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Downstream processing needs more innovative ideas to advance and overcome current

bioprocessing challenges. Chromatography is by far the most prevalent technique used

by a conservative industrial sector. Chromatography has many advantages but also

often represents the most expensive step in a pharmaceutical production process.

Therefore, alternative methods as well as further processing strategies are urgently

needed. One promising candidate for new developments on a large scale is magnetic

separation, which enables the fast and direct capture of target molecules in fermentation

broths. There has been a small revolution in this area in the last 10–20 years and a

few papers dealing with the use of magnetic separation in bioprocessing examples

beyond the analytical scale have been published. Since each target material is purified

with a different magnetic separation approach, the comparison of processes is not

trivial but would help to understand and improve magnetic separation and thus making

it attractive for the technical scale. To address this issue, we report on the latest

achievements in magnetic separation technology and offer an overview of the progress

of the capture and separation of biomolecules derived from biotechnology and food

technology. Magnetic separation has great potential for high-throughput downstream

processing in applied life sciences. At the same time, two major challenges need to be

overcome: (1) the development of a platform for suitable and flexible separation devices

and (2) additional investigations of advantageous processing conditions, especially

during recovery. Concentration and purification factors need to be improved to pave

the way for the broader use of magnetic applications. The innovative combination of

magnetic gradients and multipurpose separations will set new magnetic-based trends

for large scale downstream processing.

Keywords: magnetic fishing, technical scale, industrial bioseparation, process design, protein purification, food

technology, selective recovery
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INTRODUCTION

Many scientific discoveries are directly related to magnetic
phenomena. From exploratory voyages using compasses to
the development of electricity, and the processing of iron
ores, magnetism has revolutionized traditional processes.
Magnetic separation results from forces induced in magnetically
susceptible materials by magnetic fields, while other materials
are unaffected by such force fields. The first use of magnetic
separation deriving from the mining industry goes back to
the beginning of the twentieth century (Küster, 1902). With
time, the areas of application were expanded to include
coal desulfurization, steel production, wastewater treatment,
medical applications, and biotechnology (Robinson et al., 1973;
Whitesides et al., 1983; Moffat et al., 1994; Zhou et al., 1996;
Yavuz et al., 2006; Gómez-Pastora et al., 2014; Egesa et al.,
2017). What do all these applications have in common? The
framework conditions, processing in a water medium, are
similar. However, there are significant differences in the total
volume processed as well as in process viscosities, which can
cause challenges for magnetic separation. Biotechnological
processes, where proteins or pharmaceuticals are the main
products, deal with lower aqueous volumes, higher viscosity,
and higher concentrations of target molecules compared to
wastewater streams. Food technology processes are similar
to those in biotechnology. In most cases, the targets are
not magnetic. Based on different interactions between these
targets and magnetic materials, they can be separated from
their surrounding media. Medical applications such as in
vivo hyperthermia or drug delivery treatments, deal with an
even lower volume of water, higher purities, and lower toxicities.
Thus, different magnetic materials are required depending on the
underlying production processes and separation requirements.
While the main goal of environmental approaches is to filter
impurities and obtain clean water, in the life sciences, the
aim is typically to remove only one target material from
a mixture.

The materials used as carriers of biomolecules and the
magnetic separator design have been further developed in
the last years following new application trends. We review
the industrially relevant magnetic separation processes
for biotechnology and food technology with a focus on
the advances of the last two decades. We show that the
productivity levels achieved at larger scales are interesting
for industrial exploitation. Perhaps the most pressing
task at the moment is to encourage the development of
enhanced devices for magnetic separation processes and to
provide examples of optimal processing parameters. Novel
processes are necessary to increase the productivity, recover
more than one target material at a time and reduce time
scales and water consumption. In the following sections,
we want to highlight how magnetic separation can be
used and is being used in the field of pharma and food
industry and which parameters need to be considered
in order to purify cells and biomacromolecules such
as proteins.

ADVANTAGES OF MAGNETIC
SEPARATION

Conventional separation and purification approaches for
pharmaceutical applications from biotechnological sources,
such as the production of antibodies, require numerous
steps: filtration, centrifugation, flocculation, sedimentation
or crystallization, and chromatography techniques (Carta
and Jungbauer, 2010). Developing high-tech or innovative
approaches is still the principal challenge to promoting
downstream processing in a leading technological field and to
paving the way for enhanced productivity. Magnetic separation
is an interesting candidate for future downstream applications
due to some important advantageous features:

• Integrated one step capture and purification of target (high
affinity and selectivity)

• High throughput
• Semi-continuous processing with low energy consumption.

Thus, magnetic separation can help reduce costs and increase
yields and productivity compared to traditional processes. The

continuous or semi-continuous processing at relatively low
pressure leads to low processing energy costs. The process allows
a broad framework of variables to adapt it to the necessities of

each system and should lead to a higher number of bioproducts
feasible for industrial exploitation (Hubbuch et al., 2001; Ohara
et al., 2001; Ahoranta et al., 2002; Eskandarpour et al., 2009; Yavuz
et al., 2009; Paulus et al., 2014; Gómez-Pastora et al., 2017).

SEPARATION STRATEGY AND
SEPARATOR DESIGN

Before starting with a separation process, the first step is to

select the most suitable separation strategy. This means thinking
about the system and the process and taking into account all
relevant parameters. The scheme in Figure 1 highlights the main
criteria for designing an efficient process. It is necessary to
bear in mind the processing constraints (volumes, targets, broth
characteristics, time, costs, etc.) and the availability of suitable
devices. Table 1 offers an overview of magnetic separation
principles, while Figure 2 presents the set-up of some existing
designs. The separation strategy is dependent on the target
molecule and includes not only the actual magnetic separation
process but also the interaction between the magnetic material
and the target molecules. Conditions for binding and elution
of target are crucial for the whole process and the equilibration
times for binding and especially for elution still depict challenges
for future optimizations.

Several physical properties of magnetically susceptible
materials are employed to separate molecules in a magnetic
field (Moffat et al., 1994). The typical application of magnetic
separation is the direct collection of magnetic materials and
separating them from the non-magnetic ones. This approach
uses high magnetic field gradients in order to successfully collect
all magnetic material. Another option is to use the aggregation
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FIGURE 1 | Scheme highlighting the main criteria for a magnetic separation process intermeshed like cogs in a machine as they are dependent on each other.

Parameters need to be chosen according to the target product in order to facilitate an efficient process.

and agglomeration effects of magnetic materials due to the
formation of magnetic dipoles in the presence of magnetic fields
(Svoboda, 1982; Ditsch et al., 2005). This so-called magnetic
flocculation can provide easier separation due to larger magnetic
forces compared to the effect of the Stoke’s drag force and
Brownian motion; furthermore, this larger force also results in
easier filtration due to the larger size of aggregates compared to
single particles (Schwaminger et al., 2019b). The drawback is that
this magnetic aggregation often negatively influences magnetic
collection, making reuse of magnetic materials more challenging.

An interesting process, presented by Eichholz et al., is the
magnetic filtration which combines magnetic separation with
cake filtration (Eichholz et al., 2011). Other possibilities include
magnetic flotation, enhanced magnetic sedimentation, magnetic
sorting or the use of magnetic beads as adsorbent material in
magnetically stabilized beds (Albert and Tien, 1985; Charles,
1990; Rosensweig and Ciprios, 1991; Moffat et al., 1994; Becker
et al., 2009). Magnetic flotation can be used to collect or
to enhance a flotation effect and separate and capture target
molecules from impurities efficiently. The gas-assisted magnetic
separation (GAMS) and the gas-assisted superparamagnetic
extraction (GASE) process use nitrogen bubbles to float magnetic
nanoparticles which are bound to target molecules (Li et al.,
2013; Liu et al., 2016). The magnetic particles can be collected
either in an extraction phase or with a magnet which allows for
a fast separation process. Magnetic sedimentation can further
be enhanced with a magnetic centrifuge which allows a faster
separation by increasing the acceleration forces on the magnetic

particles (Lindner and Nirschl, 2014). Magnetic sorting can be
used to classify magnetic materials and materials bound to these
magnetic materials according their fluidic as well as magnetic
properties. This facilitates the sorting of different shapes and
sizes of magnetic nanoparticles as well as the sorting of cells
(Chen et al., 2017; Zhang et al., 2017). Magnetically stabilized bed
reactors facilitate a hybrid between fixed and moving bed, which
allows chemical reactions at the surface of magnetic beads where
catalysts and enzymes can be immobilized (Zong et al., 2013).

MAGNETIC MATERIAL

Magnetic material is an essential ingredient in the separation
process. Magnetic separation has benefited especially from robust
development in the medical technology sector (e.g., in drug
delivery) as well as from the developments of multifunctional
magnetic materials. Iron oxide nanoparticles are generally
recognized as safe (GRAS) and have been approved by the US
Food and Drug Administration (FDA) for in vivo applications
(Thanh, 2012; Pušnik et al., 2016). Furthermore, iron oxides
are allowed as color and food additives according to the FDA.
There are multiple studies on the toxicity and possible health
effects of iron oxide nanoparticles: On the one hand, iron
oxide nanoparticles are able to penetrate cells and produce
reactive oxygen species (ROS) which can cause cell damage
(Soenen et al., 2011; Liu et al., 2013). On the other hand,
multiple studies do not indicate health effects of iron oxide
nanoparticles (Szalay et al., 2012). This controversy and thus the
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TABLE 1 | Summary of magnetic separation strategies for biotechnological downstream processing.

Separation principle Advantages Disadvantages Applications References

Magnetic collection Fast, high throughput,

process control

Recovery of MPs, multiple

steps

Target purification

(HGMS, OGMS)

Safarik et al., 2001; Brown et al.,

2013; Fraga García et al., 2015;

Müller et al., 2015; Schwaminger

et al., 2019a

Magnetic flocculation Fast, filtration Inclusion of impurities,

recovery, polymerbeads

Harvest Svoboda, 1982; Wang et al.,

2014

Magnetic flotation Fast, separation, recovery Aeration limitation, foaming,

blockage

Purification, harvest

(GAMS, GASE)

Li et al., 2013, 2014; Dong et al.,

2015; Liu et al., 2016

Magnetic

sedimentation

Separation, low loss of MP,

characterization

Small scale, low density beads,

energy (Centrifuge)

Magnetic centrifuge Scherer et al., 2002; Berret et al.,

2007; Lindner and Nirschl, 2014;

Mykhaylyk et al., 2015

Magnetic sorting Different shapes, sizes or

magnetizations

Slow, small scale, expensive Cell sorting Miltenyi and Schmitz, 2000; Chen

et al., 2017; Zhang et al., 2017;

Solsona et al., 2018

Magnetic stabilized bed Continuous, homogeneous

bed

Pressure drop, reactor size,

field circulation, diffusion

Processing (MSBR) Albert and Tien, 1985;

Rosensweig and Ciprios, 1991;

Zong et al., 2013

The advantages and the disadvantages of magnetic separation strategies are shown. The separator setups where these strategies can be applied are displayed.

potential toxicity of iron oxide nanomaterials need to be further
investigated and evaluated in order to ensure safe handling
of nanomaterials for applications such as magnetic separation
(Auffan et al., 2009; Valdiglesias et al., 2015). The synthesis of
different magnetic particles, especially at the nano level, as well as
a broad number of magnetic particle functionalization strategies,
have been presented by numerous reviews (Bergemann et al.,
1999; Berensmeier, 2006; Lu et al., 2007; Laurent et al., 2008;
Philippova et al., 2011; Buck and Schaak, 2013; Conde et al.,
2014; Xiao et al., 2016; Ge et al., 2017). The synthesis method
influences both the particle core and its surface properties
(Laurent et al., 2008; Shavel and Liz-Marzán, 2009; Roth et al.,
2015). For iron oxides alone, multiple strategies ranging from
co-precipitation to hydrothermal synthesis and from milling
to biological synthesis are known (Laurent et al., 2008; Ali
et al., 2016). Superparamagnetic nanoparticles can be used for
separation processes as-synthesized or embedded in polymer
matrices, often leading to microcarriers (Philippova et al., 2011).
Thesemicrocarriers (Table 2) represent themost commonly used
and commercially available particles for magnetic separation
applications (Berensmeier, 2006; Borlido et al., 2013; Fields
et al., 2016). Nanoparticles have an advantage over microparticle
beads and chromatography resins as there is no mass transfer
limitation for protein diffusion in the separation process, which
is important in terms of capacity, purity, level of contamination
and processing time. Non-embedded magnetic nanoparticles,
such as bare iron oxide nanoparticles, have a great potential
for separation processes due to their low production costs, the
abundance of precursors, and their high density. On the other
hand, magnetic microbeads are easier to handle in separation
processes as they are less prone to magnetic aggregation
effects. Thus, the larger size facilitates a better ratio between
magnetic force and Stokes’s drag force leading to a better
severability in magnetic fields compared to colloidally stabilized
nanoparticles. The selection of the optimal magnetic material

depends strongly on the process strategy. Target biomaterial
and process conditions also play a crucial role in the choice
of the beads (see Figure 1). Depending on the prize and the
requirements of the target product, either low-cost crude bare
iron oxide nanoparticles or highly specific adsorbents, such as
protein A modified magnetic particles, need to be used for
purification processes (Holschuh and Schwämmle, 2005; Gomes
et al., 2018; Schwaminger et al., 2019a,b). Furthermore, the
conditions for binding and elution of the target protein must be
accurately chosen with regard to the beads chemistry and process
design. The functionalization of magnetic surfaces is a toolkit
which can be adapted to the properties of the target and the
selected switch conditions between adsorption and desorption. In
summary, depending on the application, the magnetic material,
the particle size, the stabilization and functionalization need to
be selected and combined (Figure 3).

HIGH-GRADIENT MAGNETIC SEPARATION
FOR BIOTECHNOLOGICAL PROTEIN AND
CELL RECOVERY

High-gradient magnetic separators present large magnetic flux
densities in the tesla range which allow for local gradients of
104-105 T/m or higher (Svoboda and Fujita, 2003; Las Cuevas
et al., 2008). They enable the capture of materials with weaker
magnetic moments from the flowing stream (Yavuz et al., 2009).
Thus, emerging magnetic technology led to the development
of different separation processes for biomolecules, especially
proteins, at the laboratory scale. Nevertheless, only the work of
a small number of research groups has been devoted to the larger
scale development of magnetic separation for the recovery of
proteins, other biomolecules and even cells (Hubbuch et al., 2001;
Hoffmann et al., 2002; Hubbuch and Thomas, 2002; Bucak et al.,
2003; Heebøll-Nielsen et al., 2004b; Hoffmann and Franzreb,
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FIGURE 2 | Schemes of magnetic separator designs. A rotor-stator high-gradient magnetic separator (A) can be used for the purification of target proteins. Here, an

electro magnet is used to establish high magnetic field gradients between holey plates (rotor and stator plates). In a first step, the target material is adsorbed to the

magnetic particles and separated magnetically from the impurities in the separation chamber. In a second step, the magnetic particles are separated from the target

protein, which is eluted (Fraga García et al., 2015; Schwaminger et al., 2019a). An open-gradient magnetic separator (OGMS) (B) in a form of a magnetic drum

separator (MDS) is illustrated. Magnetic beads are separated from impurities with a magnetic drum and recovered with a scraper blade (Dong et al., 2015). In a

magnetic filtration set-up (C), magnetizable wires, meshes, or bundles are placed in a magnetic field. Magnetic particles bind to these magnetizable matrices leading

to a magnetizable filter cake, which improves the magnetic filter performance (Schwaminger et al., 2019b). During a gas-assisted magnetic separation (GAMS)

process (D), a gas is bubbled through the reactor leading to the flotation of magnetic particles and attached target molecules, which can be collected with a magnet

(Li et al., 2013). A magnetically-stabilized moving bed reactor (MSBR) is based on a rotating magnetic field around the reactor, which allows a fluidization of magnetic

beads while they behave like a fixed bed in flow direction (E) (Zong et al., 2013). A magnetic decanter (F) allows the continuous transport of magnetic particles with

the magnetized screw while impurities are not affected by the magnetic field and thus separated from the magnetic material (Lindner and Nirschl, 2014). A magnetic

centrifuge (G) allows a fast separation due to the density difference and the magnetization of magnetic particles (Lindner and Nirschl, 2014).

2004a,b; Moeser et al., 2004; Kampeis et al., 2009, 2011, 2013;
Lindner and Nirschl, 2014; Nirschl and Keller, 2014; Fraga García
et al., 2015; Roth et al., 2016; Gomes et al., 2018; Schwaminger
et al., 2019a,b).

In the life sciences, high-gradient magnetic separation
(HGMS) is “the integrated process consisting of coupling a
batch-binding step to magnetic adsorbent handling (i.e., capture,
washing, and elution) with a high-gradient magnetic filter”
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TABLE 2 | Selection of commercially available magnetic beads for biotechnological purification and medical applications.

Product Size (µm) Surface groups Materials Application Manufacturer

Dynabeads 1-4.4 Carboxyl, streptavidin, antibodies,

antigens, DNA/RNA

ION + PS shell Purification, analysis Invitrogen

SiMAG 0.5-1 OH, COOH, SO3H, PO3H2, NH2,

DEAE, PEI, C1, C2, C8, C18, Protein

A, streptavidin, heparin

ION + SiOx Purification, analysis Chemicell GmbH

SPHERO 1-120 Amino, carboxyl, diethylamino,

dimethylamino, hydroxyethyl

ION + PS shell Purification, analysis Spherotech, inc.

Pure proteome 0.3-10 Carboxyl, streptavidin, protein,

N-hydroxy-succinimide (NHS)

ION + Polymer Purification, sorting Emd millipore

Pierce beads 1-10 Streptavidin, protein, NHS,

antibodies, glutathione

ION + polymer Purification, analysis Thermo scientific

Sera-mag 1 Carboxyl, streptavidin, neutravidin,

oligo amine, protein

ION + PS shell Purification GE lifescience

Biomag 1.5 Carboxyl, streptavidin, amine,

antigen, antibody

ION + SiOx Purification, medical Polysciences, inc.

GenoPrep Hydroxyl ION + SiOx Purification GenoVision

MagaZorb 1-10 Hydroxyl ION + Cellulose Purification Cortex biochem

MagneSil 5-8.5 Hydroxyl ION + SiOx Purification Promega

MagPrep 1 Hydroxyl ION + SiOx Purification Merck

MagSi 1-5 Hydroxyl Purification MagneMedics

MGP Hydroxyl ION + Pore free glass

shell

Purification Roche Diagnostics

M-PVA 0.5-8 PVA ION + PVA Purification Chemagen

Sicastar 1-6 Maleic acid, Protein A + G, Carboxyl,

Streptavidin, IDA/NTA

ION + PS-maleic acid

copolymer

Purification Micromod

BcMag 1, 5 Hydroxyl ION + SiOx Purification Bioclone

BioMag 1 Hydroxyl ION + SiOx Purification Bangs Lab

µMACS 0.05 Hydroxyl ION + Dextran Purification Miltenyi

MPG 5 Hydroxyl ION + Boro-silicate

glass

Purification PureBiotech

Nucleo-Adembeads 0.1-0.5 Hydroxyl ION + Polymer Purification Ademtech

Scigen M 3.5 Hydroxyl ION + Cellulose Purification Vector Lab

Feridex Combidex 0.015-0.2 Hydroxyl ION + Dextran Medical Guerbet

Resovist Supravist 0.02, 0.06 Hydroxyl ION + Carboxydextran Medical Schering

Clariscan Abdoscan 0.02, 3.5 Hydroxyl, Sulphonated styrene ION + PEGStarch +

SO3-PS-DVB

Medical GE-Healthcare

VSOP-C184 0.007 Carboxyl ION + Citrate Medical Ferropharm

(Schultz et al., 2007). Hubbuch and colleagues observe that high-
gradient magnetic fishing (HGMF) is the more complete name
for the process (Hubbuch et al., 2001); however, HGMS is more
commonly used in the literature. The last 20 years have seen
a small revolution in HGMS for biotechnological applications.
Overviews of process designs, device types and development as
well as methods to determine processing relevant parameters
have been presented (Franzreb et al., 2006; Schultz et al., 2007).
We have gathered recently published articles focusing on the
main challenges of magnetic separation in biotechnology and
food technology and focus here on the studies that go beyond
the laboratory scale (see Table 3). We want to emphasize the
importance of binding and elution conditions in dependence
of target molecules, purity, purification factor, yield, surface
modification, and separator design. The equilibration times for

binding and elution of the target molecule extensively contribute
to the whole processing time with up to 2 h (Brechmann
et al., 2019; Schwaminger et al., 2019a,b). Not only the time
but the use of hazardous elution buffers such as imidazole
and high concentration of elution buffers depict an ecological
and economical challenge to magnetic separation processes
(Schwaminger et al., 2019a).

Some fully automated HGMS models (Hubbuch et al., 2001;
Hoffmann et al., 2002; Heebøll-Nielsen et al., 2004a; Hoffmann
and Franzreb, 2004a,b; Meyer et al., 2005) and a series of patents
from Franzreb and colleagues initiated a new era in high-gradient
magnetic separation for large scale life science applications. In
2006 the so-called rotor stator separator was invented (Franzreb
et al., 2004; Franzreb and Reichert, 2006). This model has the
significant advantage of leading to substantially more efficient
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FIGURE 3 | Toolkit for the selection of suitable magnetic beads according to the application. The choice of crude metal or ceramic particle and the strategy of

stabilizing and functionalizing the magnetic particles play a decisive role for their application in bioseparation processes.

elution, washing and particle recovery steps. Thus, rotor-stator
type separators can be used to upscale magnetic separation
processes beyond conventional magnetic bead applications.
Based on the rotor stator design (Franzreb and Reichert, 2006),
some separator prototypes were built in collaboration with
Steinert GmbH and Abbis GmbH. The prototype as well as the
HGMS processing steps have been precisely described (Brown
et al., 2013). A HGMS model has recently been adapted in
collaboration with the Andritz KMPT GmbH to be cGMP
compliant (Ebeler et al., 2018).

One interesting feature of the rotor stator separator is the
simple design of multicyclic processes, which leads to higher
overall yields, making it the better choice for high-value target
biomolecules. Schultz et al. and Meyer et al. had previously
presented multicycle protein recovery with other separators,
but the challenges of resuspending particles, problems due to
backmixing and incomplete flushing still remained (Meyer et al.,
2005; Schultz et al., 2007). Müller and collaborators run a process
with a rotor stator HGMS over 60 cycles with a very low loss
of binding capacity (<10%) in the first 12 cycles; in one batch
process, the authors achieve an average purification factor as high
as 4,900 (Müller et al., 2011).

Pharmaceutically relevant proteins have been captured with
magnetic separators by Holschuh and Schwämmle (2005). They
purified antibodies with protein A-modified magnetic beads
on a 100 L scale of cell culture supernatant. Recently, similar
processing approaches have been improved and adapted for the
rotor stator system (Müller et al., 2015; Gomes et al., 2018).

These works make clear the relevance of HGMS for direct
capture of biotargets at larger scales. Gomes et al. provide
work on polyclonal antibody recovery from an unfiltered rabbit
antiserum feedstock with a HGMS at a mini-pilot scale. They
use 0.8µm functionalized particles to recover antibodies from
an initial antibody concentration of 2.5 g/L in the feed with
a final total yield of ∼72% in 0.5 h in a 3-fold purified form
(Gomes et al., 2018). Müller purifies the glycoprotein equine
chorionic gonadotropin (eCG) from up to 20 L horse serum and
achieves concentration factors of ∼7 in amulticyclic process with
the rotor stator HGMS (Müller et al., 2015). In a recent study,
Brechmann et al. demonstrate the purification of monoclonal
antibodies from 26 L CHO cell supernatant with a HGMS
and obtain the same purity as for a chromatography process
(Brechmann et al., 2019).

Another important breakthrough on liter scale HGMS has
recently been achieved using magnetic nanoparticles (instead of
microparticles) for protein recovery (Fraga García et al., 2015). A
mass as high as 100 g of coated nanoparticles has been applied
successfully to recover 12 g His-GFP per hour from 2.4 L cell
lysate. Until that moment, many researchers had argued that
HGMS was not suitable for the separation of very small magnetic
particles (<100 nm) (Kim et al., 2009), although the early work of
Hatton’s group had already demonstrated the suitability of coated
nanoparticles in mL-scale processes (Bucak et al., 2003; Moeser
et al., 2004). Two new works (Schwaminger et al., 2019a,b)
provide evidence of the possibilities of HGMS using a material
that is technically and industrially very interesting: low-cost bare
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TABLE 3 | Summary of high gradient magnetic downstream processes at larger scales published since 2000.

HGMS Magnetic carrier Broth characteristics Target biomaterial Feedstock

volume/processing

P Y CF PF Further

comments

References

NdFeB magnet, 0.2 T, 2 L Chitosan beads (47µm,

65µm)

Bovine trypsin 10 L Safarik et al., 2001

Electro, 0.4 T Bacitracin-linked beads

(0.5-1µm)

Cell-free Bacillus clausii

broth

Savinase Enzyme activity Hubbuch et al.,

2001

Electro, 0.4 T, 15mL Benzamidine-linked

beads

Porcine pancreatin crude Trypsin 0.4 L, 1 g/L beads in, 2

g/L beads out

62% 3.5 Hubbuch and

Thomas, 2002

Electro, 0.4 T, 5mL Dextran beads Filtered extract of jack

beans

Concanavalin 125mL, 4 g/L carrier 99% 69% 3.8 Heebøll-Nielsen

et al., 2004a

Electro, 0.4 T, 5mL Cation-exchange beads Clarified rennet bovine

whey

Lactoperoxidase,

lysozyme

380mL, 2.5 g/L carrier 92% 4.7 36 Heebøll-Nielsen

et al., 2004c

Electro, 0.4 T, 5mL Cation-exchange beads Crude bovine whey Lactoferrin,

lacto-peroxidase, IgG

6 g/L Fractionation (3

proteins)

Heebøll-Nielsen

et al., 2004b

NdFeB magnet, 0.56 T,

4mL

Cu-IDA beads Crude sweet whey Superoxide dismutase 52mL,7 g/L beads in, 21

g/L beads out 0.15–0.6

g/L protein

86% 21 Meyer et al., 2005

NdFeB magnet, 0.32 T,

46mL

Epoxy-PVA beads

(1–2µm)

Candida antarctica Lipase Multicyclic activity Schultz et al.,

2007

NdFeB magnet, 0.32 T,

182mL

Functionalized beads Crude sweet whey Lactoferrin 2.2 L, 5 g/L carrier in 47% 1.7 18.6 Multicyclic

recovery

Meyer et al., 2007

NdFeB magnet DEAP beads Clarified mare blood

serum

Equine chorionic

gonadotropin

0.5 L 5.4 975 Müller et al., 2011

Electro, R-S, 0.28 T,

160mL

PAA beads (1.9µm) Filtered cheese, bovine

whey

Lactoferrin,

lactoperoxidase

10 L (multiple cycles), 2 L

per batch, 2,5 g/L carrier

81 %

(LPO)

2.3

(LPO)

73.4

(LPO)

Multicyclic

recovery

Brown et al., 2013

Electro, R-S, 0.25 T,

980mL

Cu-EDTA nano particles

(22 nm)

Unclarified E. coli lysate His-GFP 2.4 L, 100 g carrier, 22.3

g/L carrier in, 35 g/L

carrier out, 8.5 g/L

His-GFP

96% 93% 0.3 2.5 12 g/h; 2.2 g/L h Fraga García et al.,

2015

Electro, R-S, 0.25 T,

980mL

DEAP beads Pre-purified mare blood

serum

Equine chorionic

gonadotropin

20 L, 60 g carrier, 4.5 g/L

carrier

56% 6.7 2049 Multicyclic

recovery

Müller et al., 2015

NdFeB magnet, 0.56 T,

4mL

Hydrophobic beads

(0.8µm)

Unclarified rabbit

antiserum

Polyclonal antibody 11.6mL, 2.5 g/L IgG, 9.3

g/L lysate, 31.7 g/L carrier

out

81% 72% 3 Gomes et al.,

2018

NdFeB magnet, 0.4 T,

122mL

Bare Fe3O4 nano

particles (12 nm)

Clarified E. coli lysate Glu-GFP 1L, 2 g, 2 g/L carrier 0.31

g/L lysate

68% 81% 2.1 Schwaminger

et al., 2019b

Electro, R-S, 0.25 T,

980mL

Bare Fe3O4 nano

particles (12 nm)

Clarified E. coli lysate His-GFP 2 L, 11 g, 5.5 g/L carrier,

1.5 g/L lysate

91% 38% 2.5 Schwaminger

et al., 2019a

Electro, R-S, 0.25 T,

980mL

Bare Fe3O4 nano

particles (13 nm)

S. ovalternus cultivation S. ovalternus

microalgae cells

5 L, 0.3 g/L carrier, 0.6 g/L

cells

Fraga-García

et al., 2018

Electro, rod 1 T Protein A agarose beads

(90µm)

CHO cell supernatant Monoclonal antibody 26 L clarified cell-free

harvest, 1.9 L bead for 5

g/L mAb

86% Brechmann et al.,

2019

Separator data, carrier type and diameter, conditions, target material, process scale, and performance indicators are shown. Generally, the magnetic flux densities correspond to the values in the air gap and the volumes to the void

values. Broth and target molecules data as well as the carrier data correspond to the ones in the process feed. In each case, the highest processing values were selected. Purity (P), yield (Y), purification factor (PF), and concentration

factor (CF) represent generally the total process results and combine several elution fractions.
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iron oxide nanoparticles. Both works demonstrate the advantages
of nanoparticle based liter-scale separation for achieving higher
capacities. Furthermore, Schwaminger et al. also reveal that
elution can be carried out without the need of hazardous and
expensive eluents as imidazole. This is an evidence for the broad
margin to enhancing results andmoving towardmore sustainable
processing forms, which is expected to be one of the future
focuses of downstream processing (Schwaminger et al., 2019a).

Another example of successful separation using bare iron
oxide nanoparticles in liter scale HGMS to recover whole cells
rather than proteins has also been published very recently
(Fraga-García et al., 2018), although the basis for magnetic
cell separation dates back to 1975 (Melville et al., 1975).The
advantages of faster processing and high recovery yields in
the case of cell separation were recognized several decades
ago (Kronick et al., 1978), although the magnetic material
was often used only to label the cells (Molday et al.,
1977). More recent publications emphasize the larger scale
possibilities for cell purification (Hultgren et al., 2004) and the
relevance gained in the last two decades (Berger et al., 2001),
which is being extended to the field of biomass harvesting
(Hu and Hu, 2014; Fraga-García et al., 2018).

APPLICATIONS AND PROSPECTS FOR
THE FOOD AND BEVERAGE INDUSTRY

Magnetic nanoparticles can be used in the food industry as well.
The removal of yeast in large fermentation processes for wine
and beer processing are of great interest. Magnetic removal of
yeast represents a cost-effective and simple process compared
to traditional techniques, where yeast is frozen and exploded
(Dauer and Dunlop, 1991; Berovic et al., 2014). Berovic et al.
demonstrated a magnetic yeast removal process, which reduces
the removal time from 60 days to 15min while maintaining the
taste standard (Berovic et al., 2014). Not only the removal but the
entire fermentation process can be improved by immobilization
of yeast cells on magnetic nanoparticles (Genisheva et al.,
2011). Furthermore, the removal of haze, turbidity proteins, and
unwanted flavors in wine is an interesting field of application
(Safarik et al., 2007; Mierczynska-Vasilev et al., 2017). Polymer
coatings on magnetic nanoparticles can be used specifically
to remove proteins from wines without affecting taste and
flavors (Mierczynska-Vasilev et al., 2017). Liang et al. have
shown the removal of the unwanted byproduct 3-Isobutyl-2-
methoxypyrazine using polymer-coated magnetic nanoparticles
(Liang et al., 2018). Aside from the refinement of alcoholic
beverages, immobilizing enzymes on magnetic nanoparticles can
be used in the food industry for clarification of fruit juices
(Mosafa et al., 2014).

Still another large area of interest for magnetic separation
processes is the dairy industry. Several approaches for the
separation and purification of whey proteins such as bovine
serum albumin, lysozyme, lactoferrin, lactoperoxidase, α-
lactoalbumin, and β-lactoglobulin exist at the laboratory scale
and have been reviewed by Nicolás et al. (2019). While many
studies look quite promising, we would like to highlight

the processing scales beyond the milliliter scale. For the
purification of whey, Heebøll-Nielsen et al. were among the first
to introduce high-gradient magnetic fishing (Heebøll-Nielsen
et al., 2004b). They were able to capture lysozyme as well
as lactoperoxidase with magnetic cation-exchange beads from
375 to 174mL of whey, respectively (Heebøll-Nielsen et al.,
2004c). Further investigations of magnetic processing of whey
were conducted by Meyer et al. (2005, 2007). They purified
superoxide dismutase from ∼50mL of whey by HGMF with
metal ion coordinated magnetic beads (Meyer et al., 2005).
Furthermore, larger amounts of whey were introduced for the
purification of the protein lactoferrin. Here, 2,200mL of whey
were processed with HGMF to purify 111mg lactoferrin with
polyglutaraldehyde coated silanized magnetic beads. A further
processing step was the separation of lactoferrin from crude
whey in a five cycle process with 2 L of whey feedstock batches
(Brown et al., 2013). Similar magnetic separation approaches
on the edge of food- and biotechnology are the purification of
lectins from legume extracts and lysozyme from hen egg white
(Heebøll-Nielsen et al., 2004a; Eichholz et al., 2011).

CONCLUSION AND OUTLOOK

This review provides an insight into industrially relevant
magnetic bioseparation processes. Moreover, we list all relevant
factors to be taken into account for designing a magnetic
separation process. We want to emphasize the still unexploited
potential of magnetic separation techniques, which could
be applied in industrial downstream processing for the
pharmaceutical, nutritional, and medicinal sectors, among
others. Magnetic separation might aid in overcoming the major
challenges in downstream processing: (1) more sustainable
bioprocessing and environmentally friendly elution media in
the recovery steps; (2) reduced water volumes to enhance
concentration factors and decrease water consumption. Magnetic
separation can be implemented as a direct capture and
concentration step from crude cell broths. Additional techniques
might be necessary to further polish proteins and improve
the purity of pharmaceutical target products. However, the
target requirements, the magnetic adsorbents, the processing
conditions, and the separator design affect each other.

Most investigations on the enhancement of chromatography
materials as well as magnetic beads seek only to improve
the binding behavior. Hence, a better understanding of the
adsorption mechanisms but more importantly of the desorption
steps is necessary. While there is a great acceptance for
chromatography in industrial downstream processes, magnetic
separation needs to be established as an alternative. Here,
regulations from the FDA for iron oxides as food additives and
their use in medical applications will ease the acceptance for
industrial bioseparation processes as well. The most important
factor may be to encourage the design and engineering of
improved systems for different biotechnological goals. At the
moment, choosing a device for magnetic based separation of
biomolecules is difficult. More effort must be devoted to the
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development of modern apparatuses by learning from cutting-
edge technologies to apply less conservative but more dynamic
industrial approaches. This might be the greatest challenge for
establishing magnetic separation as an industrial alternative to
conventional purification methods in the first and middle stages
of downstream processing applications.

Magnetic separation systems are robust and the running
costs are low. The change from magnetic microbeads, which
are commonly used in magnetic separation processes, to
nanoparticles with an even higher specific surface area and lower
production costs might pave the way for even more propitious
processing strategies. Moreover, the setup designs, which can
be quite simple, lead to processing with low complexity. These
advantages should lead to innovative, industrially appealing
processes for large scale downstream processing in the future.
Magnetic separation can also entail greater productivity and
lower product prices for target molecules, thereby extending the
number of products of biotechnological origin. In conclusion we

would like to encourage more research and technical processing

using magnetic forces, particularly for other life science fields
such as the food and beverage sector.
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