of amino acid residues D (aspartate) in NH2-terminal of protein

sequence. InterTier_K, interTier_W, and interTier_F mean K(lysine),

W(tryptophan), and F(phenylalanine) amino acid residues composition of the

inter-tier between NH2-terminal and COOH-terminal of protein sequence.

D2), and four machine learning algorithms (IDMD, SVM, KNN,
RF) were exploited to train these sub-Golgi classifiers, and
one common independent data set was used to evaluate the
various sub-Golgi classifiers. A total of six classifiers adopted
the PSSM and its derived features for sub-Golgi prediction.
Ahmad et al. (2017), training on the D2 data set with 40%
sequence identity, achieved the highest independent testing
scores (ACC = 94.8%; MCC = 0.86; Sn = 93.9%; Sn = 94.0%)
for a classifier; the KNN sub-Golgi classifier with 83 composited
features. In contrast to the KNN sub-Golgi classifier of Ahmad
et al. the ultimate classifier rfGPT_4 in this paper was trained
on the benchmark data set D1 with 25% sequence identity and
contained 93 features, without any PSSM and its derivative
features. Therefore, the rfGPT_4 is more practical, because the
time-consuming sequence alignment step to obtain the PSSM
and its derivatives scores using the Position-Specific Iterative
Basic Local Alignment Search Tool is avoided. In addition,
rfGPT_4 is currently the model with the best independent
testing scores for training on data set D1 and is a state-of-
art sub-Golgi classifier with only dipeptide and amino acid
composition features.

CONCLUSIONS

In this work, an optimized rfGPT classifier for sub-Golgi
protein type (cis and trans) identification was developed. The
rfGPT classifier was derived from a random forests machine-
learning algorithm, followed by implementation of the SMOTE
to overcome a severe imbalance in the training data set and
selection of optimal-related features using an ANOVA feature
selection technique. The independent testing scores (ACC =
90.6%; MCC = 0.696; Sn = 96.1%; Sp = 69.2%) of the rfGPT
ranked it as the one of the top sub-Golgi predictors. The feature
importance analysis proves that the non-polar and aliphatic
residues composition, the (aromatic residues) + (non-polar,
aliphatic residues) dipeptide and aromatic residues composition
for block between NH2-termial and COOH-terminal of protein
sequence are the top biological features, which play the key role
for sub-Golgi proteins identification.

As compared with previous reported sub-Golgi protein
classifiers, the rfGPT is with only dipeptide and amino
acid residue composition features, which exempted sequence
alignment from the procedure. Also, the rfGPT adopted random
forests algorithm is easier for feature analysis and for revealing
the key bio-factors of sub-Golgi protein classification. However,
the rfGPT had an independent prediction accuracy (from a
training data set with 25% sequence identity) that was 4.4% lower
than that for the best of the reported sub-Golgi protein identifiers
(based on the 40% sequence identity data set) and rfGPT uses
more features.

The expectation is to build a more general data set
of Golgi protein sequences to train the rfGPT model
and to realize a more advanced sub-Golgi classifier
of the features. In the future, extreme learning (Li
et al., 2019) and deep learning (Long et al., 2017; Yu
et al., 2018; Lv et al., 2019; Wei et al., 2019; Zhang Z.
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TABLE 3 | Jackknife cross-validation and independent testing scores list for reported sub-Golgi protein classifiers.

No. Classifier (Reference) Data Set Features Dim Jackknife cross-validation Independent testing

ACC MCC Sn Sp ACC MCC Sn Sp

1 IDMD

(Ding et al., 2011)

D0 2-gapDC 400 74.7% 0.495 79.6% 69.6% / / / /

2 SVM

(Ding et al., 2013)

D1 2-gapDC 83 85.4% 0.652 90.5% 90.5% 85.9% 0.578 90.2% 69.2%

3 SVM

(Jiao and Du, 2016a)

D1 PSPCP 59 86.9% 0.684 92.6% 73.8% / / 90.2% 69.2%

4 SVM

(Jiao and Du, 2016b)

D1 PSPCP 49 91.2% 0.793 99.0% 73.8% 87.1% / / /

5 SVM

(Lin et al., 2014)

D1 TPDC 501 97.1% 0.949 100% 92.9% / / / /

6 SVM

(Rahman et al., 2018)

D2 ACC

+DPDC

+TPDC

+2-gapDC

+PseAAC

2800 95.9% 0.920 95.9% 92.6% 93.8% 0.85 98.0% 84.6%

7 KNN

(Ahmad et al., 2017)

D2 PseAAC

+3-gapDC

+Bigram-PSSM

83 94.9% 0.90 97.2% 92.6% 94.8% 0.86 93.9% 94.0%

8 KNN

(Ahmad and Hayat, 2019)

D2 SAAC

+PSSM

+3-gapDC

180 98.2% 0.96 98.6% 97.7% 94% 0.84 96.9% 81.5%

9 RF

(Yang R. et al., 2016)

D2 3-gapDC

+CSP-PSSMDC

+CSP-BigramPSSM

+CSP-EDPSSM

55 88.5% 0.765 88.9% 88% 93.8% 0.821 94.1% 92.3%

10 RF

(this work)

D1 2-gapDC+SAAC 93 90.5% 0.811 92.6% 88.4% 90.6% 0.696 96.1% 69.2%

et al., 2019; Zou et al., 2019) methods will be tested on
this problem.
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