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The in vitro determination of realistic loads acting in knee ligaments, articular cartilage,

menisci and their attachments during daily activities require the creation of physiological

muscle forces, ground reaction force and unconstrained kinematics. However, no in vitro

test setup is currently available that is able to simulate such physiological loads during

squatting and jump landing exercises. Therefore, a novel knee joint simulator allowing

such physiological loads in combination with realistic, rapid movements is presented.

To gain realistic joint positions and muscle forces serving as input parameters for

the simulator, a combined in vivo motion analysis and inverse dynamics (MAID) study

was undertaken with 11 volunteers performing squatting and jump landing exercises.

Subsequently, an in vitro study using nine human knee joint specimens was conducted

to prove the functionality of the simulator. To do so, slow squatting without muscle

force simulation representing quasi-static loading conditions and slow squatting and

jump landing with physiological muscle force simulation were carried out. During all tests

ground reaction force, tibiofemoral contact pressure, and tibial rotation characteristics

were simultaneously recorded. The simulated muscle forces obtained were in good

correlation (0.48 ≤ R ≤ 0.92) with those from the in vivo MAID study. The resulting

vertical ground reaction force showed a correlation of R= 0.93. On the basis of the target

parameters of ground reaction force, tibiofemoral contact pressure and tibial rotation, it

could be concluded that the knee joint load was loaded physiologically. Therefore, this

is the first in vitro knee joint simulator allowing squatting and jump landing exercises in

combination with physiological muscle forces that finally result in realistic ground reaction

forces and physiological joint loading conditions.
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INTRODUCTION

For biomechanical in vitro investigations of human knee joint
specimens, different types of knee joint simulators have been
introduced. The complexity of the human knee joint requires
a sophisticated design of such simulators. Fundamentally,
a distinction can be made between horizontal knee joint
simulators, vertical simulators, so-called Oxford-Rigs, and
simulators driven by a robotic arm.

Horizontal knee joint simulators are particularly characterised
by the horizontal position of the knee joint specimens
(Blankevoort et al., 1988; Hirokawa et al., 1991; Torzilli et al.,
1994; Bach and Hull, 1995; Dürselen et al., 1995; Omori et al.,
1997; Ahmad et al., 1998; Kiguchi et al., 1999; Stukenborg-
Colsman et al., 2002b; Hofer et al., 2011). Typically, the femur
or the tibia is fixed to the simulator base or to a moveable
swing arm, which is responsible for the flexion and extension
movements, whereas the opposite side provides all necessary
degrees of freedom (Heinrichs et al., 2017). Robotic arm systems
(Rudy et al., 1996; Livesay et al., 1997; Li et al., 1999; Lo
et al., 2008; Diermann et al., 2009; Goldsmith et al., 2013) are
comparable to horizontal simulators, but the knee joint is moved
along a previously determined passive motion path in which
all external forces and moments acting on the knee joint are
minimal (Lorenz et al., 2013). The Oxford-Rig (Kumagai et al.,
2002; Lo et al., 2008) is characterized by an upright and vertical
fixation of the knee joint as well as a hip- and an ankle-joint
assembly (Zavatsky, 1997). The hip-joint assembly can be moved
vertically, thereby providing flexion and extension to the knee
joint. As a variation of the Oxford-Rig design, there are impact
simulators mimicking impacts on the knee joint using falling
weights (Withrow et al., 2006; Kiapour et al., 2016).

Some of these simulators are able to mimic muscle forces
acting across the knee joint. This is realised by weights or
actuators and steel cables, which are connected to the bone
at the anatomical insertion sites or directly to the muscles by
special clamps. Typically, the quadriceps muscle, the two-headed
gastrocnemius muscle or the hamstring muscles are simulated
(Hirokawa et al., 1991; Shoemaker et al., 1993; Bach and Hull,
1995; Dürselen et al., 1995; Ahmad et al., 1998; Li et al., 2002; Gill
et al., 2003; Hofer et al., 2011; Heinrichs et al., 2017). However,
in most cases the applied muscle forces are relatively low and
attain only values of up to 200N (e.g., simulating the quadriceps
muscle; Dürselen et al., 1995; Withrow et al., 2006). This means
that neither physiological loading conditions inside the knee joint
nor a physiological ground reaction force (generated by muscle
forces) can be achieved. Furthermore, adapting muscle forces
over time or with a changing knee flexion angle is rarely possible
with current knee joint simulators, resulting in only slow knee
joint movements (Stukenborg-Colsman et al., 2002a).

Themost commonmethods for creating knee joint movement
in current knee simulators are either passive knee flexion or
control of the knee flexion angle or ground reaction force via
a muscle force control-loop (Stukenborg-Colsman et al., 2002a;
Victor et al., 2009). However, because the different knee-spanning
muscles influence each other, leading to a statically indeterminate
mechanical system, a real-time control of several simultaneously

acting muscles is difficult to accomplish for dynamic movements,
for example, drop jumping. Consequently, such control-loop
mechanisms realised in current simulators only allow slow joint
motions with flexion-extension rates as low as ∼1◦/s (Churchill
et al., 1998; Lo et al., 2008), corresponding to quasi-static testing
conditions. Some of the existing Oxford-Rig-like knee joint
simulators are able to simulate almost physiological ground
reaction forces or body weights (Elias et al., 2002; Maletsky
and Hillberry, 2005). These simulators are able to simulate
movements of up to 12◦/s, which is still much lower than those
required for jump landing (145◦/s).

To actually be able to achieve realistic in vitro testing
conditions as they occur during daily activities, knee joint
movements andmuscle forces resulting in physiological joint and
ground reaction forces are required. Therefore, the aim of this
study was to develop a novel knee joint simulator for in vitro
testing of squatting and drop jump movements at realistic speeds
and joint forces.

MATERIALS AND METHODS

Technical Description
The mechanical construction of the novel knee joint simulator,
which is based on the design of an Oxford-Rig (Bourne et al.,
1978), comprises a base frame, a hip-joint assembly and an
ankle-joint assembly (Figure 1). The hip-joint assembly consists
of a universal joint. It provides three degrees of freedom,
including flexion/extension, abduction/adduction, and vertical

FIGURE 1 | Knee joint simulator with a knee joint model fixed between the

hip- and ankle-joint assemblies, crosshead for vertical hip displacement and

pneumatic actuators for muscle force simulation.
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FIGURE 2 | Control of the dynamic knee joint simulator with a real-time system, Festo configuration tool for parameterisation, control of the pneumatic and electrical

actuators, registration of force sensors and LabVIEW and LabVIEW real-time applications.

linear displacement. Vertical displacement is achieved by the hip-
joint assembly attached to a crosshead, which can be moved
vertically along a guided ball bearing driven by an electrical
servomotor (EMMS-AS-140-L-HS-RMB, Festo AG & Co. KG,
Esslingen, Germany) with a linear axis at a maximum crosshead
speed of 670 mm/s, corresponding to a maximum angular
velocity of 350◦/s. It must be noted that the simulation of hip
movement results only in knee flexion and extension without
creating any joint or ground reaction forces. The ankle-joint
assembly has two degrees of freedom, allowing flexion/extension,
and abduction/adduction. Additionally, because of an additional
bearing, the tibia is free to rotate internally and externally.
Consequently, the knee joint simulator allows unconstrained
movement in 6◦ of freedom (Zavatsky, 1997).

The nine most relevant knee-spanning muscles are simulated
to achieve physiological loading conditions and ground reaction
forces. These muscles are the Musculus (M.) vastus medialis,
M. vastus lateralis, M. vastus intermedius, M. rectus femoris,
M biceps femoris, M. semitendinosus, M. semimembranosus,
M. gastrocnemius medialis and M. gastrocnemius lateralis.
Because of similar anatomical tensile directions, the M.
vastus intermedius and M. rectus femoris as well as the M.
semitendinosus and M. semimembranosus are combined and
simulated as a single-acting muscle, respectively. In total, seven
pneumatic actuators (DNCI-63-300-P-A, Festo AG & Co. KG)
are used for muscle force simulation, which are located in the
upper and lower areas of the base frame. Bicortical screws are

positioned at the anatomical insertion sites of the respective
muscles. Steel cables connect the pneumatic actuators and
the bicortical screws to allow for muscle force simulation.
Seven uniaxial force sensors (KD40S, ME-Messsysteme GmbH,
Henningsdorf, Germany) are built in the steel cables to measure
the applied muscle forces, respectively. Additionally, a linear
pneumatic actuator and a rotational pneumatic actuator are
located below the ankle-joint assembly to simulate axial shock
loads and tibial distortion moments, respectively. To measure
the ground reaction forces and moments, a six-axis force/torque
sensor (K6D68, ME-Messsysteme GmbH) is fixed directly below
the ankle-joint assembly. Therefore, the hip movement creates
the knee joint flexion and extension, while the seven pneumatic
actuators are used to simulate muscle forces that result in the
related ground reaction forces. That is, without the muscle force
simulation there would be no resultant ground reaction force, but
just knee joint flexion and extension.

The simulator is designed to work in a combination
of position-control and force-control modes (Figure 2). The
position-controlled, linear displacement of the hip is directly
linked to the flexion and extension of the knee joint. The muscle
forces are applied in a force-controlled mode. For these purposes,
both the linear displacement of the hip joint as a function over
time and the muscle forces as a function over time serve as input
parameters for the knee joint simulator. These input values were
obtained from a combined motion analysis and inverse dynamic
(MAID) study on 11 healthy volunteers performed in the motion
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laboratory of a cooperation partner (Clinic for Orthopaedics and
Trauma Surgery, Heidelberg University Hospital, Heidelberg,
Germany). In doing so, the kinematics and kinetics of the subjects
were measured. These values together with the anthropometric
data were used to calculate the acting muscle forces by means of
an inverse dynamic musculoskeletal simulation.

The input parameters for muscle forces and hip position
derived from the MAID study were assigned to the respective
actuators (parameterisation) by using a pneumatic configuration
tool (Festo AG & Co. KG) (Figure 2). The simultaneous
control of all actuators is realised utilising a real-time system
(cRIO-9064, National Instruments, Austin, TX, USA) and a
custom-made software application (LabVIEW 2014, National
Instruments). The data acquisition of the uniaxial muscle force
sensors and the six-axis ground reaction force/torque sensor
is achieved by another custom-made LabVIEW application
(National Instruments). Both applications enable rapid and real-
time control, signal processing and data acquisition.

Combined Motion Analysis and Inverse
Dynamic Study (MAID)
Eleven healthy adults (six women, five men, age = 30.9 ±

9.3 a, weight = 71.8 ± 17.1 kg, height = 1.77 ± 0.11m) were
examined in a subject study (IRB approval no. S-081/2015
Heidelberg University). Three-dimensional (3D) motion analysis
was performed with a 12-camera optoelectronic system (Vicon
Motion Systems Ltd., Oxford, England) operating at 120Hz.
The marker protocol used for this study was the Plugin-Gait
lower bodymarker set (ViconMotion Systems, Oxford, UK) with
additional markers on the subject’s thorax (spinous process of
the 7th cervical vertebrae, left and right acromion, and incisura
jugularis) as well as on the medial malleolus and the medial
femoral condyles. Additionally, two force-measuring platforms
(Kistler Instruments AG, Winterthur, Switzerland) were used to
synchronously collect kinetic data at 1,080Hz. Joint kinematics
and joint kinetics were obtained using the inverse dynamics
equations approach with the software Plugin-Gait (Vicon Nexus
2.0, Vicon Motion Systems, Oxford, UK) following Kadaba et al.
and Davis et al. The subjects performed slow squats from 0◦

to 70◦ knee flexion and a double-legged jump landing from
a height of 30 cm to generate different datasets. Consequently,
the movements and positions of the hip, knee, and ankle joint
with the resulting flexion angles and the ground reaction forces
were determined. These data were used to calculate the muscle
forces acting across the knee joint over time using a generic
full-body musculoskeletal model to analyse the motion data
in OpenSim 3.3 (Delp et al., 2007). The metatarsophalangeal
and subtalar joints were fixed in anatomically neutral positions
for all analyses, as has been done recently by other authors
(O’Connor et al., 2018). A fourth order zero-lag low-pass filter
with a cut-off frequency of 10Hz was applied to ground reaction
forces, whereas a Woltring filter with MSE 10 was used to
smooth the kinematical data (Woltring, 1991). Input for the
model was created using custom MATLAB routines (2014b, The
MathWorks, Inc., Natick, MA, USA), based on MATLAB scripts
for processing data from the simtk.org website. The model was

FIGURE 3 | (A) Muscle force simulation of the quadriceps muscle using a

threaded rod, steel cable, component with steel hooks and a ferrule. (B)

Muscle force simulation of the hamstring and gastrocnemius muscles using

threaded rods, dowels and steel cables. (C) Specimen fixed in the dynamic

knee joint simulator with cylindrical metal pots, uniaxial load cells for measuring

muscle forces, pressure-sensitive foil for measuring the tibiofemoral contact

pressure and coordinate systems with optical markers for measuring the

kinematics.

scaled to the dimensions of each subject based on a static trial.
Inverse kinematics and inverse dynamics were performed to
calculate joint angles and joint moments. Muscle forces were
calculated using static optimisation.

In-vitro Study
After thawing overnight, the skin and muscles of nine human
cadaveric knee joint specimens (age: 61.5 ± 5.5 years, body
weight: 62.3 ± 7.2 kg, body mass index: 21.2 ± 1.0, Science
Care, Inc. Phoenix, AZ, USA; IRB approval no. 300/12, Ulm
University) were completely removed and the femur and tibia
were exposed. The proximal fibula was fixed to the tibia using a
cortical screw and resected 2 cm below the fibula head. The femur
and tibia were cut at a distance of 12 cm to the knee gap and
moulded in metal pots using polymethylmethacrylate (Technovit
4000, Kulzer GmbH, Wehrheim, Germany) (Figure 3C). The
joint capsule was carefully opened, the patella was exposed and
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the infrapatellar fat resected. The coronary meniscal attachments
were incised anteriorly and posteriorly to allow the insertion
of a pressure-sensitive Tekscan foil (I-Scan system (Type 4000),
Tekscan Inc., Boston, MA, USA) on the tibial plateau to measure
mean and peak tibiofemoral contact pressure. The pressure
sensor was anteriorly and posteriorly secured to the tibia with a
screw to minimise motion of the sensor during testing.

Because of large muscle forces of up to 1,000N acting on
the knee joint specimens, a rigid fixation of steel cables at the
anatomical insertion sites is necessary. Therefore, to simulate the
anterior thigh muscles, a hole was drilled through the insertion
site of the patellar tendon at the tibial tuberosity and a threaded
rod was inserted and secured using a locknut. Furthermore,
two holes were drilled through the patella and a steel cable was
attached to the threaded rod and passed through these two holes.
To ensure a guidance of the patella during movement, a ferrule
(Carl Stahl Technocables GmbH, Süßen, Germany) wasmounted
below the patella inside the steel cables (Figure 3A). Above the
patella, a component with three bolted steel hooks was fixed to
establish the connection between the anatomical insertion site
and the uniaxial load cells and the pneumatic actuators. The
simulation of the hamstring muscles was also performed using
threaded rods in the anatomical insertion sites of the muscles
(Figure 3B). The M. biceps femoris inserts at the fibula head,
the M. semitendinosus inserts at the pes anserinus at the medial
tibial tuberosity and the semimembranosus muscles inserts at the
medial tibial condyle. For the simulation of the calf muscles (M.
gastrocnemius medialis, M. gastrocnemius lateralis), dowels were
used, which were attached in the points of origin at the medial
and lateral femoral condyles (Figure 3B). All steel cables were
additionally guided by self-aligning pivoting units to ensure the
best possible anatomical line of action. Throughout the entire
preparation process and all tests, the knee joint specimens were
kept moist with saline solution.

After preparation, the knee joint specimens were fixed in an
upright position in the knee joint simulator using cylindrical
metal pots (Figure 3C). Furthermore, the pneumatic actuators
were connected to the steel cables and the uniaxial force
sensors (Figure 3C). In a first step and to precondition the
knee joint specimen, a slow squat without any muscle force
simulation was performed. The knee joint specimen was flexed
from 10◦ knee flexion to 70◦ and extended back to 10◦ at a
flexion velocity of 5◦/s. This motion was repeated with muscle
force simulation according to the target muscle forces obtained
from the MAID study. Finally, we simulated a jump landing
movement with muscle force simulation during which the
specimen was flexed from 10◦ to 50◦ at a velocity of ∼180◦/s
and extended back from 50◦ to 10◦ at a velocity of ∼120◦/s (see
Supplementary Video). The hip acceleration and deceleration
during flexion was set to 2.5 m/s2 and during extension to 1.5
m/s2. The jump landing performed by the subjects (MAID study)
lasted 420 ms.

Before starting the jump landing simulation, preload muscle
forces between 50 and 300N were applied to stabilise the
knee joint. During slow squat movement and jump landing,
tibiofemoral contact pressure was continuously recorded
(K-ScanTM, Tekscan Inc.). The knee joint kinematics were

recorded utilising a marker-based 3D-camera system (Optitrack,
NaturalPoint, Inc., OR, USA). During jump landing, the ground
reaction force and the applied muscle forces were additionally
recorded at a sampling rate of 1 kHz using custom-made
LabVIEW software (National Instruments).

Statistical Analysis
The Bravais-Pearson correlation coefficient (R) was used to
compare the actual and target values (MAID) of the ground
reaction force and the applied muscle forces during jump
landing. Values >0.5 of the multiple correlation coefficients
show a moderate relationship and values >0.8 show a strong
linear relationship. Gaussian distribution of the tibiofemoral
peak and mean pressure distribution data using the Shapiro-
Wilk test (Shapiro and Wilk, 1965), resulted in normally
distributed data. Therefore, a One-Way ANOVA with a post-
hoc LSD test were performed to compare mean and peak
tibiofemoral contact pressure between slow squat with and
without muscle force simulation and a drop jump landing
with muscle force simulation of the lateral and the medial
compartment, respectively. Differences in medial and lateral
tibiofemoral contact pressure were investigated using a paired
Student’s t-test. A statistics software package (SPSS V24. IBM
Corp., Armonk, USA) was used to conduct the statistical
analyses, while a p-value < 0.05 was considered significant and
standard Bonferroni correction applied where necessary.

RESULTS

Muscle Forces
All simulated mean actual muscle forces and target muscle forces
gained from the MAID study are presented as a function of
the motion cycle for the jump landing movement (Figure 4).
The target force of the M. vastus lateralis increased within
80ms to a maximum value of 1,050N. The simulated muscle
force was ∼15% lower with a delay of ∼60ms, leading to a
correlation of R = 0.72. The target force of the M. vastus
medialis increased within 120ms to 480N, whereas the simulated
muscle force was ∼10% lower with a delay of 60ms (R =

0.85). The target force of the M. vastus intermedius and M.
rectus femoris muscles increased to 580N within 100ms. The
simulation of this muscle group was ∼12% lower with a delay
of 40ms (R = 0.92). The target values of the hamstring muscles
(M. biceps femoris, M. semitendinosus/M. semimembranosus)
and of the gastrocnemius muscles (M. gastrocnemius medialis,
M. gastrocnemius lateralis) were between 0 and 200N, leading
to correlations of R = 0.48, R = 0.52, R = 0.71 and R =

0.68, respectively.

Ground Reaction Force
Regarding the ground reaction force in the vertical direction
during jump landing, a strong correlation (R = 0.93) between
the mean actual value and the target value was determined
(Figure 5). At the beginning of the movement, the vertical
ground reaction force reached values of ∼100N because of the
previously described offset muscle forces. In further progression,
forces of up to 860N were generated.
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FIGURE 4 | Muscle force simulation—comparison between the actual (mean values) and target muscle forces (gained in MAID study) as a function of the motion cycle

(duration: 540ms) during jump landing for M. vastus lateralis, M. vastus medialis, M. vastus intermedius/M. rectus femoris, M. biceps femoris, M. semitendinosus/M.

semimembranosus, M. gastrocnemius medialis and M. gastrocnemius lateralis (n = 9).

Knee Contact Pressure
Mean and peak contact pressure data for a slow squat without
and with muscle force simulation and for a jump landing
motion for the medial and lateral knee compartments are
presented in Figure 6, respectively. The One-way ANOVA
indicated a significant difference (p < 0.001) for all mean and

peak pressure measurements. LSD post-hoc testing revealed a
significant increase in the mean and peak contact pressures
in the medial and lateral compartments between a slow squat
without muscle force simulation and both slow squat withmuscle
force simulation (p < 0.04) and jump landing with muscle force
simulation (p < 0.001). Peak contact pressures were not different
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FIGURE 5 | Vertical ground reaction force—comparison between the actual (mean value, blue line) with standard deviation (envelope curve, light blue lines) and target

ground reaction forces (measured during MAID study, green line) as a function of the motion cycle (duration: 540ms) (n = 9).

FIGURE 6 | Mean and peak contact pressure (mean ± SD) in the medial and lateral compartments for slow squat without muscle force simulation, slow squat with

muscle force simulation and a jump landing exercise. *p ≤ 0.05 (n = 9).

(p > 0.187) when comparing the slow squat with muscle force
simulation and the jump landing with muscle force simulation.
Mean contact pressure calculations indicated significantly higher
values for the jump landing (p < 0.001) compared to the slow
squatting with muscle force simulation. Comparisons of the
medial and lateral peak and mean contact pressure indicated no
difference (p > 0.067) between the compartments.

Kinematics
During slow squat movements, a tibial external rotation between
∼6◦ and 12◦ was determined (Figure 7), reflecting the typical
screw home mechanism occurring between knee extension and
30◦ flexion position.

DISCUSSION

Within the present study, a novel knee joint simulator was
developed and compared to in vivo subject data for ground
reaction force and muscle forces. It could be shown that
this simulator is able to apply rapid movements of 145◦/s in
combination with physiological muscle force simulation to knee
joint specimens that led to realistic ground reaction forces.
Therefore, to the best of our knowledge, this knee joint simulator
is the first to be able to simulate jump landing movements with
physiological joint loads and kinematics.

The proof-of-concept of the knee joint simulator was
performed by investigating the ground reaction force in
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FIGURE 7 | Exemplary external tibial rotation as a function of the knee flexion angle during slow squat with muscle force simulation.

the vertical direction and the tibiofemoral contact pressure.
In addition, knee kinematics were analysed to guarantee
unconstrained motion.

The ground reaction force is an important measure for
the load on the limb (Zadpoor and Nikooyan, 2011). In the
present study, it could be shown that during the simulation
of a jump landing an almost physiological ground reaction
force in the vertical direction could be generated for this
cohort with R = 0.93. This physiological ground reaction force
during jump landing could be achieved despite partially not
perfectly simulated muscle forces. In detail, the muscle force
simulation for the quadriceps extensor muscles (M. vastus
lateralis, M. vastus medialis, M. vastus intermedius/M. rectus
femoris) indicated good correlations (R= 0.72–0.92) between the
muscle forces obtained from the MAID study and the simulated
muscle forces. In turn, because of the inertia of the pneumatic
actuators, the simulation of the hamstring and gastrocnemius
muscles was more difficult to achieve. However, the Bravais-
Pearson coefficients for these muscle force simulations still
showed an acceptable coefficient ranging between R = 0.48–
0.71. Additionally, we believe that this did not significantly
compromise the resulting knee joint force. These muscle forces
act at a much lower force level than, for example, the extensor
muscles (Figure 4), and thus contribute less to the stabilisation
of the knee joint during jump landing motion than the extensor
muscles (Baratta et al., 1988; Urabe et al., 2005). Nevertheless, to
improve the simulation of flexor muscle forces in future studies,
enhancements in the air pressure control system should be made.

Regarding the tibiofemoral contact pressure, studies have
already shown that the contact pressure in the knee joint
increased significantly with increasing axial loads even at static
knee positions (Poh et al., 2012; Geeslin et al., 2016). Seitz
et al. and Perez-Blanca et al. determined peak contact pressures
of ∼3 MPa while applying an axial load of 1,000N (Seitz
et al., 2012; Perez-Blanca et al., 2016). Lee et al. determined a
peak contact pressure of 4.2 MPa in the medial compartment
under an axial load of 1,800N at a knee flexion angle of 60◦

(Lee et al., 2006). This peak value is slightly lower but at a
similar level as the pressure determined in the present study.

Therefore, it can be concluded that the axial load generated
by the muscle forces during jump landing corresponds to an
axial load of ≥1,800N. It could be further shown, that based
on the tibiofemoral contact measurements, a physiological load
transfer was achieved only in case of muscle force simulation,
indicating a medial to lateral compartment transfer ratio of ∼60:
40 (Bruns et al., 1993). In turn, without muscle force simulation
the medio-lateral load distribution was random. Comparing
the quasi-static like squatting motion without muscle force
simulation with the simulated squatting exercise with muscle
force simulation and the drop jump led to a significant increase of
the tibiofemoral mean and peak contact pressure. This underlines
the importance of providing physiological joint forces during in
vitro experiments.

The analysis of the knee joint kinematics showed an external
tibial rotation during simulated slow squatting of ∼6◦ to 12◦

beginning at 25◦ of flexion in the present study. This typical
screw-home mechanism is an involuntary, passive movement
stabilising the knee joint in extension and is caused by the
asymmetry between the femoral condyles and the tibial plateau
(Piazza and Cavanagh, 2000). According to the literature, the
screw-home mechanism begins between 25◦ and 36◦ of knee
flexion and is normally ∼5◦ to 12◦ of external rotation (Bull
et al., 2008; Müller et al., 2009; Sharma et al., 2012; Hacker et al.,
2016). Our measurements are in accordance with these findings,
proving the unconstrained motion of the joint specimens.

A limitation of the knee joint simulator introduced here is an
observed delay of 120ms (28%) when comparing the simulation
of the jump landing motion (540ms) and the data obtained
from the MAID subject study (420ms). We assume that the
pneumatic actuators were unable to re-adjust rapidly enough,
because of the internal pressure control-loop and the inertia of
the pneumatic actuators. Nevertheless, with the velocity used
for flexion and extension, an almost real-time simulation of a
jump landing movement could be achieved. Another limitation
is that the MAID study used the Plugin Gait marker set without
a complex foot marker set. Since there is not enough resolution
in marker-based motion capture to get the precision needed to
track the metatarsophalangeal and subtalar joints, especially with
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only a few marker on the foot, keeping these degrees of freedom
locked is well within reason.

In conclusion, the device introduced here can particularly be
used for simulating dynamic exercises with rapid movements in
combination with physiological muscle forces occurring during
daily life. For example, to date, only data about meniscal loads
and their attachments from static or quasi-static testing and
loading conditions are available. In the future, it will be possible
to investigate the loads on the menisci and their attachments
under conditions of physiological movements and muscle forces.
Other structures, including cruciate and collateral ligaments
and cartilage, could also be investigated under such conditions.
The knee joint simulator could be extended to include further
movement patterns in the future. Consequently, it would be
possible to investigate emerging questions, particularly in the
field of knee joint trauma and rehabilitation optimisation.
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