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A promoter is a short region of DNA (100–1,000 bp) where transcription of a gene

by RNA polymerase begins. It is typically located directly upstream or at the 5′ end

of the transcription initiation site. DNA promoter has been proven to be the primary

cause of many human diseases, especially diabetes, cancer, or Huntington’s disease.

Therefore, classifying promoters has become an interesting problem and it has attracted

the attention of a lot of researchers in the bioinformatics field. There were a variety of

studies conducted to resolve this problem, however, their performance results still require

further improvement. In this study, we will present an innovative approach by interpreting

DNA sequences as a combination of continuous FastText N-grams, which are then fed

into a deep neural network in order to classify them. Our approach is able to attain a

cross-validation accuracy of 85.41 and 73.1% in the two layers, respectively. Our results

outperformed the state-of-the-art methods on the same dataset, especially in the second

layer (strength classification). Throughout this study, promoter regions could be identified

with high accuracy and it provides analysis for further biological research as well as

precision medicine. In addition, this study opens new paths for the natural language

processing application in omics data in general and DNA sequences in particular.

Keywords: DNA promoter, transcription factor, word embedding, convolutional neural network, natural language

processing, precision medicine

INTRODUCTION

A promoter is a region of DNA where RNA polymerase begins to transcribe a gene. Normally,
promoter sequences are typically located directly upstream or at the 5′ end of the transcription
initiation site (Lin et al., 2018). Both promoters and transcription initiation sites are bound by RNA
polymerase and the necessary transcription factors. Promoter sequences describe the direction of
transcription and point out which DNA strand will be transcribed (known as sense strand). The
transcription process is shown in Figure 1, which contains two steps: turning on and turning off
genes. In these two stages, promoters receive information from RNA polymerase to decide the

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2019.00305
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2019.00305&domain=pdf&date_stamp=2019-11-05
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:khanhlee@tmu.edu.tw
mailto:hyyeh@ntu.edu.sg
https://doi.org/10.3389/fbioe.2019.00305
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00305/full
http://loop.frontiersin.org/people/711875/overview


Le et al. Classifying Promoters Using Deep Learning

FIGURE 1 | Process of promoters in transcription. (A) The gene is essentially

turned off. The repressor is not inhibited by lactose and binds to operator, then

promoter is bound to make lactase; (B) the gene is turned on. The repressor is

inhibited by lactose, then the promoter is bound by the RNA polymerase and

express the genes to synthesize lactase. Finally, the lactase will digest all of the

lactose, until nothing binds to the repressor. The repressor will then bind to the

operator, stopping the manufacture of lactase.

manufacture of lactase. Promoters can be about 100–1,000
base pairs long. There are three elements of promoters in
eukaryotic cells, such as core promoter, proximal promoter,
and distal promoter. Each of them plays a different role in
DNA transcription and RNA polymerase. Many recent studies
suggested that DNA promoters may be the primary cause of
many human diseases, especially diabetes (Döhr et al., 2005;
Ionescu-Tîrgovişte et al., 2015) or Huntington’s disease (Coles
et al., 1998).

Owing to the huge importance of promoters in genetics and
human diseases, the detection of them is an essential problem
in genome research. A lot of efforts had been made to address
this issue, from researchers with wet-lab, experimental, and
computational techniques. One of themost important techniques
is to detect the promoters based on TATA box, which is a motif
that contains 24% of promoter genes in eukaryotes. Examples
of this approach include: Promoter Scan (Prestridge, 1995)
built a scoring profile by combining a weighted matrix for
scoring a TATA box; Promoter2.0 (Knudsen, 1999) combined
genetic algorithms and elements similar to neural networks to
recognize promoter regions; Reese (2001) annotated promoters
in the Drosophila melanogaster genome using a time-delay
neural network; and (Down and Hubbard, 2002) combined
TATA box with flanking regions of C-G enrichment. Later, some
approaches focused on addressing this problem with spatial
information of the base pairs in the sequences. There are some
examples in this case: PromoterInspector identified promoters,
based on the genetic context of promoters rather than their
exact location; MCPromoter1.1 (Ohler et al., 1999) identified
promoters based on three interpolated Markov chains (IMCs)
of a different order. Moreover, the location of GpG islands
had been used to predict the promoters region, as shown

in Ioshikhes and Zhang (2000), Davuluri et al. (2001), and
Ponger (2002).

Over the past decade, with the development of NGS
technology, a large number of sequences was transcribed, which
motivates researchers to build their predictors on sequence
information. Similarly for promoters, it is necessary and urgent
to develop highly efficient prediction techniques on it. Some
notable research have been reported in the identification of
promoters using sequence information. For instance (Li and Lin,
2006) recognized and predicted σ70 promoters in Escherichia
coli K-12 by using position-correlation scoring matrix (PCSM)
algorithm. This problem has been improved upon using variable-
window Z-curve composition (Song, 2011) and six local DNA
structural properties (Lin et al., 2018). Yang et al. (2017) exploited
sex cell types and word embedding to identify enhancer–
promoter interaction. Two types of promoters (σ54 and σ28)
were identified by integrating DNA duplex stability into neural
networks (de Avila e Silva et al., 2014). Later, (Lin et al., 2014)
identified σ54 promoters using PseKNC, which is an advanced
feature in bioinformatics fields. PseKNC had been used in
the latter applications to classify promoter’s types (Liu et al.,
2017) and promoter’s strength (Xiao et al., 2018). The promoter
strength of Escherichia coli σ70 has been also predicted in
Bharanikumar et al. (2018) with use of respective position weight
matrices (PWM). Deep convolutional neural networks have been
used to identify promoters using sequence information, such as
recognition of prokaryotic and eukaryotic promoters (Umarov
and Solovyev, 2017).

Identifying promoters, especially their strength, is an
important problem in this aspect and latest research (Xiao et al.,
2018) has achieved an accuracy of 83.13 and 71.20% for two
layers, respectively. However, the performance results are not
satisfactory and requires a lot of efforts from bioinformatics
researchers to enhance the accuracy. A novel approach, proposed
in this study, aims to address this problem. Our idea is based
upon the natural language processing (NLP) field which classifies
the text/sentence into its appropriate scenario. Therefore, we
would like to apply it to bioinformatics to interpret the hidden
information of DNA sequences (represented by promoters).
Over the past decade, some researchers have successfully applied
NLP techniques into biological sequences. One of the pioneering
studies is from Asgari and Mofrad (2015) and it had been applied
successfully in many later bioinformatics applications (Habibi
et al., 2017; Hamid and Friedberg, 2018; Öztürk et al., 2018).
However, most studies used the Word2Vec model or FastText
model with a single level of N-gram. Here, a novel approach is
presented, in which we used a combination of FastText N-grams
to represent the DNA sequences. With this idea, we are able to
take into account the sub-word information of DNA sequences
as well as many N-gram levels in order to aid the increase in
the predictive performance. Another point is the use of deep
learning to take advantage of the numerous promoter sequences
in this problem.

We listed some key contributions of this study which are
as follows: (1) a computational model for classifying promoters
which achieved better performance than the previous methods;
(2) a novel method for generating hidden information of
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DNA sequences by incorporating a combination of FastText N-
grams and deep learning; (3) a study that provides significant
information for researchers and biologists to better understand
the promoter’s functions; and (4) a basis for further study that
would apply the FastText model and deep learning architecture
in solving the bioinformatics problem. Here we deal with these
contributions clearly in the following sections.

METHODS

Under the operation of a specifically designed pipeline, an overall
flowchart of our approach is presented in Figure 2. Each of the
experimental steps of this proposed pipeline will be sequentially
addressed in the following subsections.

Benchmark Dataset
Collecting a high-quality dataset is one of the most important
steps to address a bioinformatics problem. In this study,
we re-used the benchmark dataset from Xiao et al. (2018)
to objectively assess the difference in performance between
our model and other existing ones. In this dataset, they
collected all experimentally—confirmed promoter sequences

from RegulonDB (Gama-Castro et al., 2015), which is a huge
database of the regulatory network of gene expression. These
sequences were categorized into two groups: strong and weak
promoters based on their levels in transcription activation and
expression. They also extracted non-promoter sequences by
considering intron, exon, and intergenic sequences excluding the
positive sequences. After that, the CD-HIT [26] was also used to
exclude the pairwise sequences whose similarities were calculated
to be more than 85%.

The benchmark dataset encompasses 3,382 promoter samples
and 3,382 non-promoter samples. In 3,382 promoter samples,
there are 1,591 strong promoter samples and 1,792 weak
promoter samples for construction of second layer classification.
It can be freely downloaded at http://www.jci-bioinfo.cn/
iPSW(2L)-PseKNC/images/Supp.pdf. The whole dataset was
randomly divided into five subsets to perform a 5-fold cross-
validation. The training process was performed using a fixed ratio
of the training set over the validation set of 4:1 with alternation.

DNA Representation With Language Model
A DNA sequence consists of four nucleotides: adenosine (A),
cytidine (C), guanosine (G), and thymine (T). These nucleotides
will combine together to form a definite sequence in the DNA

FIGURE 2 | Flowchart of this study. First, we used FastText to train model and extract features from benchmark dataset (Xiao et al., 2018), then combined 10-gram

levels to a combination sets of vectors (1,000 dimensions). Deep neural network was then constructed to learn these vectors and classify the DNA sequences.
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sequence. Feature extraction is an important step in most of the
bioinformatics problems, whereby the main features will help
in discriminating DNA sequences. One of the most common
methods is the use of k-mer. K-mers are described as all the
possible subsequences (of length k) from a read accessed through
DNA sequencing. The number of k-mers possible given a string
of length L is L-k+1, whilst the number of possible k-mers
given n possibilities (four in the case of DNA e.g., ATGC) is
nk. K-mer has been used in a lot of bioinformatics problems
and has achieved promising results. Next, Chou highlighted
PseDNC which has extracted DNA sequences via different ways.
PseDNC has helped to rectify numerous problems relating to
bioinformatics, as compared to using k-mer. Another approach
is the use of language model to represent the information of DNA
sequences. In this approach, DNA sequence will be treated as
a language sentence and then fed into supervised learning for
classification. We can easily list the methods using this approach,
from Word2Vector to FastText. In these approaches, FastText
has been proven to achieve better performance as compared to
Word2Vector or Glove.

FastText Implementation
In order to generate continuous N-grams, we made use of
FastText (Bojanowski et al., 2017), which is a library from
Facebook for representation and classification of text. In
FastText, we can train different language models such as skip-
gram or CBOW and apply a variety of parameters such as
sampling or loss functions. There are a lot of improvements from
Word2Vector to FastText as described in Bojanowski et al. (2017)
and Le et al. (2019a). In this study, each DNA sequence was
treated as a sentence with a lot of words. Moreover, each word
contains a bag of character n-gram. As mentioned in FastText’s
document, theymodified the algorithm ofWord2Vector whereby
special symbols “and” are added at the boundary of words,
which helps to differentiate prefixes and suffixes from other
character sequences. Moreover, the word itself has been also
included in the n-gram set to learn a representation for each
word (together with character n-grams). To explain the idea,
we used our DNA word “ATGAC” as an example. If we would
like to generate the representation of this word with 3-gram,
they will be consequently: <AT, ATG, TGA, GAC, AC> and
the special sequence <ATGAC>. Here, it is noteworthy that
the representation <TGA>, corresponding to the word “TGA,”
is different from the tri-gram “TGA,” derived from the word
“ATGAC.” The reason is because of the potential of extracting
sub-word information in word “TGA” of FastText and it could
help generate more information for each word. The word
generated by FastText could be considered as a continuous bag
of words. In this study, we extracted all the n-grams from 1 to 10
to consider the optimal levels of them.

What makes FastText different fromWord2Vector is the sub-
word information, and it is proposed via a scoring function s
as follows:

s (w, c) =
∑

g∈Gw

zTg vc (1)

where G is the size of n-grams, Gw ranges from 1 to G, w is a given
word, zg is a vector representation to each n-gram g, vc is context
vector. This simple modification allows objective representation
of words, thus helping the model learn reliable representation for
rare words.

Based on the recent successful applications of FastText model
in representing biological sequence (Le, 2019; Le et al., 2019a), we
introduced a more in-depth benchmark method using FastText
to improve this representation. Here we take into account
the combination of continuous N-gram levels, which was not
considered by the previous studies. It means that instead of using
only one level of N-gram and sub-word information, we used a
lot of N-gram combinations and considered which was the best
combination for this problem. A huge advantage of this approach
is that we can have many features for learning. In addition, we
can easily implement feature selection techniques and improve
the performance results in the model.

1D Convolutional Neural Network
In general, CNN is a class of deep neural networks that has been
demonstrated to be exceptionally successful in territories, such
as picture acknowledgment and order. CNN has been fruitful in
computer vision related issues such as face recognition, object
detection, or self-driving cars. CNN appears ready to reproduce
and upgrade these key strides in a bound together structure and
learn various leveled portrayals specifically from crude images.
If we take a convolutional neural organization that has been
prepared to perceive protests inside pictures, then that system
will have built up some inward autonomous portrayals of the
substance and style contained inside a given picture. Since the
input of this problem was a vector, therefore, we used 1D
CNN. Similar to 2D CNN approaches which has been used in
bioinformatics (Le and Nguyen, 2019; Le et al., 2019b; Nguyen
et al., 2019), it consisted of the following layers:

(1) Input layer: The input of our model is a 1D vector, which is a
vector of size 1× 100 (created by FastText model).

(2) Convolutional layer: A 1D convolutional layer (e.g.,
temporal convolution) is used to construct a convolution
kernel and then derive features encoded in the 1D input
vector. The convolutional layer moves in stride over the
input, transforming the values into representative values
via a sliding window. This process helps conserve the
dimensional relationship between numeric values in the
vectors, by gaining beneficial features using small parts of
input data. Since our input size was not big, a kernel size of 3
was applied to figure out more information.

(3) Rectified Linear Unit (ReLU): an additional non-linear
operation is presented after every convolution operation. It
aims to perform non-linear function in our CNN and help
our model understand data better. The output function of
ReLU is as follows:

f (x) = max (0, x) (2)

where x is the number of inputs in a neural network.
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(4) Pooling layer: It is normally added inside the convolutional
layers to reduce the calculation of the next layers. Max
pooling was selected in this step with stride of 2.

(5) Dropout layer: A technique which aims to prevent overfitting
and also help to increase themodel’s performance (Srivastava
et al., 2014).

(6) Flatten layer: a layer helps to transform the input matrix into
a vector.

(7) Fully connected layer: is normally inserted by the last stage
of the deep networks. The layer is fully-connected if each
node is connected with all of the previous nodes in the
network. Our problem is to identify between promoter and
non-promoter (or classify strong and weak promoter), thus
it was a binary classification. Therefore, the final number of
nodes in our output is 2.

(8) Softmax is a logistic function defined by the formula:

σ (z)i =
ezi

∑K
k=1 e

zk
(3)

where z is the input vector with K-dimensional vector, σ(z)i is real
values in the range (0, 1) and ith class is the predicted probability
from sample vector x. It was compulsory to insert Softmax, in
order to determine the probability of each possible output.

Assessment of Predictive Ability
To evaluate the performance of the classifiers that were
constructed by the aforementioned deep learning architecture,
the 5-fold cross-validation technique was implemented. The
average metrics among the five testing sets were determined
in order to compare the performance when constructing the
classifier. We follow Chou’s evaluation criteria which is widely
used in many bioinformatics studies (Chou, 2001; Xiao et al.,
2018; Le et al., 2019a). The criteria includes sensitivity (Sens),
specificity (Spec), accuracy (Acc), and Matthews Correlation
Coefficient (MCC) which are defined as:

Sensitivity = 1−
N+
−

N+ , 0 ≤ Sen ≤ 1 (4)

Specificity = 1−
N−
+

N− , 0 ≤ Spec ≤ 1 (5)

Accuracy = 1−
N+
− + N−

+

N+ + N− , 0 ≤ Acc ≤ 1 (6)

MCC =
1−

(

N+
−

N+ + N−
+

N−

)

√

(

1+ N−
+−N+

−
N+

) (

1+ N+
−−N−

+
N−

)

, −1 ≤ MCC ≤ 1(7)

The relations between these symbols and the symbols in
Equations (4, 5, 6, and 7) are given by:















N−
+ = FP

N+
− = FN

N+ = TP + N+
−

N− = TN + N−
+

(8)

True positive (TP) and true negative (TN) are the respective
numbers of correctly predicted promoter and non-
promoter, whereas false positive (FP) and false negative
(FN) are the respective numbers of misclassified promoter
and non-promoter.

Likewise, we also used Receiver Operating Characteristics
(ROC) curve and Area Under Curve (AUC) (Bradley,
1997) as the additional metrics for performance
evaluation. The AUC is a probability value ranging
from 0 to 1 in which the greater AUC shows the better
predictive performance.

RESULTS

Optimal Experimental Setup
In this analysis, we attempted to observe the optimal
hyperparameters that were used in this study. Because we
integrated FastText and deep learning model, we chose the best
parameters for both methods. FastText has a lot of different
parameters for training purpose. Many prior research on it
determined that changing these parameters will help to change
the model’s accuracy drastically. Therefore, we would like to
perform a one-by-one strategy to tune up the optimal parameters
in FastText. There are a lot of parameters that may affect the
performance results and we decided to adapt these parameters
such as wordNgrams (max length of word n-gram), lr (learning
rate), dim (size of word vectors), ws (size of context window),
epoch (number of iterations), and loss (loss function). We used a
basic setting on FastText classifier to perform supervised learning
for text classification. The dataset used in this section helped
distinguish between promoters and non-promoters. In the first
experiment, we would like to examine the effect of different
levels of N-grams (from 1 to 10) on the performance results. The
important measurement metric used in this evaluation is ROC
AUC value. As shown in Figure 3, our classifier could classify
promoters with high performance (AUC ∼ 0.9), especially in
two levels: 4-gram and 5-gram. However, the differences were
not significant and it indicates that we can select any level of
N-gram to create a good model for promoter classification.
Table 1 shows the hyperparameters used for tuning the model.
After the tuning process, we also presented the best set of
hyperparameters found: learning rate of 0.1, vector dimension
of 100, context window size of 5, epoch of 100, and softmax
loss function.

The next tuning is from deep learning architecture,
in which we performed a grid search CV on a set of
potential hyperparameters. All of the parameters selected
for tuning in CNN include the number of layers, epochs,
batch sizes, dropout values, weight constant as well as
the optimizer and activation function. After this step,
we identified a set of optimal hyperparameters in CNN
as follows: 64 filter layers, batch size of 100, epoch of
100, dropout of 0.3, weight constraint of 4, adadelta
optimizer, and linear activation. We then used all of the
optimal parameters in the next experiments as well as the
later comparisons.
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FIGURE 3 | Performance results on identifying promoters using different levels

of N-gram. Our classifier could classify promoters with high performance (AUC

∼ 0.9), especially at 4-gram and 5-gram levels.

TABLE 1 | Hyperparameters chosen for tuning FastText model.

Parameters Range Stepsize Optimal

lr 0.05–0.25 0.05 0.1

Dim 50–500 25 100

Ws 1–10 1 5

Epoch 25–500 25 100

Loss [ns, hs, softmax] - softmax

Lr, learning rate; dim, dimension; ws, size of context window; epoch, number of iterations;

loss, loss function.

Effects of Different Levels of N-Gram and
Combination of Continuous N-Grams in
Classifying Promoters
According to the previous section, changing the number of N-
grams did not make significant effect on promoter classification.
It has been also proven in some of the previous works which
used the FastText model (Le, 2019; Le et al., 2019a). However,
one novel idea implemented in this study was to increase the
performance results by using a combination of N-grams. The
idea was to combine all of the N-gram levels into a big set
of features, which will then be fed into classifiers. As such,
our classifier will take full advantage of important features for
each specific N-gram level and remove some less important
features inside all of the levels. The performance results were
shown in detail in Table 2. It is noted that the 5-fold cross-
validation has been performed for several independent iterations
to give a confidence interval for the results. In these results, we
fed all 1,000 features from 10 levels of N-gram into our CNN

TABLE 2 | Comparison between single N-gram and combination of continuous

N-grams.

Methods Sens Spec Acc MCC

Single N-gram 82.43 83.34 82.88 0.658

Combination of N-grams 82.76 88.05 85.41 0.709

Single N-gram, representative by 4-gram; Combination of N-grams, combine 10 levels of

N-gram together.

TABLE 3 | Top-ranked features using MRMD feature selection technique.

No. Feature number Score

1 feature_97 1.0

2 feature_21 0.9170726107858075

3 feature_34 0.9096134637807235

4 feature_92 0.8914645287023287

5 feature_54 0.8463944338892277

6 feature_9 0.8368290059895386

7 feature_41 0.824726606348234

8 feature_8 0.8020998165541897

9 feature_77 0.7714372077391476

10 feature_3 0.7598084153408637

architecture. It is easy to say that the combination of N-grams
outperforms the single level of N-gram. This method achieved a
sensitivity of 82.76%, specificity of 88.05%, accuracy of 85.41%
and MCC of 0.709, which is improved ∼1–4% from single N-
gram in term of specificity, accuracy, and MCC. To statistically
compare betweenN-gram combination andN-gram single levels,
we performed 10 times of one-sided Wilcoxon tests of the ROC
AUC values between the combination model and each of the
1–10-gram model. After that, all of Wilcoxon tests showed a p-
value of 0.0005 (less than significance level∝= 0.05) which could
strongly conclude that the performance results of combination
features were significantly better than the single ones at high
confidence level.

Since deep learning is a black-box manner, it automatically
generated the hidden information from our feature sets.
Therefore, it is challenging to understand which features have
most contribution or play critical role for promoter distinction in
our model. As a reference, we used a common technique namely
Maximum-Relevance-Maximum-Distance (MRMD) (Zou et al.,
2016a) to evaluate and extract the important features of our
datasets. MRMD has been used a lot of works in bioinformatics
with promising results (Zou et al., 2016b; Wei et al., 2017).
According to the results, MRMD suggested that our model will
reach the highest accuracy when we selected 835 top-ranked
features (out of 1,000) to insert into our neural network. To detail,
10 features had the highest scores were shown in Table 3. These
features, therefore, play an essential role in classifying promoter
sequences using our model.

Next, we would like to compare our performance results with
a baseline machine learning technique to check whether the
deep CNN has generated more hidden information and given
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a significant performance. Since nearest neighbor (kNN) (Keller
et al., 1985) has been used to represent for traditional machine
learning classifiers in different problems, we implemented it in
our study for comparison.We used hyperparameter optimization
process and found that the model performed consistently at 10
neighbor trees. The optimal performance reached 78.8%, 86.8%,
82.8%, 0.66, and 0.885 for sensitivity, specificity, accuracy, MCC,
and AUC, respectively. Compared with the performance from
CNN, kNN was lower in term of sensitivity, accuracy, MCC, and
AUC. It is enough evidence to say that the deep neural network
could learn more features and produce a better performance than
traditional neural networks.

Classifying Promoters’ Strength
Since the combination of N-grams performed well in the first
layer classification, we aimed to use the same experimental
setups for the second layer (classifying promoter’s strength).
Our dataset includes 1591 strong promoters and 1792 weak
promoters as collected from Xiao et al. (2018) and has been
mentioned in the dataset section. The experiments show that our
method, which used a combination of N-grams, could classify
the promoter’s strength with an accuracy of 73.1%, sensitivity of
69.4%, specificity of 76.4%, and MCC of 0.46. The performance
was also better than the baseline models with single levels of N-
grams. It means that we can use this setup for both layers with
promising results.

Comparison the Performance Results
Between Proposed Method and the
Existing Methods
Our best model as mentioned in the previous sections is the
combination of different N-gram levels and deep convolutional
neural networks. To be fair, we have to compare our proposed
method with the other previous works that regarding promoter
classification. Also it is noted that we surely chose the previous
works that used the same benchmark dataset. For the first layer,
numerous studies had been done, including PCSF (Li and Lin,
2006), vw Z-curve (Song, 2011), Stability (de Avila e Silva et al.,
2014), iPro54 (Lin et al., 2014), iPromoter-2L (Liu et al., 2017),
and iPSW(2L)-PseKNC (Xiao et al., 2018). Among these studies,
only the last one performed the classification of promoter’s
strength, thus we also compared with this predictor in our second
layer. The results are shown in Table 4, and we highlighted the
highest values to highlight the significance of each metrics. We
then observed that our method outperforms other predictors in
all metrics (sensitivity, specificity, accuracy, and MCC) in both
layer classifications. Another improvement is that our approach
could be applied to actual genome sequences (long fragments of
bacterial genomes) rather only short sequences. All sequences
with different length will be trained to become a vector with a
fix-length. It helps to input any form of sequences flexibly.

DISCUSSIONS

Promoters play an important role in the transcription of genes
affect numerous human diseases. Therefore, identification of

TABLE 4 | Comparison with previous predictors on the same benchmark dataset.

Predictors Sens Spec Acc MCC

1st layer

Ours 82.76 88.05 85.41 0.709

iPSW(2L)-PseKNC 81.37 84.89 83.13 0.663

iPromoter-2L 79.2 84.16 81.68 0.6343

iPro54 77.76 83.15 80.45 0.61

Stability 76.61 79.48 78.04 0.5615

vw Z-curve 77.76 82.8 80.28 0.6098

PCSF 78.92 70.7 74.81 0.498

2nd layer

Ours 69.4 76.4 73.1 0.46

iPSW(2L)-PseKNC 62.23 79.17 71.2 0.4213

Highlighted values are the significant values for each metric.

promoters using their sequence information is one of the most
important tasks in bioinformatics. Although few computational
tools had already been presented, the performance results
require improvements. This study presents a new hybrid system,
from deep learning and a combination of FastText N-grams,
to identify promoters and their respective strengths. To our
knowledge, this is the first bioinformatics study which has
applied this hybrid into biological sequences. By using this
method, we are able to generate the hidden information
of DNA sequences unlike other methods. Our performance
results were evaluated via a 5-fold cross-validation test on a
benchmark dataset. It was found that the proposed method
could identify promoters and their strength, with an accuracy
of 85.41 and 73.1%, respectively. The rest of the measurement
metrics, such as sensitivity, specificity, and MCC, also attained
superior performances. When compared to the other state-
of-the-art predictors regarding the same problem and dataset,
our proposed method has improved at about 1–4% in all of
the metrics. Therefore, our model can be considered as a
reliable method for identifying promoters and their strength,
with use of sequence information. It can also act a basis for
further study that aims to interpret the language context of
DNA sequences.

Last but not least, scientists can use our approach to
solve further bioinformatics problems on sequencing. Since
most bioinformatics problems focused on sequencing data,
their features could be extracted by using our combination
(different levels of FastText N-grams). They then be fed into a
supervised learning to perform the prediction or classification
(e.g., using deep neural network as proposed in this work).
It could also provide a new approach for the previous works
that only used one level of FastText (Le, 2019; Le et al.,
2019a). A combination of more levels could be a solution
for boosting their predictive performances. We also provided
our source codes at https://github.com/khanhlee/deepPromoter
to help reproducing our method. Furthermore, since a lot of
previous works on promoter classification extracted features
by using PseKNC [such as (Liu et al., 2017; Lin et al., 2018;
Xiao et al., 2018)], a hybrid of this feature and our features
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could be considered in the future works for the purpose of
performance improvement.
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